
How to Bootstrap a SNARK
in Public

Nir Bitansky, Ran Canetti, Alessandro Chiesa, Eran Tromer

TexPoint fonts used in EMF.
Read the TexPoint manual before you delete this box.: AAAAA

How quickly can we verify the

result of long computations?

verifier

How quickly can we verify the

result of long computations?

(Plain version)

𝑀, 𝑥, 𝑇

Does M(x) =1

within T steps?

verifier

How quickly can we verify the

result of long computations?

(Plain version)

𝑀, 𝑥, 𝑇

Does M(x) =1

within T steps?

yes

Verify by running M(x) for T steps.

verifier

How quickly can we verify the

result of long computations?

(Plain version)

𝑀, 𝑥, 𝑇

Does M(x) =1

within T steps?

Can we do better?

verifier

How quickly can we verify the

result of long computations?

(with prover input – “NP version”)

𝑀, 𝑥, 𝑇

Ǝw, s.t. M(x,w)=1

within T steps?

verifier

How quickly can we verify the

result of long computations?

(with prover input – “NP version”)

𝑀, 𝑥, 𝑇

Ǝw, s.t. M(x,w)=1

within T steps?

w

Verify by running M(x,w) for T steps.

verifier

How quickly can we verify the

result of long computations?

(with prover input – “NP version”)

𝑀, 𝑥, 𝑇

Ǝw, s.t. M(x,w)=1

within T steps?

w

Can we do better?

Succinct Proofs with incomplete input
(“ for NP ”)

𝑀, 𝑥, 𝑇 𝑀, 𝑥, 𝑇 , 𝑤

poly(𝑥 , 𝑘)

independent of 𝑇!

universal poly, e.g.
𝑥 ⋅ 𝑘

∃𝑤 s.t. 𝑀 𝑥,𝑤 = 1

in ≤ 𝑇 steps?

security

parameter

possibly long

Succinct Proofs with incomplete input
(“ for NP ”)

• Statistical soundness is unlikely [BHZ87, GH98, GVW02].

Thus we settle for computational soundness.

• However, we require extractability:
• Natural in real-life applications (databases…)
• Crucial for this work

How many rounds do succinct
arguments require?

[Kilian 92]: can do 4-message

(assuming CRH)

How many rounds do succinct
arguments require?

[Kilian 92]: can do 4-message

(assuming CRH)

RO [Micali 94]: one message!

with a random oracle

(aka “CS proofs”)

How many rounds do succinct
arguments require?

Non-interactive in the plain model?

Non-interactive in the plain model?

Totally non-interactive protocols

(against non-uniform provers

for “hard enough languages”)

Are unlikely [BHZ87, GH98, GVW02].

With a verifier initial message
(reference string)?

𝜎

reference string 𝜎
sent before statements

Succinct Non-Interactive Argument of Knowledge
(SNARK):

 A protocol (P,V) such that:

 - V sends an initial message σ to P

 - Repeat: - P sends (M,x,T), 𝜋 to V

 - V(M,x,T, 𝜋, σ)=acc/rej

Succinct Non-Interactive Argument of Knowledge
(SNARK):

 A protocol (P,V) such that:

 - V sends an initial message σ to P

 - Repeat: - P sends (M,x,T), 𝜋 to V

 - V(M,x,T, 𝜋, σ)=acc/rej

Completeness: If Ǝw s.t. M(x,w)=1 within T steps,
then V accepts.

Extractability: ⩝ pt P’ Ǝ pt E, such that when (P’,V)
accepts (M,x,t, 𝜋), E outputs w s.t. M(x,w)=1 within
T steps (except w.p. negl(k)).

Designated verifier SNARKs

 Same as (publicly verifier) SNARKs except:

- V keeps secret state 𝜏 associated with σ .

- V uses 𝜏 in each verification.

 Disadvantages:

 - Vulnerable to leakage on verifier (even the
verifier’s decision)

 - Proofs are no longer transferrable or publicly
verifiable (“publishable”).

 - Harder to compose (later on)

Can we construct SNARKs?

 No SNARK can be proven secure via “black-box
reduction to an efficiently falsifiable assumption”

[Gentry-Wichs11].

 - even for designated verifier SNARKs

 - even if we only require plain soundness

 (without knowledge extraction)

 What can we do?

 - Option 1: Use non BB reductions

 - Option 2: Use other assumptions

Can we construct SNARKs?

 No SNARK can be proven secure via “black-box
reduction to an efficiently falsifiable assumption”

[Gentry-Wichs11].

 - even for designated verifier SNARKs

 - even if we only require plain soundness

 (without knowledge extraction)

 What can we do?

 - Option 1: Use non BB reductions

 - Option 2: Use other assumptions

SNARKs from “non--falsifiable assumptions”

- Replace the RO in [Micali94] with a “sufficiently
complicated” hash function and assume security.

Disadvantages: Implementation specific, doesn’t
teach us much…

- Based on “extractable collision resistant hash
functions” [Bitansky Canetti Chiesa Tromer 11 , Goldwasser Lin
Rubinstein 11, Damgard Faust Hazay 11]

Disadvantage: Only designated verifier.

PV SNARKs with long reference string
(“with pre-processing”)

In the initial stage, V “works hard”:

generates (σ,𝜏) where:

 - 𝜏 is poly(k)

 - σ is poly(T,k)

 In proof stage, V is still succinct - only uses 𝜏.

Note: 𝜏 is public!

Can realize based on a Knowledge-of-exponent
assumption in bilinear groups

[Groth10, Lipmaa12, Gennaro-Gentry-Parno-Raykova12]

PV SNARKs with long reference string
(“with pre-processing”)

In the initial stage, V “works hard”:

generates (σ,𝜏) where:

 - 𝜏 is poly(k)

 - σ is poly(T,k)

 In proof stage, V is still succinct - only uses 𝜏.

Note: 𝜏 is public!

Can realize based on a Knowledge-of-exponent
assumption in bilinear groups

[Groth10, Lipmaa12, Gennaro-Gentry-Parno-Raykova12]

Very different techniques – alternative to PCPs

Potentially better efficiency (for prover).

Prover efficiency is important !
(e.g. cloud computing)

 Another advantage of [G10,L12,GGPR12]

(Following [Ishai-Kushilevitz-Ostrovsky07])

Very different techniques – alternative to PCPs

Potentially better efficiency (for prover).

But…

For computations with time T , space S

Prover needs T poly(k) space!

Would like to preserve time and space individually.

 Another advantage of [G10,L12,GGPR12]

(Following [Ishai-Kushilevitz-Ostrovsky07])

Publicly-verifiable SNARKs without preprocessing

First Main Result

Publicly-verifiable SNARKs with preprocessing

Publicly-verifiable SNARKs without preprocessing

Publicly-verifiable SNARKs with preprocessing

General transformation
via recursive proof-composition & bootstrapping

First Main Result

Publicly-verifiable SNARKs without preprocessing

Publicly-verifiable SNARKs with preprocessing

 Prover complexity :
 𝑇 → 𝑇 ⋅ poly 𝑘 ,

 𝑆 → 𝑆 ⋅ poly(𝑘)

General transformation
via recursive proof-composition & bootstrapping

First Main Result

Publicly-verifiable SNARKs without preprocessing

Publicly-verifiable SNARKs with preprocessing

 Prover complexity :
 𝑇 → 𝑇 ⋅ poly 𝑘 ,

 𝑆 → 𝑆 ⋅ poly(𝑘)

General transformation
via recursive proof-composition & bootstrapping

No PCPs!

First Main Result

 Corollaries

Any SNARK can be transformed into a SNARK where:

 - Prover time is T ⋅poly(k)

 - Prover space is S ⋅ poly(k)

(T,S are time and space of original M)

Assuming KEA in a bilinear group, there exist

fully succinct publicly-verifiable SNARKs .

The Core Idea:
Bootstrapping a SNARK

Only need to be able to prove correctness of

(many) small computations.

The Core Idea:
Bootstrapping a SNARK

Only need to be able to prove correctness of

(many) small computations.

How small?

as small as SNARK verification (and a bit more)

 The preprocessing becomes cheap (poly(k))

 Prover overhead becomes poly(k)

 (both in time and in space)

Part I
How to Bootstrap a SNARK:
a Bare-Bones Description

Part II
Using the Proof Carrying Data

 (PCD) abstraction

Part I:
 Bare-Bones Description

Incremental Computation [Valiant08]
a possibly useful idea

Compile a computation 𝑴(𝒙,𝒘) to a new

one that after each step spits

a short proof of its correctness so far

Compile a computation 𝑴(𝒙,𝒘) to a new

one that after each step spits

a short proof of its correctness so far

but… (implicitly) assumes fully-succinct SNARKs

Incremental Computation [Valiant08]
a possibly useful idea

Still uses SNARKs in a non-trivial way:

proofs only involve “small” computations:

proportional to the space 𝑆 used by 𝑴.

Can use preprocessing SNARKs, where

preprocessing is as cheap as 𝑆 ….

Problems:

In general, 𝑆 may be as large as 𝑇

Need to carefully aggregate proofs by composition

Incremental Computation [Valiant08]
a possibly useful idea

Incremental Computation

More Concretely

Split a 𝑇-step computation 𝑴(𝒙,𝒘)
to 𝑇 single-step computations

𝑠𝑡𝑖−1
𝑴𝒙

𝑠𝑡𝑖

𝒘𝑖

transition
function of 𝑴(𝒙,⋅)

state after
step 𝑖

Potential additional
input bit read at step 𝑖

𝑠𝑡𝑖−1
𝑴𝒙

𝑠𝑡𝑖

𝒘𝒊

𝑴𝒙 𝑴𝒙

𝒘𝒊+𝟏 𝒘𝒊−𝟏

Split a 𝑇-step computation 𝑴(𝒙,𝒘)
to 𝑇 single-step computations

𝑠𝑡𝑖−1
𝑴𝒙

𝑠𝑡𝑖

𝒘𝑖

1. performed step 𝑖 correctly
2. verified a proof 𝜋𝑖−1 for correctness of steps 1…𝑖 −1

Compose short proof for current step with short proof
for previous steps:

𝑠𝑡𝑖−1 𝑴𝒙 𝑠𝑡𝑖

𝒘𝑖

Augment computation 𝑴(𝒙,𝒘)
with consistency proofs

𝜋𝑖−1

𝑠𝑡𝑖
𝑠𝑡𝑖−1 𝜋𝑖
𝒘𝑖

𝑷𝝈
(𝑺𝑵𝑨𝑹𝑲 𝒑𝒓𝒐𝒗𝒆𝒓)

𝑠𝑡𝑖−1 𝑴𝒙 𝑠𝑡𝑖

𝒘𝑖

Augment computation 𝑴(𝒙,𝒘)
with consistency proofs

𝑷𝝈
(𝑺𝑵𝑨𝑹𝑲 𝒑𝒓𝒐𝒗𝒆𝒓) 𝜋𝑖−1

𝑠𝑡𝑖
𝑠𝑡𝑖−1 𝜋𝑖
𝒘𝑖

Proved w.r.t. consistency checker 𝑪𝑯𝑴𝒙

Recursive Consistency Checker 𝑪𝑯𝑴𝒙

Input: 𝑠𝑡𝑖 witness: (𝑠𝑡𝑖−1,𝜋𝑖−1, 𝒘𝒊)

If 𝑖 = 0 and 𝑠𝑡0 = 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑠𝑡𝑎𝑡𝑒, accept.
else check:
 𝑴𝒙(𝑠𝑡𝑖−1;𝒘𝒊) = 𝑠𝑡𝑖
 𝑉𝜏(𝑪𝑯𝑴𝒙, 𝑠𝑡𝑖−1, 𝜋𝑖−1)=acc

Input: 𝑠𝑡𝑖 witness: (𝑠𝑡𝑖−1,𝜋𝑖−1, 𝒘𝒊)

Recursive Consistency Checker 𝑪𝑯𝑴𝒙

If 𝑖 = 0 and 𝑠𝑡0 = 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑠𝑡𝑎𝑡𝑒, accept.
else check:
 𝑴𝒙(𝑠𝑡𝑖−1;𝒘𝒊) = 𝑠𝑡𝑖
 𝑉𝜏(𝑪𝑯𝑴𝒙, 𝑠𝑡𝑖−1, 𝜋𝑖−1)=acc

Input: 𝑠𝑡𝑖 witness: (𝑠𝑡𝑖−1,𝜋𝑖−1, 𝒘𝒊)

Recursive Consistency Checker 𝑪𝑯𝑴𝒙

need recursion

Is the resulting proof sound?

𝑉𝜏 𝑪𝑯𝑴𝒙; 𝑠𝑡𝑇; 𝜋𝑇 = 1

𝑠𝑡𝑇 = “accept”

𝑠𝑡𝑖−1
𝑴𝒙

𝒘𝒊
Input: 𝑠𝑡𝑖 witness: (𝑠𝑡𝑖−1, 𝜋𝑖−1, 𝒘𝒊)

Recursive Consistency Checker 𝑪𝑯𝑴𝒙

If 𝑠𝑡𝑖 is initial state of 𝑴𝒙 accept.
else check:
 𝑴𝒙(𝑠𝑡𝑖−1;𝒘𝒊) = 𝑠𝑡𝑖
 𝑉𝜏 accepts 𝜋𝑖−1 for statement “ 𝑪𝑯𝑴𝒙accepts 𝑠𝑡𝑖−1

𝑠𝑡𝑖

𝜋𝑇

𝜎

𝑉𝜏 𝑪𝑯𝑴𝒙; 𝑠𝑡𝑇; 𝜋𝑇 = 1

𝑠𝑡𝑇 = “accept”

∃(𝜋𝑇−1, 𝑠𝑡𝑇−1, 𝒘𝑻):
𝑴𝒙 𝑠𝑡𝑇−1, 𝒘𝑻 = 𝑠𝑡𝑇

𝑉𝜏 𝑪𝑯𝑴𝒙; 𝑠𝑡𝑇−1; 𝜋𝑇−1 = 1

𝑠𝑡𝑖−1
𝑴𝒙

𝒘𝒊
Input: 𝑠𝑡𝑖 witness: (𝑠𝑡𝑖−1, 𝜋𝑖−1, 𝒘𝒊)

Recursive Consistency Checker 𝑪𝑯𝑴𝒙

If 𝑠𝑡𝑖 is initial state of 𝑴𝒙 accept.
else check:
 𝑴𝒙(𝑠𝑡𝑖−1;𝒘𝒊) = 𝑠𝑡𝑖
 𝑉𝜏 accepts 𝜋𝑖−1 for statement “ 𝑪𝑯𝑴𝒙accepts 𝑠𝑡𝑖−1

𝑠𝑡𝑖

𝑉𝜏 𝑪𝑯𝑴𝒙; 𝑠𝑡𝑇; 𝜋𝑇 = 1

𝑠𝑡𝑇 = “accept”

∃(𝜋𝑇−1, 𝑠𝑡𝑇−1, 𝒘𝑻):
𝑴𝒙 𝑠𝑡𝑇−1, 𝒘𝑻 = 𝑠𝑡𝑇

𝑉𝜏 𝑪𝑯𝑴𝒙; 𝑠𝑡𝑇−1; 𝜋𝑇−1 = 1

∃(𝜋𝑇−2, 𝑠𝑡𝑇−2, 𝒘𝑻−𝟏):
𝑀𝑥 𝑠𝑡𝑇−2, 𝒘𝑻−𝟏 = 𝑠𝑡𝑇−1
𝑉𝜏 𝑪𝑯𝑴𝒙; 𝑠𝑡𝑇−2; 𝜋𝑇−2 = 1

𝑠𝑡𝑖−1
𝑴𝒙

𝒘𝒊
Input: 𝑠𝑡𝑖 witness: (𝑠𝑡𝑖−1, 𝜋𝑖−1, 𝒘𝒊)

Recursive Consistency Checker 𝑪𝑯𝑴𝒙

If 𝑠𝑡𝑖 is initial state of 𝑴𝒙 accept.
else check:
 𝑴𝒙(𝑠𝑡𝑖−1;𝒘𝒊) = 𝑠𝑡𝑖
 𝑉𝜏 accepts 𝜋𝑖−1 for statement “ 𝑪𝑯𝑴𝒙accepts 𝑠𝑡𝑖−1

𝑠𝑡𝑖

𝑉𝜏 𝑪𝑯𝑴𝒙; 𝑠𝑡𝑇; 𝜋𝑇 = 1

𝑠𝑡𝑇 = “accept”

∃(𝜋𝑇−1, 𝑠𝑡𝑇−1, 𝒘𝑻):
𝑴𝒙 𝑠𝑡𝑇−1, 𝒘𝑻 = 𝑠𝑡𝑇

𝑉𝜏 𝑪𝑯𝑴𝒙; 𝑠𝑡𝑇−1; 𝜋𝑇−1 = 1

∃(𝜋𝑇−2, 𝑠𝑡𝑇−2, 𝒘𝑻−𝟏):
𝑀𝑥 𝑠𝑡𝑇−2, 𝒘𝑻−𝟏 = 𝑠𝑡𝑇−1
𝑉𝜏 𝑪𝑯𝑴𝒙; 𝑠𝑡𝑇−2; 𝜋𝑇−2 = 1

∃(𝜋0, 𝑠𝑡0, 𝒘𝟏):
𝑴𝒙 𝑠𝑡0, 𝒘𝟏 = 𝑠𝑡1
𝑠𝑡0 = “start”

𝑠𝑡𝑖−1
𝑴𝒙

𝒘𝒊
Input: 𝑠𝑡𝑖 witness: (𝑠𝑡𝑖−1, 𝜋𝑖−1, 𝒘𝒊)

Recursive Consistency Checker 𝑪𝑯𝑴𝒙

If 𝑠𝑡𝑖 is initial state of 𝑴𝒙 accept.
else check:
 𝑴𝒙(𝑠𝑡𝑖−1;𝒘𝒊) = 𝑠𝑡𝑖
 𝑉𝜏 accepts 𝜋𝑖−1 for statement “ 𝑪𝑯𝑴𝒙accepts 𝑠𝑡𝑖−1

𝑠𝑡𝑖

𝑉𝜏 𝑪𝑯𝑴𝒙; 𝑠𝑡𝑇; 𝜋𝑇 = 1

𝑠𝑡𝑇 = “accept”

∃(𝜋𝑇−1, 𝑠𝑡𝑇−1, 𝒘𝑻):
𝑴𝒙 𝑠𝑡𝑇−1, 𝒘𝑻 = 𝑠𝑡𝑇

𝑉𝜏 𝑪𝑯𝑴𝒙; 𝑠𝑡𝑇−1; 𝜋𝑇−1 = 1

∃(𝜋𝑇−2, 𝑠𝑡𝑇−2, 𝒘𝑻−𝟏):
𝑀𝑥 𝑠𝑡𝑇−2, 𝒘𝑻−𝟏 = 𝑠𝑡𝑇−1
𝑉𝜏 𝑪𝑯𝑴𝒙; 𝑠𝑡𝑇−2; 𝜋𝑇−2 = 1

∃(𝜋0, 𝑠𝑡0, 𝒘𝟏):
𝑴𝒙 𝑠𝑡0, 𝒘𝟏 = 𝑠𝑡1
𝑠𝑡0 = “start”

Computational soundness isn’t enough
Need knowledge extraction
 Need to apply the extraction recursively.

𝜋𝑇

𝜎

(𝜋𝑇−1, 𝑠𝑡𝑇−1, 𝒘𝑻)

𝜎

𝑉𝜏 𝑪𝑯𝑴𝒙; 𝑠𝑡𝑇; 𝜋𝑇 = 1

𝑉𝜏 𝑪𝑯𝑴𝒙; 𝑠𝑡𝑇−1; 𝜋𝑇−1 = 1

𝜋𝑇

𝜎

(𝜋𝑇−1, 𝑠𝑡𝑇−1, 𝒘𝑻) (𝜋𝑇−2, 𝑠𝑡𝑇−2, 𝒘𝑻−𝟏)

𝜎

𝑉𝜏 𝑪𝑯𝑴𝒙; 𝑠𝑡𝑇; 𝜋𝑇 = 1

𝑉𝜏 𝑪𝑯𝑴𝒙; 𝑠𝑡𝑇−1; 𝜋𝑇−1 = 1

𝑉𝜏 𝑪𝑯𝑴𝒙; 𝑠𝑡𝑇−2; 𝜋𝑇−2 = 1

𝜋𝑇

𝜎

𝜎

(𝜋𝑇−1, 𝑠𝑡𝑇−1, 𝒘𝑻) (𝜋𝑇−2, 𝑠𝑡𝑇−2, 𝒘𝑻−𝟏) …

𝜎

𝜎

𝑉𝜏 𝑪𝑯𝑴𝒙; 𝑠𝑡𝑇; 𝜋𝑇 = 1

𝑉𝜏 𝑪𝑯𝑴𝒙; 𝑠𝑡𝑇−1; 𝜋𝑇−1 = 1

𝑉𝜏 𝑪𝑯𝑴𝒙; 𝑠𝑡𝑇−2; 𝜋𝑇−2 = 1

𝜋𝑇

𝜎

𝜎

(𝜋𝑇−1, 𝑠𝑡𝑇−1, 𝒘𝑻) (𝜋𝑇−2, 𝑠𝑡𝑇−2, 𝒘𝑻−𝟏) …

𝜎

𝑉𝜏 𝑪𝑯𝑴𝒙; 𝑠𝑡𝑇; 𝜋𝑇 = 1

𝑉𝜏 𝑪𝑯𝑴𝒙; 𝑠𝑡𝑇−1; 𝜋𝑇−1 = 1

𝜋𝑇

𝜎

𝜎

(𝜋𝑇−1, 𝑠𝑡𝑇−1, 𝒘𝑻) (𝜋𝑇−2, 𝑠𝑡𝑇−2, 𝒘𝑻−𝟏) …

𝜎

𝑉𝜏 𝑪𝑯𝑴𝒙; 𝑠𝑡𝑇; 𝜋𝑇 = 1

𝑉𝜏 𝑪𝑯𝑴𝒙; 𝑠𝑡𝑇−1; 𝜋𝑇−1 = 1

𝜋𝑇

𝜎

𝜎
How large is this extractor?

(or mcxtractor)

(𝜋𝑇−1, 𝑠𝑡𝑇−1, 𝒘𝑻) (𝜋𝑇−2, 𝑠𝑡𝑇−2, 𝒘𝑻−𝟏) …

𝜎

𝑉𝜏 𝑪𝑯𝑴𝒙; 𝑠𝑡𝑇; 𝜋𝑇 = 1

𝑉𝜏 𝑪𝑯𝑴𝒙; 𝑠𝑡𝑇−1; 𝜋𝑇−1 = 1

𝜋𝑇

𝜎

𝜎
How large is this extractor?

(or mcxtractor)

Typical recursive extraction problem:

each level incurs a poly blowup! ⇒ 𝐸 = 𝑘2
𝑂(𝑑)

can only deal with 𝑂(1) levels

A solution: aggregate proofs
in a wide tree

← 𝑘 →

← 1 →

⋮

𝜋𝑇 𝜋𝑇−𝑘+1 𝜋1 𝜋𝑘 𝑇 proofs

𝜋

𝜋 1 𝜋 𝑘 …

… …
← 𝑘 →

← 1 →

𝜋 1𝑑 𝜋 𝑘𝑑

𝑘 proofs ⇒ 1 proof

If 𝑇 = 𝑘𝑑 ⇒

𝑑 levels

← 𝑘 →

← 1 →

⋮

𝜋𝑇 𝜋𝑇−𝑘+1 𝜋1 𝜋𝑘 𝑇 proofs

𝜋

𝜋 1 𝜋 𝑘 …

… …
← 𝑘 →

← 1 →

𝜋 1𝑑 𝜋 𝑘𝑑

𝑘 proofs ⇒ 1 proof

If 𝑇 = 𝑘𝑑 ⇒

𝑑 levels

The tree is constructed dynamically

 with only poly(k) overhead

A solution: aggregate proofs
in a wide tree

Is the resulting proof sound?

So Far: Preprocessing cost is proportional to
single-step computation.

So Far: Preprocessing cost is proportional to
single-step computation.

But how large is a single-step computation?

So Far: Preprocessing cost is proportional to
single-step computation.

But how large is a single-step computation?
Bounded only by S, which can be as large as T…
Preprocessing stage can still be poly(T)…

Idea:
Move from machines with large memory
to machines with:

 - “small” trusted memory
 - “big” untrusted memory

𝑴

witness

𝑴

trusted mem

witness big untrusted memory

only 𝒑𝒐𝒍𝒚(𝒌)

trusted (big) mem

𝑴

trusted mem

witness memory transcript of entire execution of 𝑀

+ consistency info

only 𝒑𝒐𝒍𝒚(𝒌)

𝑴

witness

trusted (big) mem

A computational reduction using CRH
[Blum Evans Gemmell Kannan Naor 94,
Ben-Sasson Chiesa Genkin Tromer 12]

𝑴 𝑴 ℎ
ℎ

𝑴 ℎ 𝒙,𝒘,𝑚𝑒𝑚
accepts

𝑴 𝒙,𝒘
accepts

Or
ℎ-collisions can be (eff.)

extracted from 𝑚𝑒𝑚

A computational reduction using CRH

𝑴 𝑴 ℎ
ℎ

𝑴 ℎ 𝒙,𝒘,𝑚𝑒𝑚
accepts

𝑴 𝒙,𝒘
accepts

Or
ℎ-collisions can be (eff.)

extracted from 𝑚𝑒𝑚
∃𝒎𝒆𝒎 not enough

need knowledge

[Blum Evans Gemmell Kannan Naor 94,
Ben-Sasson Chiesa Genkin Tromer 12]

A computational reduction using CRH

𝑴 𝑴 ℎ
ℎ

Dynamic Merkle-hashing

of memory

[Blum Evans Gemmell Kannan Naor 94,
Ben-Sasson Chiesa Genkin Tromer 12]

𝑀 ℎ runs in time 𝑇𝑀 ⋅ poly 𝑘 , space poly(𝑘)
and 𝑚𝑒𝑚 computed from (𝒙,𝒘) in

time 𝑇𝑀 ⋅ poly(𝑘) & space 𝑆𝑀 ⋅ poly 𝑘

A single-step computation is now of size
𝒑𝒐𝒍𝒚𝒉 𝒌

(subsequent steps can be computed dynamically
preserving time and space of original computation)

only poly𝑉(𝑘),
independently of preprocessing limit

what’s left?
…SNARK verification

Input: 𝑠𝑡𝑖 witness: (𝜋𝑖−1, 𝑠𝑡𝑖−1, 𝒘𝒊)

If 𝑠𝑡𝑖 is initial state of 𝑴 𝒙 accept.
else check:
 𝑴 𝒙(𝑠𝑡𝑖−1;𝒘𝒊) = 𝑠𝑡𝑖
 𝑉𝜏 accepts 𝜋𝑖−1 for statement 𝑪𝑯𝑴𝒙 , 𝑠𝑡𝑖−1

only poly𝑉(𝑘),
independently of preprocessing limit
⇒ budget only for 𝒑𝒐𝒍𝒚𝑽(𝒌)+𝒑𝒐𝒍𝒚𝒉(𝒌)

what’s left?
…SNARK verification

Input: 𝑠𝑡𝑖 witness: (𝜋𝑖−1, 𝑠𝑡𝑖−1, 𝒘𝒊)

If 𝑠𝑡𝑖 is initial state of 𝑴 𝒙 accept.
else check:
 𝑴 𝒙(𝑠𝑡𝑖−1;𝒘𝒊) = 𝑠𝑡𝑖
 𝑉𝜏 accepts 𝜋𝑖−1 for statement 𝑪𝑯𝑴𝒙 , 𝑠𝑡𝑖−1

Bye Bye
 Long Preprocessing…

Part I:
How to Bootstrap a SNARK

in Public

Part II:
Part I (again) and Beyond
with Proof Carrying Data

In SNARKs: one prover and one verifier

But sometimes in life…

m3

m8

Computations involve many parties

each party has its own:

role, capabilities, friends, enemies,…

How can we enforce general correctness

properties of distributed computations?

m3

𝑝𝑟𝑜𝑔1

𝑝𝑟𝑜𝑔2

𝑝𝑟𝑜𝑔3

𝑝𝑟𝑜𝑔4

𝑝𝑟𝑜𝑔5

𝑝𝑟𝑜𝑔6

input message

output message
local program/input

m3

𝑝𝑟𝑜𝑔1

𝑝𝑟𝑜𝑔2

𝑝𝑟𝑜𝑔3

𝑝𝑟𝑜𝑔4

𝑝𝑟𝑜𝑔5

𝑝𝑟𝑜𝑔6

 Use MPC?

enforce any property of all the

inputs/outputs of all parties

but: large overhead: all parties must

communicate with each other

(necessary, e.g. Byzantine agreement)

A relaxed question:

how to enforce local properties?

Local property = property of the view of a single node

m3

𝑝𝑟𝑜𝑔1

𝑝𝑟𝑜𝑔2

𝑝𝑟𝑜𝑔3

𝑝𝑟𝑜𝑔4

𝑝𝑟𝑜𝑔5

𝑝𝑟𝑜𝑔6

input message

output message local program

Example: ensure that the program executed at
every node was signed by system admin

if property holds everywhere global meaning

Goal:

Guarantee “local properties” while

respecting the original computation:

• preserve communication graph

• minimal computational overhead

 Proof Carrying Data (PCD)

[Chiesa Tromer 10]

• Can be viewed as a DAG evolving over time

• nodes have input and output messages

 + a local program (with embedded inputs).

The original computation

• Can be viewed as a DAG evolving over time

• nodes have input and output messages

 + a local program (with embedded inputs).

𝑝𝑟𝑜𝑔1

The original computation

m3

• Can be viewed as a DAG evolving over time

• nodes have input and output messages

 + a local program (with embedded inputs).

𝑝𝑟𝑜𝑔1

𝑝𝑟𝑜𝑔2

𝑝𝑟𝑜𝑔3

The original computation

m3

• Can be viewed as a DAG evolving over time

• nodes have input and output messages

 + a local program (with embedded inputs).

𝑝𝑟𝑜𝑔1

𝑝𝑟𝑜𝑔2

𝑝𝑟𝑜𝑔3

𝑝𝑟𝑜𝑔4

𝑝𝑟𝑜𝑔5

𝑝𝑟𝑜𝑔6

The original computation

𝑪(𝑝𝑟𝑜𝑔,𝑚𝑖𝑛, 𝑚𝑜𝑢𝑡) is a predicate specifying

a local property, e.g.:

𝑝𝑟𝑜𝑔

Local properties as 𝑪-compliance

𝑚𝑖𝑛 𝑚𝑜𝑢𝑡

• 𝑪𝑎𝑑𝑚 : “𝑝𝑟𝑜𝑔 = (𝑀, 𝑠) where 𝑠 is an admin

 signature on 𝑀 and 𝑀(𝑚𝑖𝑛) = 𝑚𝑜𝑢𝑡“
• 𝑪𝑱𝑽𝑴 : “𝑝𝑟𝑜𝑔 is a JAVA program and

 𝐽𝑉𝑀(𝑝𝑟𝑜𝑔,𝑚𝑖𝑛) = 𝑚𝑜𝑢𝑡“
• 𝑪𝑀𝑥 : “𝑝𝑟𝑜𝑔 = 𝒘𝒊, 𝑚𝑖𝑛 = 𝑠𝑡𝑖−1 , 𝑚𝑜𝑢𝑡 = 𝑠𝑡𝑖

 and 𝑴𝒙 𝑠𝑡𝑖−1, 𝒘𝒊 = 𝑠𝑡𝑖 “

m3

• compile on-the-fly original computation

• (short) proofs are appended to messages

𝑝𝑟𝑜𝑔1

𝑝𝑟𝑜𝑔2

𝑝𝑟𝑜𝑔3

𝑝𝑟𝑜𝑔4

𝑝𝑟𝑜𝑔5

𝑝𝑟𝑜𝑔6

A PCD system

𝜋3

m3

• compile on-the-fly original computation

• (short) proofs are appended to messages

𝑝𝑟𝑜𝑔1

𝑝𝑟𝑜𝑔2

𝑝𝑟𝑜𝑔3

𝑝𝑟𝑜𝑔4

𝑝𝑟𝑜𝑔5

𝑝𝑟𝑜𝑔6

A PCD system

𝜋3

Note: not all properties can be verified this way.
 Eg, verifying that m1 = m2 requires additional interaction.

How to construct PCDs?

[CT10]: Using an abstract
signature card

How to construct PCDs?

This work: SNARK composition

Publicly-verifiable PCDs for constant depth graphs

with (resp. without) preprocessing

Publicly-verifiable SNARKs
with (resp. without) preprocessing

SNARK recursive composition

Results (revisited): General transformations

Publicly-verifiable PCDs for constant depth graphs

with (resp. without) preprocessing

Results (revisited): General transformations

Publicly-verifiable SNARKs
with (resp. without) preprocessing

Publicly-verifiable PCDs for polynomial-length chains

with (resp. without) preprocessing

General transformation
of path-compliance to tree-compliance

SNARK recursive composition

Results (revisited): Eliminating expensive preprocessing

Publicly-verifiable PCDs for polynomial

chains with preprocessing
Memory
reduction

Publicly-verifiable SNARKs

without preprocessing

using incremental compliance

Publicly-verifiable PCDs for polynomial

chains with preprocessing
Memory
reduction

Publicly-verifiable SNARKs

without preprocessing

using incremental compliance

Publicly-verifiable PCDs for polynomial-length chains

without preprocessing

using previous transformation

Results (revisited): Eliminating expensive preprocessing

A bonus:
privately-verifiable SNARKs also compose!

A bonus:
privately-verifiable SNARKs also compose!

To compose SNARKs we used public-verifiability

proved “I verified a SNARK”

A bonus:
privately-verifiable SNARKs also compose!

To compose SNARKs we used public-verifiability

proved “I verified a SNARK”

Looks surprising… but doable (using FHE).

All the PCD results have their

privately-verifiable analogs

Question:

which security goals we express
using the PCD language?

We’ve seen some examples
others include: targeted-malleability [BSW11],

computing on authenticated Data,…

Other properties?

