Secure Set Intersection with Untrusted Hardware Tokens

Thomas Schneider Engineering Cryptographic Protocols Group, TU Darmstadt http://encrypto.de

joint work with

- Marc Fischlin (TU Darmstadt)
- Benny Pinkas (Bar Ilan University)
- Ahmad-Reza Sadeghi (TU Darmstadt)
- Ivan Visconti (University of Salerno)

Motivation

2012-06-05 | EC-SPRIDE | Engineering Cryptographic Protocols Group | Thomas Schneider | Slide 3

The Best of Two Worlds

Cryptographic Protocols

- strong security + privacy guarantees
- often performance is an issue (e.g., Gigabytes of communication, heavy use of public key crypto)

Secure Hardware

- secure (key) storage
- trusted execution environment
- is getting cheaper

Cryptographic Protocols + Hardware ?

Hardware Accelerators

- allow to speed up computations
 - massive parallelism (e.g., GPU, FPGA, Cell Processor,...)

Secure Hardware

- possibilities beyond SW-only
 - secure storage
 - secure execution environment
- can be used to construct more efficient protocols
 - computation
 - communication

Background and Motivation

- Where do we use HW tokens?
 - banking, SIM cards, pay-tv, passports, health cards, …
- Why do we use HW tokens?
 - SW alone often not secure/efficient/sufficient/...
- Benefits for Practice?
 - security, efficiency, unclonability, ...

Smart Cards as Secure Hardware

How Secure is Secure Hardware?

TECHNISCHE UNIVERSITÄT DARMSTADT

- Attacks [Kömmerling,Kuhn Smartcard'99]
- Micro-probing: Obtain direct physical access to the device's memory
- Side-channel attacks: Analyze analog characteristics of interfaces or electromagnetic radiation of the device
- Fault injection attacks: Observe device's behavior under abnormal conditions (e.g., unspecified supply voltage, operating temperature, focused ion beam)
- Example: Hardware Attack on TPM chip [Tarnovsky BlackHat'10]

Protection Mechanisms

- Against side-channel attacks: randomized program flow, obfuscation
- Against microprobing and fault injection attacks: Tamper-detection mechanisms (e.g., temperature, voltage, frequency sensors) that erase secret data on tampering attempts

Security of Secure Hardware is always a Trade-Off

Goal: Tolerate Untrusted Hardware

- Assumption: T is honest
 - justified if T has high level of certification (e.g. FIPS or CC)

Goal: Tolerate Untrusted Hardware

- Goal 1: B does not trust T (A could send cheating T)
 - A colludes with M
 - hardware trojans
 - bugs, ...

Goal: Tolerate Untrusted Hardware

- Goal 2: A does not trust T (B could break into T)
 - B colludes with M
 - side-channel attacks
 - bugs, ...

Secure Set Intersection

Secure Set Intersection

- Inputs: A has set X, B has set Y
- Output: B obtains nothing but X∩Y
- Application Examples:
 - Organizations: joint properties
 - Governments: joint criminal suspects
 - Companies: joint customers
 - People: common contacts

Set Intersection Protocols

- SW-only Protocols based on PK crypto ([Freedman,Nissim,Pinkas EUROCRYPT'04], ..., [De Cristofaro,Kim,Tsudik ASIACRYPT'10])
 - at least O(|X|+|Y|) PK operations
 - at least O(|X|+|Y|) communication
- SW-only Protocol of [Huang,Evans,Katz NDSS'12]: evaluate garbled circuit with $|C| \sim \sigma N \log N$ gates
 - O(|C|) symmetric crypto (Hash function)
 - cation
- σ : bit length of elements N = |X| + |Y|

- O(|C|) communication
- Better performance than previous PK-based protocols

Set Intersection Protocols

- HW-based Protocol of [Hazay,Lindell CCS'08]:
 - O(|X|+|Y|) symmetric crypto (fixed key AES)
 - O(|X|) communication
 - Token T
 - Trusted by both players
 - Constant amount of memory

Set Intersection Protocol of [HL08] (simplified)

TECHNISCHE UNIVERSITÄT DARMSTADT

• Assumption: T trusted by both parties

(use simulator's control over T to extract inputs of A,B)

Our Contribution

- Efficient Secure Set Intersection with Untrusted HW tokens:
 - Use symmetric crypto only
 - Token(s) not trusted by both parties

Goal 1: Receiver B does not trust T

B does not trust T: Protect B's Privacy (1. try)

EC SPRIDE

- Problem 1: T sees B's input, so malicious T could use covert channel inside OK message to send information back to A
- => reorder messages to eliminate OK message

B does not trust T: Protect B's Privacy (2. try)

- another Problem: unable to simulate against malicious B that could change his inputs y_j adaptively
- => add another layer of encryption

workload of T increased by factor of 3

B does not trust T: Protect B's Correctness

Idea (adapted from [Kolesnikov TCC'10]): use live + test run

2012-06-05 | EC-SPRIDE | Engineering Cryptographic Protocols Group | Thomas Schneider | Slide 22

technische

DARMSTADT

Goal 2: Sender A does not trust T

A does not trust T: Protect A's Privacy

- If B can break into T to learn its entire state,
 A has no advantage in using T any more
- Our approach:
 - Use multiple Tokens T_i (from different manufacturers M_i)
 - Assume that receiver B can break into all but one token
- Idea:
 - Use sequential composition of PRPs F_{Ki}

A does not trust T: Protect A's Privacy

Use Multiple Tokens Sequentially

Conclusion

Summary

Y

- Efficient Extensions for Token-based Set Intersection [Hazay,Lindell CCS'08]:
 - Similar communication: ~ |X|
 - Tolerate malicious token sent by A
 - Workload by T increases by factor 3
 - Tolerate B breaking all but one of n tokens
 - Workload by A,B increases linearly in n
 - Security:
 - Privacy against malicious adversaries
 - Correctness against covert adversaries
 - Fall-back UC security if tokens are trusted

Secure Set Intersection with Untrusted Hardware Tokens

Questions ?

