How to Bootstrap a SNARK
in Public

Nir Bitansky, Ran Canetti, Alessandro Chiesa, Eran Tromer

How quickly can we verify the
result of long computations?

How quickly can we verify the
result of long computations?
(Plain version)

oes M(X) =1
W|th|n T steps?
— (M x,T)
<€ > ~ u;

Cod

verifier

How quickly can we verify the
result of long computations?
(Plain version)

oes M(X) =1
W|th|n T steps?
— (M x,T)
yes E t€
Cod
verifier

Verify by running M(x) for T steps.

How quickly can we verify the
result of long computations?
(Plain version)

Does M(x) =1
within T steps?
o

< > Pt

|

verifier

Can we do better?

How quickly can we verify the
result of long computations?
(with prover input — "NP version™)

dw, s.t. M(x,w)=1
within T steps?

verifier

How quickly can we verify the
result of long computations?
(with prover input — "NP version™)

dw, s.t. M(x,w)=1
within T steps?

verifier

Verify by running M(x,w) for T steps.

How quickly can we verify the
result of long computations?
(with prover input — “NP version™)

dw, s.t. M(x,w)=1
within T steps?

verifier

Can we do better?

Succinct Proofs with incomplete input

(" for NP ™)
possibly long
\ Jwst. M(x,w) =1
(M, x,T),w in < T steps? (M, x,T)
< > & ﬁ%
|
poly(|x|, k)
universal poly, e.g. ~ Security
x| - k parameter

independent of T'!

Succinct Proofs with incomplete input
(“ for NP)

« Statistical soundness is unlikely [BHZ87, GH98, GVWO02].
Thus we settle for computational soundness.

* However, we require extractability:
* Natural in real-life applications (databases...)
* Crucial for this work

How many rounds do succinct
arguments require?

How many rounds do succinct
arguments require?

[Kilian 92]: can do 4-message
(assuming CRH)

S
k /D
4

Il

How many rounds do succinct
arguments require?

[Kilian 92]: can do 4-message
(assuming CRH)

[Micali 94]: one message!
with a random oracle
(aka “CS proofs”)

Non-interactive In the plain model?

Non-interactive In the plain model?

Totally non-interactive protocols
(against non-uniform provers
for “hard enough languages”)
Are unlikely [BHZ87, GH98, GVW02].

With a verifier initial message
(reference string)?

o_: Mg 8 <— @f

reference string o
sent before statements

Succinct Non-Interactive Argument of Knowledge
(SNARK):

A protocol (PV) such that:
-V sends an initial message o to P
- Repeat: -Psends (M,x,T), ttoV
-V(M,x,T, T, o)=acc/re;

Succinct Non-Interactive Argument of Knowledge
(SNARK):

A protocol (PV) such that:
-V sends an initial message o to P
- Repeat: -Psends (M,x,T), ttoV
-V(M,x,T, T, o)=acc/rej

Completeness: If dw s.t. M(x,w)=1 within T steps,
then V accepts.

Extractability: ¥ pt P’ d pt E, such that when (P’,V)
accepts (M,x,t,), E outputs w s.t. M(x,w)=1 within
T steps (except w.p. negl(k)).

Designated verifier SNARKs

Same as (publicly verifier) SNARKs except:
-V keeps secret state T associated with o .
-V uses T in each verification.

Disadvantages:

- Vulnerable to leakage on verifier (even the
verifier’s decision)

- Proofs are no longer transferrable or publicly
verifiable (“publishable”).

- Harder to compose (later on)

Can we construct SNARKs?

No SNARK can be proven secure via “black-box
reduction to an efficiently falsifiable assumption”

[Gentry-Wichs11].

- even for designated verifier SNARKSs
- even if we only require plain soundness
(without knowledge extraction)

Can we construct SNARKs?

No SNARK can be proven secure via “black-box
reduction to an efficiently falsifiable assumption”

[Gentry-Wichs11].

- even for designated verifier SNARKSs

- even if we only require plain soundness
(without knowledge extraction)

What can we do?

- Option 1: Use non BB reductions

- Option 2: Use other assumptions

SNARKs from “non--falsifiable assumptions”

- Replace the RO in [Micali94] with a “sufficiently
complicated” hash function and assume security.

Disadvantages: Implementation specific, doesn’t
teach us much...

- Based on “extractable collision resistant hash

functions” [Bitansky Canetti Chiesa Tromer 11, Goldwasser Lin
Rubinstein 11, Damgard Faust Hazay 11]

Disadvantage: Only designated verifier.

PV SNARKSs with long reference string
(“with pre-processing”)
In the initial stage, V “works hard”:
generates (0,7) where:
- T is poly(k)
- o is poly(T,k)
In proof stage, V is still succinct - only uses .

PV SNARKSs with long reference string
(“with pre-processing”)
In the initial stage, V “works hard”:
generates (0,7) where:
- T is poly(k)
- o is poly(T,k)
In proof stage, V is still succinct - only uses .

Note: 7 is public!
Can realize based on a Knowledge-of-exponent
assumption in bilinear groups

[Groth10, Lipmaal2, Gennaro-Gentry-Parno-Raykoval2]

Another advantage of [G10,L.12,GGPR12]
(Following [Ishai-Kushilevitz-Ostrovsky07))

Very different techniques — alternative to PCPs

Potentially better efficiency (for prover).

Prover efficiency Is important !
(e.g. cloud computing)

Another advantage of [G10,L.12,GGPR12]
(Following [Ishai-Kushilevitz-Ostrovsky07))

Very different techniques — alternative to PCPs

Potentially better efficiency (for prover).
But...

For computations with time T , space S
Prover needs T poly(k) space!

Would like to preserve time and space individually.

First Main Result

Publicly-verifiable SNARKs with preprocessing

Y

Publicly-verifiable SNARKs without preprocessing

First Main Result

Publicly-verifiable SNARKs with preprocessing

General transformation
via recursive proof-composition & bootstrapping

Y

Publicly-verifiable SNARKs without preprocessing

First Main Result

Publicly-verifiable SNARKs with preprocessing

General transformation
via recursive proof-composition & bootstrapping

Y

Publicly-verifiable SNARKs without preprocessing

Prover cohplexity ;
T -» T - poly(k), S—S:poly(k)

First Main Result

Publicly-verifiable SNARKs with preprocessing

General transformation
via recursive proof-composition & bootstrapping

Y

Publicly-verifiable SNARKs without preprocessing

T \ Prover cohplexity ;
‘_ |
No PCPs! Py T - T-poly(k), S—S-poly(k)

Corollaries
Assuming KEA in a bilinear group, there exist

fully succinct publicly-verifiable SNARKS .

Any SNARK can be transformed into a SNARK where:
- Prover time I1s T - poly(k)
- Prover space is S - poly(k)

(T,S are time and space of original M)

The Core Idea:
Bootstrapping a SNARK

Only need to be able to prove correctness of
(many) small computations.

The Core Idea:
Bootstrapping a SNARK

Only need to be able to prove correctness of
(many) small computations.

How small?
as small as SNARK verification (and a bit more)
=» The preprocessing becomes cheap (poly(k))

=» Prover overhead becomes poly(k)
(both In time and in space)

Part |
How to Bootstrap a SNARK:
a Bare-Bones Description

Part Il

Using the Proof Carrying Data
(PCD) abstraction

Part I
Bare-Bones Description

Incremental Computation [ValiantO8]
a possibly useful idea

Compile a computation M(x, w) to a new
one that after each step spits
a short proof of its correctness so far

Incremental Computation [ValiantO8]
a possibly useful idea

Compile a computation M(x, w) to a new
one that after each step spits
a short proof of its correctness so far

but... (implicitly) assumes fully-succinct SNARKS

Incremental

Computation [ValiantO8]

a possibly useful idea

Still uses SNAR
proofs only invo
proportional to t

KS In a non-trivial way:
ve “small” computations:

ne space S used by M.

Can use preprocessing SNARKSs, where
preprocessingis as cheapas S

Problems:

In general, S may be as large as T
Need to carefully aggregate proofs by composition

Incremental Computation
More Concretely

Split a T-step computation M(x, w)
to T single-step computations

Potential additional

. . > Wi
input bit read at step i

St;_ St;
1—1 Mx l
/ |
transition state after

function of M(x,-) step i

T M, - M, - M,

Split a T-step computation M(x, w)
to T single-step computations

W;_1q Wi Wit1

| ! |

Sti

Stij_1

Sti—l Sti

Sl oM, | 2

Compose short proof for current step with short proof
for previous steps:

1. performed step i correctly
2. Verified a proof mr;_, for correctness of steps 1...i — 1

Sti—1

Augment computation M(x, w)
with consistency proofs

Wi

S W (SNARKprover1""""""""")

Augment computation M(x, w)
with consistency proofs

Wi

!

Sti—1 X Mx St; X
: : Stl.
i STim1 P, Tt
TTi_1 eeereeeaessaeesenees W;i......> (SNARKprover1"""""""""')
... > Vi

Proved w.r.t. consistency checker CH

Sti—1 Mx st;
Sti— TT;

........................) P CH

nl_l Heeeeeeeeeeeeeeeees wt) 0(Mx) >

Recursive Consistency Checker CH
Input: st; witness: (st;_q,T;_1, W;)

Sti

Sti-1 M,
St
Stl_l,
ﬂ'-l—l wt)

P,(CHy,)

Recursive Consistency Checker CH
Input: st; witness: (st;_q,T;_1, W;)

If i = 0and sty = initial state, accept.

else check:
Mx(Sti—liwi) = St;
Vi(CHy, st;_4, T;_1)=acc

!
Sti—l X Mx Sti .
........................ STt Tt
Ti_q S Wti P‘T(CHMx) """""""""" >

Recursive Consistency Checker CH
Input: st; witness: (st;_q,T;_1, W;)

If i = 0and sty = initial state, accept.

else check: ‘need recursion

M, (st;_1; w;) = st;
V(CHyg . sti o mo)mace

S ti —1 M X S ti -
; St
Sti_q T
71-1 P .- Wt i PO’ (C H Mx) ___________________ >
--- >

Is the resulting proof sound?

Sti_1

Sti

Ve(CHpy ; stp;mp) = 1

”

st = “accept

Recursive Consistency Checker CHyy,
Input: st; Witness: (st;_1, Tj_1, W;)

If st; Is initial state of M., accept.
else check:
M, (sti_1; w;) = st;
I accepts;_, for statement * CH), accepts st;_;

= (T[T—ll StT—lJ WT)"
M, (sty_q,wr) = sty <€—

Ve(CHpy; str_q;mp_1) = 1

Sti_1

Sti

Ve(CHpy ; stp;mp) = 1
sty = “accept”

Recursive Consistency Checker CHyy,
Input: st; Witness: (st;_1, Tj_1, W;)

If st; Is initial state of M., accept.
else check:
M, (sti_1; w;) = st;
I accepts;_, for statement * CH), accepts st;_;

3(ﬂ:T—ll StT_]_, WT)-' B
M,(sty_q,wr) = st €— VT(CHMx'StT'”T) =1

st = “accept”
Ve(CHpy; str_q;mp_1) = 1 ! P

|

A(r_p, Sty_, Wr_1):
M, (str_z, Wr_1) = Stp_4
VT(CHMx;StT—Z;T[T—Z) =1

Recursive Consistency Checker CHyy,
W; .
| Input: st; WItNesS: (st;_q, i1, W;)

St; St | Ifstisinital state of M, accept.
11 i .
— > M £l — else check:
M, (st;_1; W;) = st;
I accepts;_, for statement * CH), accepts st;_;

= (T[T—ll StT—lJ WT) ;

M,(sty_q,wr) = st €— Ve(CHpy,; strimr) = 1

Ve(CHy; str_1;mr—q) = 1 Sty = "accept
3(77:'11_2, StT—Z) WT_1).' H(TEOI StO' Wl).'
Mx(StT—ZJ WT—I) — StT—l -==> Mx(StO» wl) — Stl

Vi(CHy ;str_g;mp_y) =1 sty = “start

Recursive Consistency Checker CHyy,
W; .
| Input: st; WItNesS: (st;_q, i1, W;)

St; St | Ifstisinital state of M, accept.
11 i .
— > M £l — else check:
M, (st;_1; W;) = st;
I accepts;_, for statement * CH), accepts st;_;

(w1, str—_1, Wr):
M,(sty_q, wr) = sty €—

Ve(CHy; str_1;mr—q) = 1 Sty = "accept
(T, St7_>, Wr_1)- 3(”0_»St0»W1)-'
MX(StT—Z'WT—l) — StT—l -==> Mx(StO: Wl) - Stl

VT(CHMx;StT—Z;T[T—Z) -1 sty = “start

=» Computational soundness isn’t enough
=>» Need knowledge extraction
=>» Need to apply the extraction recursively.

Ve(CHpy ; stp;mp) = 1

The extraction guarantee of SNARKSs

V prover P* 3 extractor Ep+

st;, ; that
V. accepts Wit = St;_q1,Tj—1, Wi
st. CHy_(st;,wit) =1

Ve(CHy ; Str_q;mr_q) = 1

Vi(CHp,; sty;mr) =1

Ve(CHpm,; str_g;mr—z) = 1

Ve(CHy ; Str_q;mr_q) = 1

o
b Ve(CHpy;strymr) =1

Ve(CHpm,; str_g;mr—z) = 1

° Vi(CHystr_q;mp_q) =1
| f V:(CHy,; str;mr) = 1

Ve(CHy ; Str_q;mr_q) = 1

o
b Ve(CHpy;strymr) =1

)

How large is this extractor?
(or mextractor) .T) _

)

How large is this extractor?

_/

(or mextractor) .T) _

Typical recursive extraction problem:

each level incurs a poly blowup! = |E| = k
can only deal with O(1) levels

20(d)

= Ty

Tlp_2,Sty_3, Wy_q) (TTp—1,St7_1, W) Tp

A solution: aggregate proofs
In a wide tree

k proofs = 1 proof

=1

fT =k =
d levels Ty ... Ty

~

27! T, d

«1- «~1-
— k- — k —

Ty o Mg <«—— T proofs ——Tr_gyq - TT

A solution: aggregate proofs
In a wide tree

k proofs = 1 proof

=1

fT =k =
d levels Ty ... Ty

The tree is constructed dynamically
with only poly(k) overhead

-
«1- ~1-
— k- — k —
Ty v My <«—— T proofs ——Tr_p4q1 -

Sti_l Mx Sti -
; St
Sti—l TT;
........................) P CH
Ti_q S Wi ol M) >
... >

Is the resulting proof sound?

Sti_l Mx Sti -
Sti—l TT;
........................) P CH
Ti_q S Wi ol M) >
... >

So Far: Preprocessing cost is proportional to
single-step computation.

l
Sti-1 | M, st;
........................ oSt T
Ti_q femeeeeeenseesssenssen Wti P‘T(CHMx) """""""""" >

So Far: Preprocessing cost is proportional to
single-step computation.

But how large is a single-step computation?

!
Sti—l X Mx Sti .
........................ STt Tt
Ti_1 S Wti P‘T(CHMx) """"""""""

So Far: Preprocessing cost is proportional to
single-step computation.

But how large is a single-step computation?
=3ounded only by S, which can be as large as T...
=Preprocessing stage can still be poly(T)...

ldea:
Move from machines with large memory
to machines with:

- “"small” trusted memory
- "big” untrusted memory

withess

v
M
trusted (big) mem
witness big untrusted memory
! |

~

M

trusted mem

<€

—— only poly(k)

withess

v
M
trusted (big) mem
withess memory transcript of entire execution of M

|

! + consistency info

~

M

trusted mem [¢— only poly(k)

A computational reduction using CRH

[Blum Evans Gemmell Kannan Naor 94,
Ben-Sasson Chiesa Genkin Tromer 12]

h
M) 7,
M(x,w) S— M) (x,w, mem)

accepts accepts
Or
h-collisions can be (eff.)
extracted from mem

A computational reduction using CRH

[Blum Evans Gemmell Kannan Naor 94,
Ben-Sasson Chiesa Genkin Tromer 12]

h
M) 7,
M(x,w) S— M) (x,w, mem)

accepts accepts
Or

h-collisions can be (eff.)\ Jmem not enough
extracted from mem need knowledge

A computational reduction using CRH

[Blum Evans Gemmell Kannan Naor 94,
Ben-Sasson Chiesa Genkin Tromer 12]

h ~
M M,

N

Dynamic Merkle-hashing
of memory

\ J

M,, runs in time Ty, - poly(k) , space poly(k)
and mem computed from (x, w) in
time Ty, - poly(k) & space S;; - poly(k)

=» A single-step computation is now of size
polyp (k)
(subsequent steps can be computed dynamically
preserving time and space of original computation)

what’s left?
...SNARK verification

Input: st; witness: (ir;_q, St;_1, W;)

If st; is initial state of M, accept.
elsg check:
M, (st;_q; w;) = st;
V; accepts m;_, for statement CHy ,st;_4

only polyy (k),
independently of preprocessing limit

what’s left?
...SNARK verification

Input: st; witness: (ir;_q, St;_1, W;)

If st; is initial state of M, accept.
elsg check:
M, (st;_q; w;) = st;
V; accepts m;_, for statement CHy ,st;_4

only polyy (k),
independently of preprocessing limit

= budget only for polyy (k)+poly; (k)

Bye Bye
Long Preprocessing...

Part I
How to Bootstrap a SNARK
In Public J

Part Il
Part | (again) and Beyond
with Proof Carrying Data

In SNARKS: one prover and one verifier

But sometimes in life...

Computations involve many parties
each party has its own:
role, capabillities, friends, enemies,...

How can we enforce general correctness
properties of distributed computations?

local program/input

\ output message
j prog,

prog:

Input message

PT0Je

Use MPC?

enforce any property of all the
Inputs/outputs of all parties
but: large overhead: all parties must
communicate with each other
(necessary, e.g. Byzantine agreement)

prog; PTOG4

A relaxed question:
how to enforce local properties?

Local property = property of the view of a single node

Example: ensure that the program executed at
every node was signed by system admin
if property holds everywhere - global meaning

local program output message
. T progs Proga
input message) |

\ $ - |

a A Proge
, Progs | progs

Proof Carrying Data (PCD)
[Chiesa Tromer 10]}

Goal:

Guarantee “local properties” while
respecting the original computation:
* preserve communication graph

* minimal computational overhead

The original computation

« Can be viewed as a DAG evolving over time

* nodes have Input and output messages
+ a local program (with embedded inputs).

The original computation

« Can be viewed as a DAG evolving over time

* nodes have Input and output messages
+ a local program (with embedded inputs).

The original computation

« Can be viewed as a DAG evolving over time

* nodes have Input and output messages
+ a local program (with embedded inputs).

The original computation

« Can be viewed as a DAG evolving over time

* nodes have Input and output messages
+ a local program (with embedded inputs).

Local properties as C-compliance

C(prog,m;,, m,,;) IS a predicate specifying
a local property, e.g.:

* Coqm :"“prog = (M,s) where s Is an admin
signature on M and M(m;,) = m,,;'
* Cyyym:“prog is a JAVA program and
JVM(prog, min) = Moyt
* Cpy, "prog = w;, my, = stj_1, Moy = St
and Mx(Sti—l'Wi) = St; “
prog

1 \ m
|

(

A PCD system

» compile on-the-fly original computation
* (short) proofs are appended to messages

A PCD system

» compile on-the-fly original computation
* (short) proofs are appended to messages

Note: not all properties can be verified this way.
Eg, verifying that m; = m, requires additional interaction.

prog; PTOGs
A T m
m e 6
i 75 o% ?
| = M E
pT'Ogl - —

A Ts A Pr0ge
i Progs | progs

How to construct PCDs?

|CT10]: Using an abstract
signature card

How to construct PCDs?

This work: SNARK composition

Results (revisited). General transformations

Publicly-verifiable SNARKSs
with (resp. without) preprocessing

SNARK recursive composition

v

Pub

icly-verifiable PCDs for constant depth graphs
with (resp. without) preprocessing

Results (revisited). General transformations

Publicly-verifiable SNARKSs
with (resp. without) preprocessing

SNARK recursive composition

v

Publicly-verifiable PCDs for constant depth graphs
with (resp. without) preprocessing

General transformation
of path-compliance to tree-compliance

v

Publicly-verifiable PCDs for polynomial-length chains
with (resp. without) preprocessing

Results (revisited): Eliminating expensive preprocessing

Publicly-verifiable PCDs for polynomial Memory
chains with preprocessing reduction

| using incremental compliance |

v
Publicly-verifiable SNARKs

without preprocessing

Results (revisited): Eliminating expensive preprocessing

Publicly-verifiable PCDs for polynomial Memory
chains with preprocessing reduction

| using incremental compliance |

v

Publicly-verifiable SNARKSs
without preprocessing

| using previous transformation |

v
Publicly-verifiable PCDs for polynomial-length chains

without preprocessing

A bonus;
privately-verifiable SNARKSs also compose!

A bonus;
privately-verifiable SNARKSs also compose!

To compose SNARKs we used public-verifiability
proved | verified a SNARK”

A bonus;
privately-verifiable SNARKSs also compose!

To compose SNARKs we used public-verifiability
proved | verified a SNARK”

Looks surprising... but doable (using FHE).

= All the PCD results have their
privately-verifiable analogs

Question:
which security goals we express
using the PCD language?

We've seen some examples
others include: targeted-malleability [BSW11],
computing on authenticated Data,...

Other properties?

