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Succinct Proofs with incomplete input  
(“ for NP ”) 

𝑀, 𝑥, 𝑇  𝑀, 𝑥, 𝑇 , 𝑤 

poly( 𝑥 , 𝑘) 

independent of 𝑇! 

universal poly, e.g. 
𝑥 ⋅ 𝑘  

∃𝑤 s.t. 𝑀 𝑥,𝑤 = 1 

in ≤ 𝑇 steps? 

security  

parameter 

possibly long 



Succinct Proofs with incomplete input  
(“ for NP ”) 

• Statistical soundness is unlikely [BHZ87, GH98, GVW02]. 

Thus we settle for computational soundness. 
 

• However, we require extractability:   
• Natural in real-life applications (databases…) 
• Crucial for this work 
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[Kilian 92]: can do 4-message 

(assuming CRH) 

RO [Micali 94]:  one message! 

with a random oracle 

(aka “CS proofs”) 

   

How many rounds do succinct 
arguments require? 



Non-interactive in the plain model? 



Non-interactive in the plain model? 

Totally non-interactive protocols  

(against non-uniform provers  

for “hard enough languages”) 

Are unlikely [BHZ87, GH98, GVW02]. 

 



With a verifier initial message 
(reference string)? 

𝜎   

reference string 𝜎 
sent before statements 



Succinct Non-Interactive Argument of Knowledge 
(SNARK): 

 A protocol (P,V) such that: 

   - V sends  an initial message  σ  to  P  

   - Repeat:     - P sends (M,x,T), 𝜋 to V 

                        - V(M,x,T, 𝜋, σ)=acc/rej 
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                        - V(M,x,T, 𝜋, σ)=acc/rej 

 

Completeness: If  Ǝw s.t. M(x,w)=1 within T steps, 
then V accepts. 

Extractability:   ⩝ pt P’  Ǝ pt E, such that when (P’,V) 
accepts (M,x,t, 𝜋), E outputs w s.t. M(x,w)=1 within 
T steps (except w.p. negl(k)).   

 

 
 
 
 



Designated verifier SNARKs 

 Same as (publicly verifier) SNARKs except: 

- V keeps secret state 𝜏 associated with σ . 

- V uses 𝜏 in each verification. 

 

   Disadvantages: 

 - Vulnerable to leakage on verifier (even the 
verifier’s decision) 

 - Proofs are no longer transferrable or publicly 
verifiable (“publishable”). 

 - Harder to compose (later on) 

  

 
 
 
 



Can we construct  SNARKs? 

 No SNARK can be proven secure via “black-box 
reduction to an efficiently falsifiable assumption”  

[Gentry-Wichs11]. 
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SNARKs from  “non--falsifiable assumptions” 

- Replace the RO in [Micali94] with a “sufficiently 
complicated”  hash function and assume security. 

    

Disadvantages: Implementation specific, doesn’t  
teach us much… 

 

- Based on “extractable collision resistant hash          
functions” [Bitansky Canetti Chiesa Tromer 11 , Goldwasser Lin 
Rubinstein 11, Damgard Faust Hazay 11] 

   

Disadvantage: Only designated verifier. 



PV SNARKs with long reference string 
(“with pre-processing”) 

In the initial stage, V “works hard”: 

generates (σ,𝜏) where: 

 - 𝜏 is poly(k)  

 - σ is poly(T,k)  

 In proof stage, V is still succinct - only uses 𝜏.  

 

Note: 𝜏 is public!  

Can realize based on a Knowledge-of-exponent 
assumption in bilinear groups  

[Groth10, Lipmaa12, Gennaro-Gentry-Parno-Raykova12]    
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Very different  techniques – alternative to PCPs 

Potentially better efficiency (for prover).  
 

Prover efficiency is important ! 
(e.g.  cloud computing) 

 Another advantage of  [G10,L12,GGPR12] 

(Following [Ishai-Kushilevitz-Ostrovsky07]) 



Very different  techniques – alternative to PCPs 

Potentially better efficiency (for prover).  
 

But… 
 

For computations with time T , space S  
 

Prover  needs T poly(k)   space! 
 

Would like to preserve time and space individually. 
 

 Another advantage of  [G10,L12,GGPR12] 

(Following [Ishai-Kushilevitz-Ostrovsky07]) 
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Publicly-verifiable SNARKs without preprocessing 

Publicly-verifiable SNARKs with preprocessing 

                         Prover complexity :  
   𝑇 → 𝑇 ⋅ poly 𝑘 , 

  
           𝑆 → 𝑆 ⋅ poly(𝑘) 

General transformation 
via recursive proof-composition & bootstrapping 

No PCPs! 

First Main Result 



  Corollaries 

Any SNARK can be transformed into a SNARK where: 

 - Prover time  is T ⋅poly(k) 

 - Prover space is S ⋅ poly(k) 

(T,S are time and space  of original  M) 

Assuming KEA in a bilinear group, there exist  

fully succinct  publicly-verifiable SNARKs . 
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Only need to be able to prove correctness of 

(many) small  computations. 

 



The Core Idea:  
Bootstrapping a SNARK 

Only need to be able to prove correctness of 

(many) small  computations. 

 

How small?  

 

as small as SNARK verification  (and a bit more)  

 

 The preprocessing becomes cheap (poly(k)) 

 Prover overhead becomes poly(k)  

      (both in time and in space)  



Part I  
How to Bootstrap a SNARK:  
a Bare-Bones Description 

Part II  
Using the Proof Carrying Data 

 (PCD) abstraction 



Part I:  
 Bare-Bones Description 



Incremental Computation [Valiant08] 
a possibly useful idea 

 
 

Compile a computation 𝑴(𝒙,𝒘) to a new 

one that after each step spits  
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Compile a computation 𝑴(𝒙,𝒘) to a new 

one that after each step spits  

a short proof of its correctness so far  

but… (implicitly) assumes fully-succinct SNARKs 

Incremental Computation [Valiant08] 
a possibly useful idea 



Still uses SNARKs in a non-trivial way: 

proofs only involve “small” computations:  

proportional to the space 𝑆 used  by 𝑴.  

 

Can use preprocessing SNARKs, where  

preprocessing is as cheap as 𝑆 …. 

 
Problems:  

In general, 𝑆 may be as large as 𝑇 

Need to carefully aggregate proofs by composition 

Incremental Computation [Valiant08] 
a possibly useful idea 

 



Incremental Computation 

More Concretely 



Split a 𝑇-step computation 𝑴(𝒙,𝒘) 
to 𝑇 single-step computations 

𝑠𝑡𝑖−1 
𝑴𝒙 

𝑠𝑡𝑖 

𝒘𝑖  

transition 
function of 𝑴(𝒙,⋅) 

state after  
step 𝑖 

Potential additional  
input bit read at step 𝑖 



𝑠𝑡𝑖−1 
𝑴𝒙 

𝑠𝑡𝑖 

𝒘𝒊 

𝑴𝒙 𝑴𝒙 

𝒘𝒊+𝟏 𝒘𝒊−𝟏 

Split a 𝑇-step computation 𝑴(𝒙,𝒘) 
to 𝑇 single-step computations 



𝑠𝑡𝑖−1 
𝑴𝒙 

𝑠𝑡𝑖 

𝒘𝑖  

1. performed  step 𝑖 correctly 
2. verified a proof 𝜋𝑖−1 for correctness of steps 1…𝑖 −1  

 

Compose short proof for current step with short proof 
for previous steps:  



𝑠𝑡𝑖−1 𝑴𝒙 𝑠𝑡𝑖 

𝒘𝑖 

Augment computation 𝑴(𝒙,𝒘) 
with consistency proofs 

𝜋𝑖−1 

𝑠𝑡𝑖 
𝑠𝑡𝑖−1 𝜋𝑖 
𝒘𝑖 

𝑷𝝈 
(𝑺𝑵𝑨𝑹𝑲 𝒑𝒓𝒐𝒗𝒆𝒓) 



𝑠𝑡𝑖−1 𝑴𝒙 𝑠𝑡𝑖 

𝒘𝑖 

Augment computation 𝑴(𝒙,𝒘) 
with consistency proofs 

𝑷𝝈 
(𝑺𝑵𝑨𝑹𝑲 𝒑𝒓𝒐𝒗𝒆𝒓) 𝜋𝑖−1 

𝑠𝑡𝑖 
𝑠𝑡𝑖−1 𝜋𝑖 
𝒘𝑖 

Proved w.r.t. consistency checker 𝑪𝑯𝑴𝒙 



Recursive Consistency Checker 𝑪𝑯𝑴𝒙   

Input:  𝑠𝑡𝑖  witness: (𝑠𝑡𝑖−1,𝜋𝑖−1, 𝒘𝒊)  
 



If  𝑖 = 0 and 𝑠𝑡0 = 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑠𝑡𝑎𝑡𝑒,  accept. 
else  check: 
       𝑴𝒙(𝑠𝑡𝑖−1;𝒘𝒊) = 𝑠𝑡𝑖 
     𝑉𝜏(𝑪𝑯𝑴𝒙, 𝑠𝑡𝑖−1, 𝜋𝑖−1)=acc 

Input:  𝑠𝑡𝑖  witness: (𝑠𝑡𝑖−1,𝜋𝑖−1, 𝒘𝒊)  
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Recursive Consistency Checker 𝑪𝑯𝑴𝒙   

need recursion 



Is the resulting proof sound? 



𝑉𝜏 𝑪𝑯𝑴𝒙; 𝑠𝑡𝑇; 𝜋𝑇 = 1 

𝑠𝑡𝑇 = “accept” 

𝑠𝑡𝑖−1 
𝑴𝒙 

𝒘𝒊 
Input:  𝑠𝑡𝑖  witness: (𝑠𝑡𝑖−1, 𝜋𝑖−1, 𝒘𝒊)  

 

Recursive Consistency Checker 𝑪𝑯𝑴𝒙  

If 𝑠𝑡𝑖 is initial state of 𝑴𝒙  accept. 
else  check: 
       𝑴𝒙(𝑠𝑡𝑖−1;𝒘𝒊) = 𝑠𝑡𝑖 
     𝑉𝜏  accepts 𝜋𝑖−1 for statement “ 𝑪𝑯𝑴𝒙accepts 𝑠𝑡𝑖−1 

𝑠𝑡𝑖 

𝜋𝑇 

𝜎 



𝑉𝜏 𝑪𝑯𝑴𝒙; 𝑠𝑡𝑇; 𝜋𝑇 = 1 

𝑠𝑡𝑇 = “accept” 

∃(𝜋𝑇−1, 𝑠𝑡𝑇−1, 𝒘𝑻): 
𝑴𝒙 𝑠𝑡𝑇−1, 𝒘𝑻 = 𝑠𝑡𝑇  

𝑉𝜏 𝑪𝑯𝑴𝒙; 𝑠𝑡𝑇−1; 𝜋𝑇−1 = 1 

𝑠𝑡𝑖−1 
𝑴𝒙 

𝒘𝒊 
Input:  𝑠𝑡𝑖  witness: (𝑠𝑡𝑖−1, 𝜋𝑖−1, 𝒘𝒊)  

 

Recursive Consistency Checker 𝑪𝑯𝑴𝒙  

If 𝑠𝑡𝑖 is initial state of 𝑴𝒙  accept. 
else  check: 
       𝑴𝒙(𝑠𝑡𝑖−1;𝒘𝒊) = 𝑠𝑡𝑖 
     𝑉𝜏  accepts 𝜋𝑖−1 for statement “ 𝑪𝑯𝑴𝒙accepts 𝑠𝑡𝑖−1 

𝑠𝑡𝑖 



𝑉𝜏 𝑪𝑯𝑴𝒙; 𝑠𝑡𝑇; 𝜋𝑇 = 1 

𝑠𝑡𝑇 = “accept” 

∃(𝜋𝑇−1, 𝑠𝑡𝑇−1, 𝒘𝑻): 
𝑴𝒙 𝑠𝑡𝑇−1, 𝒘𝑻 = 𝑠𝑡𝑇  

𝑉𝜏 𝑪𝑯𝑴𝒙; 𝑠𝑡𝑇−1; 𝜋𝑇−1 = 1 
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𝑴𝒙 
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Input:  𝑠𝑡𝑖  witness: (𝑠𝑡𝑖−1, 𝜋𝑖−1, 𝒘𝒊)  

 

Recursive Consistency Checker 𝑪𝑯𝑴𝒙  

If 𝑠𝑡𝑖 is initial state of 𝑴𝒙  accept. 
else  check: 
       𝑴𝒙(𝑠𝑡𝑖−1;𝒘𝒊) = 𝑠𝑡𝑖 
     𝑉𝜏  accepts 𝜋𝑖−1 for statement “ 𝑪𝑯𝑴𝒙accepts 𝑠𝑡𝑖−1 

𝑠𝑡𝑖 



𝑉𝜏 𝑪𝑯𝑴𝒙; 𝑠𝑡𝑇; 𝜋𝑇 = 1 

𝑠𝑡𝑇 = “accept” 

∃(𝜋𝑇−1, 𝑠𝑡𝑇−1, 𝒘𝑻): 
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𝑉𝜏 𝑪𝑯𝑴𝒙; 𝑠𝑡𝑇−1; 𝜋𝑇−1 = 1 

∃(𝜋𝑇−2, 𝑠𝑡𝑇−2, 𝒘𝑻−𝟏): 
𝑀𝑥 𝑠𝑡𝑇−2, 𝒘𝑻−𝟏 = 𝑠𝑡𝑇−1  
𝑉𝜏 𝑪𝑯𝑴𝒙; 𝑠𝑡𝑇−2; 𝜋𝑇−2 = 1 

∃(𝜋0, 𝑠𝑡0, 𝒘𝟏): 
𝑴𝒙 𝑠𝑡0, 𝒘𝟏 = 𝑠𝑡1  
𝑠𝑡0 = “start” 

𝑠𝑡𝑖−1 
𝑴𝒙 

𝒘𝒊 
Input:  𝑠𝑡𝑖  witness: (𝑠𝑡𝑖−1, 𝜋𝑖−1, 𝒘𝒊)  

 

Recursive Consistency Checker 𝑪𝑯𝑴𝒙  

If 𝑠𝑡𝑖 is initial state of 𝑴𝒙  accept. 
else  check: 
       𝑴𝒙(𝑠𝑡𝑖−1;𝒘𝒊) = 𝑠𝑡𝑖 
     𝑉𝜏  accepts 𝜋𝑖−1 for statement “ 𝑪𝑯𝑴𝒙accepts 𝑠𝑡𝑖−1 

𝑠𝑡𝑖 



𝑉𝜏 𝑪𝑯𝑴𝒙; 𝑠𝑡𝑇; 𝜋𝑇 = 1 

𝑠𝑡𝑇 = “accept” 

∃(𝜋𝑇−1, 𝑠𝑡𝑇−1, 𝒘𝑻): 
𝑴𝒙 𝑠𝑡𝑇−1, 𝒘𝑻 = 𝑠𝑡𝑇  

𝑉𝜏 𝑪𝑯𝑴𝒙; 𝑠𝑡𝑇−1; 𝜋𝑇−1 = 1 

∃(𝜋𝑇−2, 𝑠𝑡𝑇−2, 𝒘𝑻−𝟏): 
𝑀𝑥 𝑠𝑡𝑇−2, 𝒘𝑻−𝟏 = 𝑠𝑡𝑇−1  
𝑉𝜏 𝑪𝑯𝑴𝒙; 𝑠𝑡𝑇−2; 𝜋𝑇−2 = 1 

∃(𝜋0, 𝑠𝑡0, 𝒘𝟏): 
𝑴𝒙 𝑠𝑡0, 𝒘𝟏 = 𝑠𝑡1  
𝑠𝑡0 = “start” 

 
Computational soundness isn’t enough 
Need knowledge extraction 
 Need to apply the extraction recursively. 





𝜋𝑇 

𝜎 



(𝜋𝑇−1, 𝑠𝑡𝑇−1, 𝒘𝑻) 

𝜎 

𝑉𝜏 𝑪𝑯𝑴𝒙; 𝑠𝑡𝑇; 𝜋𝑇 = 1 

𝑉𝜏 𝑪𝑯𝑴𝒙; 𝑠𝑡𝑇−1; 𝜋𝑇−1 = 1 

𝜋𝑇 

𝜎 



(𝜋𝑇−1, 𝑠𝑡𝑇−1, 𝒘𝑻) (𝜋𝑇−2, 𝑠𝑡𝑇−2, 𝒘𝑻−𝟏) 

𝜎 

𝑉𝜏 𝑪𝑯𝑴𝒙; 𝑠𝑡𝑇; 𝜋𝑇 = 1 

𝑉𝜏 𝑪𝑯𝑴𝒙; 𝑠𝑡𝑇−1; 𝜋𝑇−1 = 1 

𝑉𝜏 𝑪𝑯𝑴𝒙; 𝑠𝑡𝑇−2; 𝜋𝑇−2 = 1 

𝜋𝑇 

𝜎 

𝜎 



(𝜋𝑇−1, 𝑠𝑡𝑇−1, 𝒘𝑻) (𝜋𝑇−2, 𝑠𝑡𝑇−2, 𝒘𝑻−𝟏) … 

𝜎 

𝜎 

𝑉𝜏 𝑪𝑯𝑴𝒙; 𝑠𝑡𝑇; 𝜋𝑇 = 1 

𝑉𝜏 𝑪𝑯𝑴𝒙; 𝑠𝑡𝑇−1; 𝜋𝑇−1 = 1 
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𝜎 

𝜎 
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𝜎 

𝑉𝜏 𝑪𝑯𝑴𝒙; 𝑠𝑡𝑇; 𝜋𝑇 = 1 

𝑉𝜏 𝑪𝑯𝑴𝒙; 𝑠𝑡𝑇−1; 𝜋𝑇−1 = 1 
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𝜎 
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𝜎 
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How large is this extractor? 

(or mcxtractor) 



(𝜋𝑇−1, 𝑠𝑡𝑇−1, 𝒘𝑻) (𝜋𝑇−2, 𝑠𝑡𝑇−2, 𝒘𝑻−𝟏) … 

𝜎 

𝑉𝜏 𝑪𝑯𝑴𝒙; 𝑠𝑡𝑇; 𝜋𝑇 = 1 

𝑉𝜏 𝑪𝑯𝑴𝒙; 𝑠𝑡𝑇−1; 𝜋𝑇−1 = 1 

𝜋𝑇 

𝜎 

𝜎 
How large is this extractor? 

(or mcxtractor) 

Typical recursive extraction problem: 

each level incurs a poly blowup! ⇒ 𝐸 = 𝑘2
𝑂(𝑑)

 
can only deal with 𝑂(1) levels 



A solution: aggregate proofs  
in a wide tree 

← 𝑘 → 

← 1 → 

⋮ 

𝜋𝑇 𝜋𝑇−𝑘+1 𝜋1 𝜋𝑘 𝑇 proofs 

𝜋   

𝜋 1   𝜋 𝑘   … 

… … 
← 𝑘 → 

← 1 → 

𝜋 1𝑑    𝜋 𝑘𝑑    

𝑘 proofs ⇒ 1 proof  

If 𝑇 = 𝑘𝑑 ⇒ 

𝑑 levels 



← 𝑘 → 

← 1 → 

⋮ 

𝜋𝑇 𝜋𝑇−𝑘+1 𝜋1 𝜋𝑘 𝑇 proofs 

𝜋   

𝜋 1   𝜋 𝑘   … 

… … 
← 𝑘 → 

← 1 → 

𝜋 1𝑑    𝜋 𝑘𝑑    

𝑘 proofs ⇒ 1 proof  

If 𝑇 = 𝑘𝑑 ⇒ 

𝑑 levels 

The tree is constructed dynamically 

 with only poly(k) overhead 

A solution: aggregate proofs  
in a wide tree 



Is the resulting proof sound? 



So Far:   Preprocessing cost is proportional to 
single-step computation. 
 
 



So Far:   Preprocessing cost is proportional to 
single-step computation. 
 
But how large  is a single-step computation? 



So Far:   Preprocessing cost is proportional to 
single-step computation. 
 
But how large  is a single-step computation? 
Bounded only by S, which can be as large as T… 
Preprocessing stage can still be poly(T)… 
 



Idea:  
Move from machines with large memory 
to machines with: 
  
 - “small” trusted memory  
 - “big” untrusted memory 



𝑴 

witness 

𝑴  

trusted mem 

witness big untrusted memory 

only 𝒑𝒐𝒍𝒚(𝒌)   

trusted (big) mem 



𝑴  

trusted mem 

witness memory transcript of entire execution of 𝑀 

+ consistency info 

only 𝒑𝒐𝒍𝒚(𝒌)   

𝑴 

witness 

trusted (big) mem 



A computational reduction using CRH 
[Blum Evans Gemmell Kannan Naor 94,   
Ben-Sasson Chiesa Genkin Tromer 12] 

𝑴 𝑴 ℎ 
ℎ 

𝑴 ℎ 𝒙,𝒘,𝑚𝑒𝑚  
accepts 

𝑴 𝒙,𝒘  
accepts 

Or 
ℎ-collisions can be (eff.) 

extracted from 𝑚𝑒𝑚 



A computational reduction using CRH 

𝑴 𝑴 ℎ 
ℎ 

𝑴 ℎ 𝒙,𝒘,𝑚𝑒𝑚  
accepts 

𝑴 𝒙,𝒘  
accepts 

Or 
ℎ-collisions can be (eff.) 

extracted from 𝑚𝑒𝑚 
∃𝒎𝒆𝒎 not enough 

need knowledge 

[Blum Evans Gemmell Kannan Naor 94,   
Ben-Sasson Chiesa Genkin Tromer 12] 



A computational reduction using CRH 

𝑴 𝑴 ℎ 
ℎ 

Dynamic Merkle-hashing 

of memory 

[Blum Evans Gemmell Kannan Naor 94,   
Ben-Sasson Chiesa Genkin Tromer 12] 



𝑀 ℎ runs in time 𝑇𝑀 ⋅ poly 𝑘  , space poly(𝑘) 
and 𝑚𝑒𝑚 computed from (𝒙,𝒘) in  

time 𝑇𝑀 ⋅ poly(𝑘)  &  space 𝑆𝑀 ⋅ poly 𝑘  
 

A single-step computation is now of size 
𝒑𝒐𝒍𝒚𝒉 𝒌  

(subsequent steps can be computed dynamically 
preserving time and space of original computation) 

 



only poly𝑉(𝑘), 
independently of preprocessing limit  

what’s left? 
…SNARK verification 

Input:  𝑠𝑡𝑖  witness: (𝜋𝑖−1, 𝑠𝑡𝑖−1,  𝒘𝒊)  
 

If 𝑠𝑡𝑖 is initial state of 𝑴 𝒙  accept. 
else  check: 
       𝑴 𝒙(𝑠𝑡𝑖−1;𝒘𝒊) = 𝑠𝑡𝑖 
     𝑉𝜏  accepts 𝜋𝑖−1 for statement  𝑪𝑯𝑴𝒙 , 𝑠𝑡𝑖−1 



only poly𝑉(𝑘), 
independently of preprocessing limit  
⇒ budget only for 𝒑𝒐𝒍𝒚𝑽(𝒌)+𝒑𝒐𝒍𝒚𝒉(𝒌)  

 

what’s left? 
…SNARK verification 

Input:  𝑠𝑡𝑖  witness: (𝜋𝑖−1, 𝑠𝑡𝑖−1,  𝒘𝒊)  
 

If 𝑠𝑡𝑖 is initial state of 𝑴 𝒙  accept. 
else  check: 
       𝑴 𝒙(𝑠𝑡𝑖−1;𝒘𝒊) = 𝑠𝑡𝑖 
     𝑉𝜏  accepts 𝜋𝑖−1 for statement  𝑪𝑯𝑴𝒙 , 𝑠𝑡𝑖−1 



Bye Bye 
 Long Preprocessing…  
 



Part I:  
How to Bootstrap a SNARK  

in Public 

Part II:  
Part I (again) and Beyond 
with Proof Carrying Data 



In SNARKs: one prover and one verifier 



But sometimes in life… 

m3 

m8 

Computations involve many parties 

each party has its own: 

role, capabilities, friends, enemies,… 



How can we enforce general correctness  

properties of distributed computations? 

m3 

𝑝𝑟𝑜𝑔1 

𝑝𝑟𝑜𝑔2 

𝑝𝑟𝑜𝑔3 

𝑝𝑟𝑜𝑔4   

𝑝𝑟𝑜𝑔5 

𝑝𝑟𝑜𝑔6  

input message 

output message 
local program/input 



m3 

𝑝𝑟𝑜𝑔1 

𝑝𝑟𝑜𝑔2 

𝑝𝑟𝑜𝑔3 

𝑝𝑟𝑜𝑔4   

𝑝𝑟𝑜𝑔5 

𝑝𝑟𝑜𝑔6  

                         Use MPC? 

enforce any property of all the 

inputs/outputs of all parties 

but: large overhead: all parties must 

communicate with each other 

(necessary, e.g. Byzantine agreement) 



A relaxed question: 

how to enforce local properties? 

Local property = property of the view of a single node 



m3 

𝑝𝑟𝑜𝑔1 

𝑝𝑟𝑜𝑔2 

𝑝𝑟𝑜𝑔3 

𝑝𝑟𝑜𝑔4   

𝑝𝑟𝑜𝑔5 

𝑝𝑟𝑜𝑔6  

input message 

output message local program 

Example: ensure that the program executed at  
every node was signed by system admin 

if property holds everywhere  global meaning 
 



Goal:  
 

Guarantee “local properties” while       

respecting the original computation: 

• preserve communication graph 

• minimal computational overhead 

 

 

 

 Proof Carrying Data (PCD) 

[Chiesa Tromer 10] 



• Can be viewed as a DAG  evolving over time 

• nodes have input and output messages  

    + a local program (with embedded inputs). 

The original computation 



• Can be viewed as a DAG  evolving over time 

• nodes have input and output messages  

    + a local program (with embedded inputs). 

𝑝𝑟𝑜𝑔1 

The original computation 



m3 

• Can be viewed as a DAG  evolving over time 

• nodes have input and output messages  

    + a local program (with embedded inputs). 

𝑝𝑟𝑜𝑔1 

𝑝𝑟𝑜𝑔2 

𝑝𝑟𝑜𝑔3 

The original computation 



m3 

• Can be viewed as a DAG  evolving over time 

• nodes have input and output messages  

    + a local program (with embedded inputs). 

𝑝𝑟𝑜𝑔1 

𝑝𝑟𝑜𝑔2 

𝑝𝑟𝑜𝑔3 

𝑝𝑟𝑜𝑔4   

𝑝𝑟𝑜𝑔5 

𝑝𝑟𝑜𝑔6  

The original computation 



𝑪(𝑝𝑟𝑜𝑔,𝑚𝑖𝑛, 𝑚𝑜𝑢𝑡) is a predicate specifying 

a local property, e.g.: 

𝑝𝑟𝑜𝑔 

Local properties as 𝑪-compliance 

𝑚𝑖𝑛 𝑚𝑜𝑢𝑡 

• 𝑪𝑎𝑑𝑚 : “𝑝𝑟𝑜𝑔 = (𝑀, 𝑠) where 𝑠 is an admin

  signature on 𝑀 and 𝑀(𝑚𝑖𝑛) = 𝑚𝑜𝑢𝑡“ 
• 𝑪𝑱𝑽𝑴 : “𝑝𝑟𝑜𝑔 is a JAVA program and  

  𝐽𝑉𝑀(𝑝𝑟𝑜𝑔,𝑚𝑖𝑛) = 𝑚𝑜𝑢𝑡“ 
• 𝑪𝑀𝑥 : “𝑝𝑟𝑜𝑔 = 𝒘𝒊, 𝑚𝑖𝑛 = 𝑠𝑡𝑖−1 , 𝑚𝑜𝑢𝑡 = 𝑠𝑡𝑖 

       and 𝑴𝒙 𝑠𝑡𝑖−1, 𝒘𝒊 = 𝑠𝑡𝑖   “ 



m3 

• compile on-the-fly original computation 

• (short) proofs are appended to messages 

𝑝𝑟𝑜𝑔1 

𝑝𝑟𝑜𝑔2 

𝑝𝑟𝑜𝑔3 

𝑝𝑟𝑜𝑔4   

𝑝𝑟𝑜𝑔5 

𝑝𝑟𝑜𝑔6  

A PCD system 

𝜋3 



m3 

• compile on-the-fly original computation 

• (short) proofs are appended to messages 

𝑝𝑟𝑜𝑔1 

𝑝𝑟𝑜𝑔2 

𝑝𝑟𝑜𝑔3 

𝑝𝑟𝑜𝑔4   

𝑝𝑟𝑜𝑔5 

𝑝𝑟𝑜𝑔6  

A PCD system 

𝜋3 

Note: not all properties can be verified this way. 
 Eg, verifying that  m1 = m2 requires additional interaction. 



How to construct PCDs? 
 
[CT10]: Using an abstract  
signature card 



How to construct PCDs? 
 
This work: SNARK composition 



Publicly-verifiable PCDs for constant depth graphs 

with (resp. without) preprocessing 

Publicly-verifiable SNARKs  
with (resp. without) preprocessing 

SNARK recursive composition 

Results (revisited): General transformations 



Publicly-verifiable PCDs for constant depth graphs 

with (resp. without) preprocessing 

Results (revisited): General transformations 

Publicly-verifiable SNARKs  
with (resp. without) preprocessing 

Publicly-verifiable PCDs for polynomial-length chains 

with (resp. without) preprocessing 

General transformation  
of path-compliance to tree-compliance 

SNARK recursive composition 



Results (revisited): Eliminating expensive preprocessing 

Publicly-verifiable PCDs for polynomial  

chains with preprocessing 
Memory 
reduction 

Publicly-verifiable SNARKs 

without preprocessing 

using incremental compliance 



Publicly-verifiable PCDs for polynomial  

chains with preprocessing 
Memory 
reduction 

Publicly-verifiable SNARKs 

without preprocessing 

using incremental compliance 

Publicly-verifiable PCDs for polynomial-length chains 

without preprocessing 

using previous transformation 

Results (revisited): Eliminating expensive preprocessing 



A  bonus: 
privately-verifiable SNARKs also compose! 



A  bonus: 
privately-verifiable SNARKs also compose! 

To compose SNARKs we used public-verifiability 

proved “I verified a SNARK” 



A  bonus: 
privately-verifiable SNARKs also compose! 

To compose SNARKs we used public-verifiability 

proved “I verified a SNARK” 

Looks surprising… but doable (using FHE). 

 

All the PCD results have their  

privately-verifiable analogs 



Question: 

which  security goals we express 
using the PCD language? 

We’ve seen some examples 
others include: targeted-malleability [BSW11], 

computing on authenticated Data,… 
 

Other properties? 


