How to Bootstrap a SNARK in Public

Nir Bitansky, Ran Canetti, Alessandro Chiesa, Eran Tromer

How quickly can we verify the result of long computations?

How quickly can we verify the result of long computations? (Plain version)

How quickly can we verify the result of long computations? (Plain version)

Verify by running $M(x)$ for T steps.

How quickly can we verify the result of long computations? (Plain version)

Can we do better?

How quickly can we verify the result of long computations? (with prover input - "NP version")

How quickly can we verify the result of long computations? (with prover input - "NP version")

Verify by running $M(x, w)$ for T steps.

How quickly can we verify the result of long computations? (with prover input - "NP version")

Can we do better?

Succinct Proofs with incomplete input (" for NP ")

possibly long

$\begin{array}{cc}\substack{\text { poly }(|x|, k) \\ \text { universal poly, e.g. } \\|x| \cdot k} & \text { security } \\ \text { parameter } \\ \text { independent of } T! & \end{array}$

Succinct Proofs with incomplete input (" for NP ")

- Statistical soundness is unlikely [BHZ87, GH98, GVW02]. Thus we settle for computational soundness.
- However, we require extractability:
- Natural in real-life applications (databases...)
- Crucial for this work

How many rounds do succinct arguments require?

How many rounds do succinct arguments require?

[Kilian 92]: can do 4-message (assuming CRH)

How many rounds do succinct arguments require?

[Kilian 92]: can do 4-message (assuming CRH)

[Micali 94]: one message! with a random oracle
(aka "CS proofs")

Non-interactive in the plain model?

Non-interactive in the plain model?

Totally non-interactive protocols (against non-uniform provers
for "hard enough languages")
Are unlikely [BHZ87, GH98, GVW02].

With a verifier initial message (reference string)?

Succinct Non-Interactive Argument of Knowledge (SNARK):

A protocol (P,V) such that:

- V sends an initial message σ to P
- Repeat: - P sends (M, x, T), π to V
- $\mathrm{V}(\mathrm{M}, \mathrm{x}, \mathrm{T}, \pi, \sigma)=\mathrm{acc} / \mathrm{rej}$

Succinct Non-Interactive Argument of Knowledge (SNARK):

A protocol (P,V) such that:

- V sends an initial message σ to P
- Repeat: - P sends (M, x, T), π to V
- $\mathrm{V}(\mathrm{M}, \mathrm{x}, \mathrm{T}, \pi, \sigma)=\mathrm{acc} / \mathrm{rej}$

Completeness: If $\exists \mathrm{w}$ s.t. $\mathrm{M}(\mathrm{x}, \mathrm{w})=1$ within T steps, then V accepts.
Extractability: \forall pt P' a pt E, such that when ($\mathrm{P}^{\prime}, \mathrm{V}$) accepts (M,x,t, π), E outputs w s.t. $\mathrm{M}(\mathrm{x}, \mathrm{w})=1$ within T steps (except w.p. negl(k)).

Designated verifier SNARKs

Same as (publicly verifier) SNARKs except:

- V keeps secret state τ associated with σ.
- V uses τ in each verification.

Disadvantages:

- Vulnerable to leakage on verifier (even the verifier's decision)
- Proofs are no longer transferrable or publicly verifiable ("publishable").
- Harder to compose (later on)

Can we construct SNARKs?

No SNARK can be proven secure via "black-box reduction to an efficiently falsifiable assumption"
[Gentry-Wichs11].

- even for designated verifier SNARKs
- even if we only require plain soundness (without knowledge extraction)

Can we construct SNARKs?

No SNARK can be proven secure via "black-box reduction to an efficiently falsifiable assumption"
[Gentry-Wichs11].

- even for designated verifier SNARKs
- even if we only require plain soundness
(without knowledge extraction)
What can we do?
- Option 1: Use non BB reductions
- Option 2: Use other assumptions

SNARKs from "non--falsifiable assumptions"

- Replace the RO in [Micali94] with a "sufficiently complicated" hash function and assume security.

Disadvantages: Implementation specific, doesn't teach us much...

- Based on "extractable collision resistant hash functions" [Bitansky Canetti Chiesa Tromer 11, Goldwasser Lin Rubinstein 11, Damgard Faust Hazay 11]

Disadvantage: Only designated verifier.

PV SNARKs with long reference string ("with pre-processing")

In the initial stage, V "works hard": generates (σ, τ) where:
$-\tau$ is poly(k)

- σ is poly(T, k)

In proof stage, V is still succinct - only uses τ.

PV SNARKs with long reference string ("with pre-processing")
In the initial stage, V "works hard":
generates (σ, τ) where:
$-\tau$ is poly(k)

- σ is poly(T, k)

In proof stage, V is still succinct - only uses τ.

Note: τ is public!
Can realize based on a Knowledge-of-exponent assumption in bilinear groups
[Groth10, Lipmaa12, Gennaro-Gentry-Parno-Raykova12]

Another advantage of [G10,L12,GGPR12]

(Following [Ishai-Kushilevitz-Ostrovsky07])
Very different techniques - alternative to PCPs
Potentially better efficiency (for prover).

Prover efficiency is important ! (e.g. cloud computing)

Another advantage of [G10,L12,GGPR12]
 (Following [shai-Kushilevit-Ostrovsky07])

Very different techniques - alternative to PCPs
Potentially better efficiency (for prover).

But...

For computations with time T, space S
Prover needs T poly(k) space!
Would like to preserve time and space individually.

First Main Result

Publicly-verifiable SNARKs with preprocessing

Publicly-verifiable SNARKs without preprocessing

First Main Result

Publicly-verifiable SNARKs with preprocessing

General transformation via recursive proof-composition \& bootstrapping

Publicly-verifiable SNARKs without preprocessing

First Main Result

Publicly-verifiable SNARKs with preprocessing

General transformation
via recursive proof-composition \& bootstrapping

Publicly-verifiable SNARKs without preprocessing

Prover complexity :
$T \rightarrow T \cdot \operatorname{poly}(k), \quad S \rightarrow S \cdot \operatorname{poly}(k)$

First Main Result

Publicly-verifiable SNARKs with preprocessing

General transformation
via recursive proof-composition \& bootstrapping

Publicly-verifiable SNARKs without preprocessing

No PCPs!
Prover complexity :
$T \rightarrow T \cdot \operatorname{poly}(k), \quad S \rightarrow S \cdot \operatorname{poly}(k)$

Corollaries

Assuming KEA in a bilinear group, there exist fully succinct publicly-verifiable SNARKs .

Any SNARK can be transformed into a SNARK where:

- Prover time is T• poly(k)
- Prover space is S poly(k)
(T,S are time and space of original M)

The Core Idea: Bootstrapping a SNARK

Only need to be able to prove correctness of (many) small computations.

The Core Idea: Bootstrapping a SNARK

Only need to be able to prove correctness of (many) small computations.

How small?

as small as SNARK verification (and a bit more)
\rightarrow The preprocessing becomes cheap (poly(k))
\rightarrow Prover overhead becomes poly(k)
(both in time and in space)

Part I
 How to Bootstrap a SNARK: a Bare-Bones Description

Part II Using the Proof Carrying Data (PCD) abstraction

Part I:
 Bare-Bones Description

Incremental Computation [Valiant08] a possibly useful idea

Compile a computation $\boldsymbol{M}(\boldsymbol{x}, \boldsymbol{w})$ to a new one that after each step spits
a short proof of its correctness so far

Incremental Computation [Valiant08] a possibly useful idea

Compile a computation $\boldsymbol{M}(\boldsymbol{x}, \boldsymbol{w})$ to a new one that after each step spits
a short proof of its correctness so far
but... (implicitly) assumes fully-succinct SNARKs

Incremental Computation [Valiant08] a possibly useful idea

Still uses SNARKs in a non-trivial way: proofs only involve "small" computations: proportional to the space S used by \boldsymbol{M}.

Can use preprocessing SNARKs, where preprocessing is as cheap as S....

Problems:
In general, S may be as large as T
Need to carefully aggregate proofs by composition

Incremental Computation More Concretely

Split a T-step computation $\boldsymbol{M}(\boldsymbol{x}, \boldsymbol{w})$ to T single-step computations

Potential additional $\otimes \boldsymbol{W}_{\boldsymbol{i}}$ input bit read at step $i \quad \downarrow$

transition
function of $\boldsymbol{M}(\boldsymbol{x}, \cdot)$

state after step i

Split a T-step computation $\boldsymbol{M}(\boldsymbol{x}, \boldsymbol{w})$ to T single-step computations

$$
\stackrel{w_{i-1}}{\downarrow}
$$

$$
\xrightarrow{\boldsymbol{M}_{\boldsymbol{x}}} \xrightarrow{s t_{i-1}} \boldsymbol{M}_{\boldsymbol{x}} \xrightarrow{s t_{i}} \xrightarrow{\boldsymbol{M}_{\boldsymbol{x}}} \xrightarrow{-\cdots}
$$

\boldsymbol{w}_{i}

\downarrow

Compose short proof for current step with short proof for previous steps:

1. performed step i correctly
2. verified a proof π_{i-1} for correctness of steps $1 \ldots i-1$

Augment computation $\boldsymbol{M}(\boldsymbol{x}, \boldsymbol{w})$ with consistency proofs

Augment computation $\boldsymbol{M}(\boldsymbol{x}, \boldsymbol{w})$ with consistency proofs

Recursive Consistency Checker $\boldsymbol{C H}_{\boldsymbol{M}_{\boldsymbol{x}}}$ Input: $s t_{i} \quad$ witness: $\left(s t_{i-1}, \pi_{i-1}, \boldsymbol{w}_{\boldsymbol{i}}\right)$

Recursive Consistency Checker $\boldsymbol{C H}_{\boldsymbol{M}_{x}}$

 Input: $s t_{i} \quad$ witness: $\left(s t_{i-1}, \pi_{i-1}, \boldsymbol{w}_{\boldsymbol{i}}\right)$If $i=0$ and $s t_{0}=$ initial state, accept.
else check:
$\boldsymbol{M}_{\boldsymbol{x}}\left(s t_{i-1} ; \boldsymbol{w}_{\boldsymbol{i}}\right)=s t_{i}$
$V_{\tau}\left(\boldsymbol{C H}_{\boldsymbol{M}_{x}}, s t_{i-1}, \pi_{i-1}\right)=\mathrm{acc}$

Recursive Consistency Checker $\boldsymbol{C H}_{M_{x}}$ Input: $s t_{i} \quad$ witness: $\left(s t_{i-1}, \pi_{i-1}, \boldsymbol{w}_{\boldsymbol{i}}\right)$
If $i=0$ and $s t_{0}=$ initial state, accept. else check:

$$
\begin{aligned}
& \boldsymbol{M}_{\boldsymbol{x}}\left(s t_{i-1} ; \boldsymbol{w}_{\boldsymbol{i}}\right)=s t_{i} \\
& V_{\tau}\left(\boldsymbol{C H}_{\boldsymbol{M}_{\boldsymbol{x}}}, s t_{i-1}, \pi_{i-1}\right)=\mathrm{acc}
\end{aligned}
$$

Is the resulting proof sound?

$$
\begin{gathered}
V_{\tau}\left(\boldsymbol{C H}_{M_{x}} ; s t_{T} ; \pi_{T}\right)=1 \\
s t_{T}=\text { "accept" }
\end{gathered}
$$

Recursive Consistency Checker $\boldsymbol{C H}_{\boldsymbol{M}_{\boldsymbol{x}}}$

Input: $s t_{i} \quad$ witness: $\left(s t_{i-1}, \pi_{i-1}, \boldsymbol{w}_{\boldsymbol{i}}\right)$
If $s t_{i}$ is initial state of $\boldsymbol{M}_{\boldsymbol{x}}$ accept. else check:

$$
\boldsymbol{M}_{\boldsymbol{x}}\left(s t_{i-1} ; \boldsymbol{w}_{\boldsymbol{i}}\right)=s t_{i}
$$

V_{τ} accepts π_{i-1} for statement " $\boldsymbol{C H}_{\boldsymbol{M}_{x}}$ accepts $s t_{i-1}$

$$
\begin{array}{cc}
\exists\left(\pi_{T-1}, s t_{T-1}, \boldsymbol{w}_{\boldsymbol{T}}\right): \\
\boldsymbol{M}_{\boldsymbol{x}}\left(s t_{T-1}, \boldsymbol{w}_{T}\right)=s t_{T} & \longleftarrow
\end{array} V_{\tau}\left(\boldsymbol{C H}_{\boldsymbol{M}_{\boldsymbol{x}}} ; s t_{T} ; \pi_{T}\right)=1
$$

Recursive Consistency Checker CH $_{M_{x}}$ Input: $s t_{i} \quad$ witness: $\left(s t_{i-1}, \pi_{i-1}, \boldsymbol{w}_{\boldsymbol{i}}\right)$
If $s t_{i}$ is initial state of \boldsymbol{M}_{x} accept. else check:

$$
\boldsymbol{M}_{\boldsymbol{x}}\left(s t_{i-1} ; \boldsymbol{w}_{\boldsymbol{i}}\right)=s t_{i}
$$

V_{τ} accepts π_{i-1} for statement " $\boldsymbol{C H}_{M_{x}}$ accepts $s t_{i-1}$

$$
\begin{array}{cc}
\exists\left(\pi_{T-1}, s t_{T-1}, \boldsymbol{w}_{\boldsymbol{T}}\right): \\
\boldsymbol{M}_{\boldsymbol{x}}\left(s t_{T-1}, \boldsymbol{w}_{T}\right)=s t_{T} & \longleftarrow \\
V_{\tau}\left(\boldsymbol{C H}_{\boldsymbol{M}_{x}} ; s t_{T-1} ; \pi_{T-1}\right)=1 & V_{\tau}\left(\boldsymbol{C H}_{\boldsymbol{M}_{\boldsymbol{x}}} ; s t_{T} ; \pi_{T}\right)=1 \\
\downarrow & s t_{T}=\text { "accept" } \\
\exists & \\
\exists\left(\pi_{T-2}, s t_{T-2}, \boldsymbol{w}_{T-1}\right): & \\
M_{x}\left(s t_{T-2}, \boldsymbol{w}_{T-1}\right)=s t_{T-1} & \\
V_{\tau}\left(\boldsymbol{C H}_{\boldsymbol{M}_{x}} ; s t_{T-2} ; \pi_{T-2}\right)=1 &
\end{array}
$$

Recursive Consistency Checker $\boldsymbol{C H}_{M_{x}}$

$$
\text { Input: } s t_{i} \quad \text { witness: }\left(s t_{i-1}, \pi_{i-1}, \boldsymbol{w}_{\boldsymbol{i}}\right)
$$

If $s t_{i}$ is initial state of \boldsymbol{M}_{x} accept. else check:

$$
\boldsymbol{M}_{\boldsymbol{x}}\left(s t_{i-1} ; \boldsymbol{w}_{\boldsymbol{i}}\right)=s t_{i}
$$

V_{τ} accepts π_{i-1} for statement " $\boldsymbol{C H}_{M_{x}}$ accepts $s t_{i-1}$

$$
\begin{array}{cc}
\exists\left(\pi_{T-1}, s t_{T-1}, \boldsymbol{w}_{T}\right): & V_{\tau}\left(\boldsymbol{C H}_{\boldsymbol{M}_{x}} ; s t_{T} ; \pi_{T}\right)=1 \\
\boldsymbol{M}_{\boldsymbol{x}}\left(s t_{T-1}, \boldsymbol{w}_{T}\right)=s t_{T} & \longleftarrow \\
V_{\tau}\left(\boldsymbol{C H}_{\boldsymbol{M}_{x}} ; s t_{T-1} ; \pi_{T-1}\right)=1 & \\
\downarrow & \\
\downarrow & \\
\exists\left(\pi_{T-2}, s t_{T-2}, \boldsymbol{w}_{T-1}\right): & \exists\left(\pi_{0}, s t_{0}, \boldsymbol{w}_{\mathbf{1}}\right): \\
M_{x}\left(s t_{T-2}, \boldsymbol{w}_{T-1}\right)=s t_{T-1} & --\boldsymbol{l} \\
V_{\tau}\left(\boldsymbol{C} \boldsymbol{H}_{\boldsymbol{M}_{x}} ; s t_{T-2} ; \pi_{T-2}\right)=1 & \boldsymbol{M}_{\boldsymbol{x}}\left(s t_{0}, \boldsymbol{w}_{\mathbf{1}}\right)=s t_{1} \\
& s t_{0}=\text { "start" }
\end{array}
$$

Recursive Consistency Checker CH $_{M_{x}}$

$$
\text { Input: } s t_{i} \quad \text { witness: }\left(s t_{i-1}, \pi_{i-1}, \boldsymbol{w}_{\boldsymbol{i}}\right)
$$

If $s t_{i}$ is initial state of M_{x} accept. else check:

$$
\boldsymbol{M}_{\boldsymbol{x}}\left(s t_{i-1} ; \boldsymbol{w}_{\boldsymbol{i}}\right)=s t_{i}
$$

V_{τ} accepts π_{i-1} for statement " $\mathbf{C H}_{M_{x}}$ accepts $s t_{i-1}$

$$
\begin{array}{cc}
\exists\left(\pi_{T-1}, s t_{T-1}, \boldsymbol{w}_{\boldsymbol{T}}\right): & V_{\tau}\left(\boldsymbol{C H}_{\boldsymbol{M}_{\boldsymbol{x}}} ; s t_{T} ; \pi_{T}\right)=1 \\
\boldsymbol{M}_{\boldsymbol{x}}\left(s t_{T-1}, \boldsymbol{w}_{\boldsymbol{T}}\right)=s t_{T} & \leftarrow t_{T}=\text { "accept" } \\
V_{\tau}\left(\boldsymbol{C H}_{\boldsymbol{M}_{x}} ; s t_{T-1} ; \pi_{T-1}\right)=1 & \\
\downarrow & \\
\downarrow & \exists\left(\pi_{0}, s t_{0}, \boldsymbol{w}_{\mathbf{1}}\right): \\
\exists\left(\pi_{T-2}, s t_{T-2}, \boldsymbol{w}_{T-1}\right): & \boldsymbol{M}_{x}\left(s t_{0}, \boldsymbol{w}_{\mathbf{1}}\right)=s t_{1} \\
M_{x}\left(s t_{T-2}, \boldsymbol{w}_{T-1}\right)=s t_{T-1} & s t_{0}=\text { "start" } \\
V_{\tau}\left(\boldsymbol{C} \boldsymbol{H}_{\boldsymbol{M}_{x}} ; s t_{T-2} ; \pi_{T-2}\right)=1 &
\end{array}
$$

\rightarrow Computational soundness isn't enough
\rightarrow Need knowledge extraction
\rightarrow Need to apply the extraction recursively.

The extraction guarantee of SNARKs

\forall prover P^{*}
ref string

$s t_{i}, \pi_{i}$ that
V_{τ} accepts
\exists extractor $E_{P^{*}}$

$$
V_{\tau}\left(\boldsymbol{C H}_{M_{x}} ; s t_{T-1} ; \pi_{T-1}\right)=1
$$

$$
V_{\tau}\left(\boldsymbol{C H}_{M_{x}} ; s t_{T} ; \pi_{T}\right)=1
$$

$V_{\tau}\left(\boldsymbol{C H}_{\boldsymbol{M}_{\boldsymbol{x}}} ; s t_{T-2} ; \pi_{T-2}\right)=1$

$$
V_{\tau}\left(\boldsymbol{C H}_{M_{x}} ; s t_{T-1} ; \pi_{T-1}\right)=1
$$

$$
V_{\tau}\left(\boldsymbol{C H}_{\boldsymbol{M}_{\boldsymbol{x}}} ; s t_{T-2} ; \pi_{T-2}\right)=1
$$

A solution: aggregate proofs

 in a wide treek proofs $\Rightarrow 1$ proof
If $T=k^{d} \Rightarrow$
d levels

A solution: aggregate proofs

 in a wide treek proofs $\Rightarrow 1$ proof

$$
\begin{gathered}
\text { If } T=k^{d} \Rightarrow \\
d \text { levels }
\end{gathered}
$$

The tree is constructed dynamically with only poly(k) overhead

Is the resulting proof sound?

So Far: Preprocessing cost is proportional to single-step computation.

So Far: Preprocessing cost is proportional to single-step computation.

But how large is a single-step computation?

So Far: Preprocessing cost is proportional to single-step computation.

But how large is a single-step computation? \#ounded only by S, which can be as large as T... \rightarrow reprocessing stage can still be poly(T)...

Idea:
Move from machines with large memory to machines with:

- "small" trusted memory
- "big" untrusted memory

witness

M

trusted (big) mem

witness

M

trusted (big) mem

witness

\downarrow	+ consistency
$\widetilde{\boldsymbol{M}}$	
trusted mem	nly poly (k)

A computational reduction using CRH

[Blum Evans Gemmell Kannan Naor 94, Ben-Sasson Chiesa Genkin Tromer 12]

$$
\begin{array}{cc}
\boldsymbol{M}(\boldsymbol{x}, \boldsymbol{w}) \\
\text { accepts }
\end{array} \underset{\text { accepts }}{ }
$$ Or

h-collisions can be (eff.)
extracted from mem

A computational reduction using CRH

[Blum Evans Gemmell Kannan Naor 94, Ben-Sasson Chiesa Genkin Tromer 12]

$$
\widetilde{\boldsymbol{M}}_{h}
$$

$$
\begin{array}{cc}
\boldsymbol{M}(\boldsymbol{x}, \boldsymbol{w}) \\
\text { accepts }
\end{array} \begin{gathered}
\widetilde{\boldsymbol{M}}_{h}(\boldsymbol{x}, \boldsymbol{w}, \text { mem }) \\
\text { accepts }
\end{gathered}
$$

Or

h-collisions can be (eff.) extracted from mem
\exists mem not enough need knowledge

A computational reduction using CRH

[Blum Evans Gemmell Kannan Naor 94, Ben-Sasson Chiesa Genkin Tromer 12]

h
 M

\widetilde{M}_{h} runs in time $T_{M} \cdot \operatorname{poly}(k)$, space poly (k) and mem computed from $(\boldsymbol{x}, \boldsymbol{w})$ in time $T_{M} \cdot \operatorname{poly}(k) \&$ space $S_{M} \cdot \operatorname{poly}(k)$
\rightarrow A single-step computation is now of size poly $_{\boldsymbol{h}}(\mathrm{k})$
(subsequent steps can be computed dynamically preserving time and space of original computation)
what's left? ...SNARK verification

Input: $s t_{i} \quad$ witness: $\left(\pi_{i-1}, s t_{i-1}, \boldsymbol{w}_{\boldsymbol{i}}\right)$

If $s t_{i}$ is initial state of \widetilde{M}_{x} accept.
else check:
$\widetilde{\boldsymbol{M}}_{\boldsymbol{x}}\left(s t_{i-1} ; \boldsymbol{w}_{\boldsymbol{i}}\right)=s t_{i}$
V_{τ} accepts π_{i-1} for statement $\boldsymbol{C H}_{\widetilde{M}_{x}}, s t_{i-1}$
only poly ${ }_{V}(k)$,
independently of preprocessing limit
what's left? ...SNARK verification

Input: $s t_{i} \quad$ witness: $\left(\pi_{i-1}, s t_{i-1}, \boldsymbol{w}_{\boldsymbol{i}}\right)$
If $s t_{i}$ is initial state of $\widetilde{\boldsymbol{M}}_{x}$ accept.
else check:
$\widetilde{\boldsymbol{M}}_{\boldsymbol{x}}\left(s t_{i-1} ; \boldsymbol{w}_{\boldsymbol{i}}\right)=s t_{i}$
V_{τ} accepts π_{i-1} for statement $\boldsymbol{C H}_{\widetilde{M}_{x}}, s t_{i-1}$
only poly ${ }_{V}(k)$,
independently of preprocessing limit
\Rightarrow budget only for $\operatorname{poly}_{V}(\boldsymbol{k})+$ poly $_{h}(k)$

Bye Bye
Long Preprocessing...

Part I: How to Bootstrap a SNARK in Public

Part II:
Part I (again) and Beyond with Proof Carrying Data

In SNARKs: one prover and one verifier

But sometimes in life...

Computations involve many parties each party has its own: role, capabilities, friends, enemies,...

How can we enforce general correctness properties of distributed computations?

Use MPC?

enforce any property of all the inputs/outputs of all parties
but: large overhead: all parties must communicate with each other
(necessary, e.g. Byzantine agreement)

A relaxed question: how to enforce local properties?

Local property = property of the view of a single node

Example: ensure that the program executed at

 every node was signed by system admin if property holds everywhere \rightarrow global meaning

Proof Carrying Data (PCD) [Chiesa Tromer 10]

Goal:

Guarantee "local properties" while respecting the original computation:

- preserve communication graph
- minimal computational overhead

The original computation

- Can be viewed as a DAG evolving over time
- nodes have input and output messages + a local program (with embedded inputs).

The original computation

- Can be viewed as a DAG evolving over time
- nodes have input and output messages + a local program (with embedded inputs).

The original computation

- Can be viewed as a DAG evolving over time
- nodes have input and output messages + a local program (with embedded inputs).

The original computation

- Can be viewed as a DAG evolving over time
- nodes have input and output messages + a local program (with embedded inputs).

Local properties as \boldsymbol{C}-compliance

$\boldsymbol{C}\left(\right.$ prog $\left., m_{\text {in }}, m_{\text {out }}\right)$ is a predicate specifying a local property, e.g.:

- $\boldsymbol{C}_{\text {adm }}:$ " $\operatorname{prog}=(M, s)$ where s is an admin signature on M and $M\left(m_{\text {in }}\right)=m_{\text {out }}{ }^{\prime \prime}$
- $\boldsymbol{C}_{\boldsymbol{J V M}}$: "prog is a JAVA program and

$$
J V M\left(p r o g, m_{\text {in }}\right)=m_{\text {out }} \text { " }
$$

- $\boldsymbol{C}_{M_{x}}:{ }^{\prime \prime} p r o g=\boldsymbol{w}_{i}, m_{\text {in }}=s t_{i-1}, m_{\text {out }}=s t_{i}$ and $\boldsymbol{M}_{\boldsymbol{x}}\left(s t_{i-1}, \boldsymbol{w}_{\boldsymbol{i}}\right)=s t_{i}{ }^{\prime}$

A PCD system

- compile on-the-fly original computation
- (short) proofs are appended to messages

A PCD system

- compile on-the-fly original computation
- (short) proofs are appended to messages

Note: not all properties can be verified this way.
Eg, verifying that $m_{1}=m_{2}$ requires additional interaction.

How to construct PCDs?

[CT10]: Using an abstract signature card

How to construct PCDs?

This work: SNARK composition

Results (revisited): General transformations

Publicly-verifiable SNARKs
 with (resp. without) preprocessing

SNARK recursive composition

Publicly-verifiable PCDs for constant depth graphs with (resp. without) preprocessing

Results (revisited): General transformations

> Publicly-verifiable SNARKs
> with (resp. without) preprocessing

SNARK recursive composition

Publicly-verifiable PCDs for constant depth graphs with (resp. without) preprocessing

General transformation
 of path-compliance to tree-compliance
 \downarrow

Publicly-verifiable PCDs for polynomial-length chains with (resp. without) preprocessing

Results (revisited): Eliminating expensive preprocessing

Publicly-verifiable PCDs for polynomial chains with preprocessing

Memory reduction

Results (revisited): Eliminating expensive preprocessing

Publicly-verifiable PCDs for polynomial chains with preprocessing

Memory reduction

using incremental compliance

Publicly-verifiable SNARKs
without preprocessing
using previous transformation
Publicly-verifiable PCDs for polynomial-length chains without preprocessing

A bonus:
 privately-verifiable SNARKs also compose!

A bonus:
 privately-verifiable SNARKs also compose!

To compose SNARKs we used public-verifiability proved "I verified a SNARK"

A bonus:
 privately-verifiable SNARKs also compose!

To compose SNARKs we used public-verifiability proved "I verified a SNARK"

Looks surprising... but doable (using FHE).
\rightarrow All the PCD results have their privately-verifiable analogs

Question:

which security goals we express using the PCD language?

We've seen some examples
others include: targeted-malleability [BSW11], computing on authenticated Data,...

Other properties?

