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Verify by running M(x) for T steps.
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How quickly can we verify the
result of long computations?
(with prover input — “NP version™)

dw, s.t. M(x,w)=1
within T steps?

verifier

Can we do better?



Succinct Proofs with incomplete input

(" for NP ™)
possibly long
\ Jwst. M(x,w) =1
(M, x,T),w in < T steps? (M, x,T)
< > & ﬁ%
|
poly(|x|, k)
universal poly, e.g. ~ Security
x| - k parameter

independent of T'!



Succinct Proofs with incomplete input
(“ for NP )

« Statistical soundness is unlikely [BHZ87, GH98, GVWO02].
Thus we settle for computational soundness.

* However, we require extractability:
* Natural in real-life applications (databases...)
* Crucial for this work
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How many rounds do succinct
arguments require?

[Kilian 92]: can do 4-message
(assuming CRH)

[Micali 94]: one message!
with a random oracle
(aka “CS proofs”)




Non-interactive In the plain model?




Non-interactive In the plain model?

Totally non-interactive protocols
(against non-uniform provers
for “hard enough languages”)
Are unlikely [BHZ87, GH98, GVW02].



With a verifier initial message
(reference string)?

o_: Mg 8 <— @f

reference string o
sent before statements



Succinct Non-Interactive Argument of Knowledge
(SNARK):

A protocol (PV) such that:
-V sends an initial message o to P
- Repeat: -Psends (M,x,T), ttoV
-V(M,x,T, T, o)=acc/re;



Succinct Non-Interactive Argument of Knowledge
(SNARK):

A protocol (PV) such that:
-V sends an initial message o to P
- Repeat: -Psends (M,x,T), ttoV
-V(M,x,T, T, o)=acc/rej

Completeness: If dw s.t. M(x,w)=1 within T steps,
then V accepts.

Extractability: ¥ pt P’ d pt E, such that when (P’,V)
accepts (M,x,t, ), E outputs w s.t. M(x,w)=1 within
T steps (except w.p. negl(k)).



Designated verifier SNARKs

Same as (publicly verifier) SNARKs except:
-V keeps secret state T associated with o .
-V uses T in each verification.

Disadvantages:

- Vulnerable to leakage on verifier (even the
verifier’s decision)

- Proofs are no longer transferrable or publicly
verifiable (“publishable”).

- Harder to compose (later on)



Can we construct SNARKs?

No SNARK can be proven secure via “black-box
reduction to an efficiently falsifiable assumption”

[Gentry-Wichs11].

- even for designated verifier SNARKSs
- even if we only require plain soundness
(without knowledge extraction)



Can we construct SNARKs?

No SNARK can be proven secure via “black-box
reduction to an efficiently falsifiable assumption”

[Gentry-Wichs11].

- even for designated verifier SNARKSs

- even if we only require plain soundness
(without knowledge extraction)

What can we do?

- Option 1: Use non BB reductions

- Option 2: Use other assumptions



SNARKs from “non--falsifiable assumptions”

- Replace the RO in [Micali94] with a “sufficiently
complicated” hash function and assume security.

Disadvantages: Implementation specific, doesn’t
teach us much...

- Based on “extractable collision resistant hash

functions” [Bitansky Canetti Chiesa Tromer 11, Goldwasser Lin
Rubinstein 11, Damgard Faust Hazay 11]

Disadvantage: Only designated verifier.



PV SNARKSs with long reference string
(“with pre-processing”)
In the initial stage, V “works hard”:
generates (0,7) where:
- T is poly(k)
- o is poly(T,k)
In proof stage, V is still succinct - only uses .



PV SNARKSs with long reference string
(“with pre-processing”)
In the initial stage, V “works hard”:
generates (0,7) where:
- T is poly(k)
- o is poly(T,k)
In proof stage, V is still succinct - only uses .

Note: 7 is public!
Can realize based on a Knowledge-of-exponent
assumption in bilinear groups

[Groth10, Lipmaal2, Gennaro-Gentry-Parno-Raykoval2]



Another advantage of [G10,L.12,GGPR12]
(Following [Ishai-Kushilevitz-Ostrovsky07))

Very different techniques — alternative to PCPs

Potentially better efficiency (for prover).

Prover efficiency Is important !
(e.g. cloud computing)



Another advantage of [G10,L.12,GGPR12]
(Following [Ishai-Kushilevitz-Ostrovsky07))

Very different techniques — alternative to PCPs

Potentially better efficiency (for prover).
But...

For computations with time T , space S
Prover needs T poly(k) space!

Would like to preserve time and space individually.
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First Main Result

Publicly-verifiable SNARKs with preprocessing

General transformation
via recursive proof-composition & bootstrapping

Y

Publicly-verifiable SNARKs without preprocessing

T \ Prover cohplexity ;
‘_ |
No PCPs! Py T - T-poly(k), S—S-poly(k)




Corollaries
Assuming KEA in a bilinear group, there exist

fully succinct publicly-verifiable SNARKS .

Any SNARK can be transformed into a SNARK where:
- Prover time I1s T - poly(k)
- Prover space is S - poly(k)

(T,S are time and space of original M)



The Core Idea:
Bootstrapping a SNARK

Only need to be able to prove correctness of
(many) small computations.



The Core Idea:
Bootstrapping a SNARK

Only need to be able to prove correctness of
(many) small computations.

How small?
as small as SNARK verification (and a bit more)
=» The preprocessing becomes cheap (poly(k))

=» Prover overhead becomes poly(k)
(both In time and in space)



Part |
How to Bootstrap a SNARK:
a Bare-Bones Description

Part Il

Using the Proof Carrying Data
(PCD) abstraction



Part I
Bare-Bones Description



Incremental Computation [ValiantO8]
a possibly useful idea

Compile a computation M(x, w) to a new
one that after each step spits
a short proof of its correctness so far



Incremental Computation [ValiantO8]
a possibly useful idea

Compile a computation M(x, w) to a new
one that after each step spits
a short proof of its correctness so far

but... (implicitly) assumes fully-succinct SNARKS



Incremental

Computation [ValiantO8]

a possibly useful idea

Still uses SNAR
proofs only invo
proportional to t

KS In a non-trivial way:
ve “small” computations:

ne space S used by M.

Can use preprocessing SNARKSs, where
preprocessingis as cheapas S ....

Problems:

In general, S may be as large as T
Need to carefully aggregate proofs by composition



Incremental Computation
More Concretely



Split a T-step computation M(x, w)
to T single-step computations

Potential additional

. . > Wi
input bit read at step i

St;_ St;
1—1 Mx l
/ |
transition state after

function of M(x,-) step i



T M, - M, - M,

Split a T-step computation M(x, w)
to T single-step computations

W;_1q Wi Wit1

| ! |

Sti

Stij_1




Sti—l Sti

Sl oM, | 2

Compose short proof for current step with short proof
for previous steps:

1. performed step i correctly
2. Verified a proof mr;_, for correctness of steps 1...i — 1



Sti—1

Augment computation M(x, w)
with consistency proofs

Wi

S W (SNARKprover1""""""""")




Augment computation M(x, w)
with consistency proofs

Wi

!

Sti—1 X Mx St; X
: : Stl. .........
i STim1 P, Tt
TTi_1 eeereeeaessaeesenees W;i......> (SNARKprover1"""""""""')
......................................................................................................... > Vi

Proved w.r.t. consistency checker CH



Sti—1 Mx st;
Sti— TT;

........................ ) P CH

nl_l Heeeeeeeeeeeeeeeees wt) 0( Mx) >

Recursive Consistency Checker CH
Input: st; witness: (st;_q,T;_1, W;)




Sti

Sti-1 M,
St
Stl_l,
ﬂ'-l—l ...................... wt)

P,(CHy,)

Recursive Consistency Checker CH
Input: st; witness: (st;_q,T;_1, W;)

If i = 0and sty = initial state, accept.

else check:
Mx(Sti—liwi) = St;
Vi(CHy, st;_4, T;_1)=acc




!
Sti—l X Mx Sti .
........................ STt Tt
Ti_q S Wti P‘T(CHMx) """""""""" >

Recursive Consistency Checker CH
Input: st; witness: (st;_q,T;_1, W;)

If i = 0and sty = initial state, accept.

else check: ‘need recursion

M, (st;_1; w;) = st;
V(CHyg . sti o mo)mace




S ti —1 M X S ti -
; St
Sti_q T
71-1 P .- ......... Wt i PO’ (C H Mx ) ___________________ >
------------------------------------------------------------------------------------------------------------- >

Is the resulting proof sound?



Sti_1

Sti

Ve(CHpy ; stp;mp) = 1

”

st = “accept

Recursive Consistency Checker CHyy,
Input: st; Witness: (st;_1, Tj_1, W;)

If st; Is initial state of M., accept.
else check:
M, (sti_1; w;) = st;
I accepts;_, for statement * CH), accepts st;_;




= (T[T—ll StT—lJ WT)"
M, (sty_q,wr) = sty <€—

Ve(CHpy; str_q;mp_1) = 1

Sti_1

Sti

Ve(CHpy ; stp;mp) = 1
sty = “accept”

Recursive Consistency Checker CHyy,
Input: st; Witness: (st;_1, Tj_1, W;)

If st; Is initial state of M., accept.
else check:
M, (sti_1; w;) = st;
I accepts;_, for statement * CH), accepts st;_;




3(ﬂ:T—ll StT_]_, WT)-' B
M,(sty_q,wr) = st €— VT(CHMx'StT'”T) =1

st = “accept”
Ve(CHpy; str_q;mp_1) = 1 ! P

|

A(r_p, Sty_, Wr_1):
M, (str_z, Wr_1) = Stp_4
VT(CHMx;StT—Z;T[T—Z) =1

Recursive Consistency Checker CHyy,
W; .
| Input: st; WItNesS: (st;_q, i1, W;)

St; St | Ifstisinital state of M, accept.
11 i .
— > M £l — else check:
M, (st;_1; W;) = st;
I accepts;_, for statement * CH), accepts st;_;




= (T[T—ll StT—lJ WT) ;

M,(sty_q,wr) = st €— Ve(CHpy,; strimr) = 1

Ve(CHy; str_1;mr—q) = 1 Sty = "accept
3(77:'11_2, StT—Z) WT_1).' H(TEOI StO' Wl).'
Mx(StT—ZJ WT—I) — StT—l -==> Mx(StO» wl) — Stl

Vi(CHy ;str_g;mp_y) =1 sty = “start

Recursive Consistency Checker CHyy,
W; .
| Input: st; WItNesS: (st;_q, i1, W;)

St; St | Ifstisinital state of M, accept.
11 i .
— > M £l — else check:
M, (st;_1; W;) = st;
I accepts;_, for statement * CH), accepts st;_;




(w1, str—_1, Wr):
M,(sty_q, wr) = sty €—

Ve(CHy; str_1;mr—q) = 1 Sty = "accept
(T, St7_>, Wr_1)- 3(”0_»St0»W1)-'
MX(StT—Z'WT—l) — StT—l -==> Mx(StO: Wl) - Stl

VT(CHMx;StT—Z;T[T—Z) -1 sty = “start

=» Computational soundness isn’t enough
=>» Need knowledge extraction
=>» Need to apply the extraction recursively.

Ve(CHpy ; stp;mp) = 1



The extraction guarantee of SNARKSs

V prover P* 3 extractor Ep+

st;, ; that
V. accepts Wit = St;_q1,Tj—1, Wi
st. CHy_(st;,wit) =1






Ve(CHy ; Str_q;mr_q) = 1

Vi(CHp,; sty;mr) =1




Ve(CHpm,; str_g;mr—z) = 1

Ve(CHy ; Str_q;mr_q) = 1

o
b Ve(CHpy;strymr) =1




Ve(CHpm,; str_g;mr—z) = 1

°  Vi(CHystr_q;mp_q) =1
| f V:(CHy,; str;mr) = 1




Ve(CHy ; Str_q;mr_q) = 1

o
b Ve(CHpy;strymr) =1



)

How large is this extractor?
(or mextractor) .T) _




)

How large is this extractor?

_/

(or mextractor) .T) _

Typical recursive extraction problem:

each level incurs a poly blowup! = |E| = k
can only deal with O(1) levels

20(d)

= Ty

Tlp_2,Sty_3, Wy_q) (TTp—1,St7_1, W)  Tp




A solution: aggregate proofs
In a wide tree

k proofs = 1 proof

=1

fT =k =
d levels Ty ... Ty

~

27! T, d

«1- «~1-
— k- — k —

Ty o Mg <«—— T proofs ——Tr_gyq - TT




A solution: aggregate proofs
In a wide tree

k proofs = 1 proof

=1

fT =k =
d levels Ty ... Ty

The tree is constructed dynamically
with only poly(k) overhead

-
«1- ~1-
— k- — k —
Ty v My <«—— T proofs ——Tr_p4q1 -




Sti_l Mx Sti -
; St
Sti—l TT;
........................ ) P CH
Ti_q S Wi ol M) >
............................................................................................................. >

Is the resulting proof sound?




Sti_l Mx Sti -
Sti—l TT;
........................ ) P CH
Ti_q S Wi ol M) >
............................................................................................................. >

So Far: Preprocessing cost is proportional to
single-step computation.



l
Sti-1 | M, st;
........................ oSt T
Ti_q femeeeeeenseesssenssen Wti P‘T(CHMx) """""""""" >

So Far: Preprocessing cost is proportional to
single-step computation.

But how large is a single-step computation?



!
Sti—l X Mx Sti .
........................ STt Tt
Ti_1 S Wti P‘T(CHMx) """"""""""

So Far: Preprocessing cost is proportional to
single-step computation.

But how large is a single-step computation?
=3ounded only by S, which can be as large as T...
=Preprocessing stage can still be poly(T)...



ldea:
Move from machines with large memory
to machines with:

- “"small” trusted memory
- "big” untrusted memory



withess

v
M
trusted (big) mem
witness big untrusted memory
! |

~

M

trusted mem

<€

—— only poly(k)




withess

v
M
trusted (big) mem
withess memory transcript of entire execution of M

|

! + consistency info

~

M

trusted mem  [¢— only poly(k)




A computational reduction using CRH

[Blum Evans Gemmell Kannan Naor 94,
Ben-Sasson Chiesa Genkin Tromer 12]

h
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accepts accepts
Or
h-collisions can be (eff.)
extracted from mem



A computational reduction using CRH

[Blum Evans Gemmell Kannan Naor 94,
Ben-Sasson Chiesa Genkin Tromer 12]

h
M ) 7,
M(x,w) S— M) (x,w, mem)

accepts accepts
Or

h-collisions can be (eff.)\ Jmem not enough
extracted from mem need knowledge



A computational reduction using CRH

[Blum Evans Gemmell Kannan Naor 94,
Ben-Sasson Chiesa Genkin Tromer 12]

h ~
M M,

N

Dynamic Merkle-hashing
of memory

\ J




M,, runs in time Ty, - poly(k) , space poly(k)
and mem computed from (x, w) in
time Ty, - poly(k) & space S;; - poly(k)

=» A single-step computation is now of size
polyp (k)
(subsequent steps can be computed dynamically
preserving time and space of original computation)




what’s left?
...SNARK verification

Input: st; witness: (ir;_q, St;_1, W;)

If st; is initial state of M, accept.
elsg check:
M, (st;_q; w;) = st;
V; accepts m;_, for statement CHy ,st;_4

only polyy (k),
independently of preprocessing limit




what’s left?
...SNARK verification

Input: st; witness: (ir;_q, St;_1, W;)

If st; is initial state of M, accept.
elsg check:
M, (st;_q; w;) = st;
V; accepts m;_, for statement CHy ,st;_4

only polyy (k),
independently of preprocessing limit

= budget only for polyy (k)+poly; (k)




Bye Bye
Long Preprocessing...



Part I
How to Bootstrap a SNARK
In Public J

Part Il
Part | (again) and Beyond
with Proof Carrying Data



In SNARKS: one prover and one verifier




But sometimes in life...

Computations involve many parties
each party has its own:
role, capabillities, friends, enemies,...



How can we enforce general correctness
properties of distributed computations?

local program/input

\ output message
j prog,

prog:

Input message

PT0Je




Use MPC?

enforce any property of all the
Inputs/outputs of all parties
but: large overhead: all parties must
communicate with each other
(necessary, e.g. Byzantine agreement)

prog; PTOG4




A relaxed question:
how to enforce local properties?

Local property = property of the view of a single node



Example: ensure that the program executed at
every node was signed by system admin
if property holds everywhere - global meaning

local program output message
. T progs Proga
input message ) |

\ $ - |

a A Proge
, Progs | progs




Proof Carrying Data (PCD)
[Chiesa Tromer 10]}

Goal:

Guarantee “local properties” while
respecting the original computation:
* preserve communication graph

* minimal computational overhead



The original computation

« Can be viewed as a DAG evolving over time

* nodes have Input and output messages
+ a local program (with embedded inputs).
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The original computation

« Can be viewed as a DAG evolving over time

* nodes have Input and output messages
+ a local program (with embedded inputs).




Local properties as C-compliance

C(prog,m;,, m,,;) IS a predicate specifying
a local property, e.g.:

* Coqm :"“prog = (M,s) where s Is an admin
signature on M and M(m;,) = m,,;'
* Cyyym:“prog is a JAVA program and
JVM(prog, min) = Moyt
* Cpy, "prog = w;, my, = stj_1, Moy = St
and Mx(Sti—l'Wi) = St; “
prog

1 \ m
|

(




A PCD system

» compile on-the-fly original computation
* (short) proofs are appended to messages




A PCD system

» compile on-the-fly original computation
* (short) proofs are appended to messages

Note: not all properties can be verified this way.
Eg, verifying that m; = m, requires additional interaction.

prog; PTOGs
A T m
m e 6
i 75 o% ?
| = M E
pT'Ogl - —

A Ts A Pr0ge
i Progs | progs



How to construct PCDs?

|CT10]: Using an abstract
signature card



How to construct PCDs?

This work: SNARK composition



Results (revisited). General transformations

Publicly-verifiable SNARKSs
with (resp. without) preprocessing

SNARK recursive composition

v
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Results (revisited). General transformations

Publicly-verifiable SNARKSs
with (resp. without) preprocessing

SNARK recursive composition

v

Publicly-verifiable PCDs for constant depth graphs
with (resp. without) preprocessing

General transformation
of path-compliance to tree-compliance

v

Publicly-verifiable PCDs for polynomial-length chains
with (resp. without) preprocessing




Results (revisited): Eliminating expensive preprocessing

Publicly-verifiable PCDs for polynomial Memory
chains with preprocessing reduction

| using incremental compliance |

v
Publicly-verifiable SNARKs

without preprocessing




Results (revisited): Eliminating expensive preprocessing

Publicly-verifiable PCDs for polynomial Memory
chains with preprocessing reduction

| using incremental compliance |

v

Publicly-verifiable SNARKSs
without preprocessing

| using previous transformation |

v
Publicly-verifiable PCDs for polynomial-length chains

without preprocessing




A bonus;
privately-verifiable SNARKSs also compose!



A bonus;
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To compose SNARKs we used public-verifiability
proved | verified a SNARK”



A bonus;
privately-verifiable SNARKSs also compose!

To compose SNARKs we used public-verifiability
proved | verified a SNARK”

Looks surprising... but doable (using FHE).

= All the PCD results have their
privately-verifiable analogs



Question:
which security goals we express
using the PCD language?

We've seen some examples
others include: targeted-malleability [BSW11],
computing on authenticated Data,...

Other properties?



