
Hyper-Invertible Matrices
and Applications

Martin Hirt

ETH Zurich

Theory and Practice of MPC, Aarhus, June 2012

Outline

Hyper-Invertible Matrices

• Motivation

• Definition & Properties

• Construction

• Applications

• Conclusions

How can n parties generate random values?

Model

• n parties, t are bad

• aim for random shared values (sharing doesn’t matter)

Approach 1

1. Every Pi shares random value xi

2. y =
n∑
i=1

xi Only one good sharing from n sharings

Approach 2

1. Every Pi shares random value xi

2. y1 =
∑
i
λ1ixi, y2 =

∑
i
λ2ixi, . . .

How many good sharings from n sharings?

Best we can hope for: n− t

More Abstractly . . .

Given: n values
x1 x2 x3 x4 x5 . . . xn

where

• n− t values are good (e.g. uniformly random),

• t values are bad (e.g. chosen by adversary).

Goal: Find (the) n− t good values

Goal’: Find y1, . . . , yn−t which are “as good as” x2, x5, . . . , xn .

y1
y2
...

yn−t
yn−t+1

...
yn

=

Hyper-Invertible

Matrix

x1
x2
x3
x4
x5
...
xn

Hyper-Invertible Matrix — The Definition

Def: M is hyper-invertible :⇐⇒ every square sub-matrix MC
R is invertible.

λ11 λ12 λ13 · · · λ1n
λ21 λ22 λ23 λ2n

... ...

λm1 λm2 λm3 · · · λmn

Note: Cf. Parity-check matrix of MDS-Codes, Cauchy matrices, . . .

Properties (1/2)

Property 1: Given some xj-s and some yi-s (in total n values), one can

compute all other xj-s and yi-s .

y1
y2
·
ym

 =

 M

x1
x2
·
·
xn

Lemma 1: Given HIM M , index sets C ⊆ {1 . . . n}, R ⊆ {1 . . .m} with

|C| = |R|. Then given
(
−→x C , −→y R

)
one can compute

(
−→x C ,

−→y R
)
.

Proof: 1. −→y R = MR
−→x = MC

R
−→x C + MC

R
−→x C

2. −→x C =
(
MC
R

)−1 (−→y R −MC
R
−→x C

)

Properties (1/2)

Property 1: Given some xj-s and some yi-s (in total n values), one can

compute all other xj-s and yi-s .

y1
y2
·
ym

 =

 M

x1
x2
·
·
xn

Lemma 2: Given matrix M . If for all C ⊆ {1 . . . n}, R ⊆ {1 . . .m} with

|C| = |R| one can compute −→x C from (−→x C,−→y R), then M is HIM.

Proof: Invert MC
R as follows:

1. Given −→y R . Let −→x C =
−→
0

2. Can compute −→x C →
(
MC
R

)−1

Properties (2/2)

Property 2: Fix k values , then there is a bijection from

any n− k values to any other n− k values .

y1
y2
·
ym

 =

 M

x1
x2
·
·
xn

The Construction

Idea: Construct mapping (x1, .., xn) 7→ (y1, .., ym) with Property 1.

Construction

1. fix values α1, . . . , αn, β1, . . . , βm in F

2. let polynomial f(z) s.t. f(αj) = xj ∀j

3. compute yi = f(βi) ∀i

Formally

• f(z) =
n∑

j=1

n∏
k=1
k 6=j

z − αk
αj − αk

xj

• yi = f(βi) =
n∑

j=1

n∏
k=1
k 6=j

βi − αk
αj − αk︸ ︷︷ ︸
λi,j

xj =
n∑

j=1
λi,j xj

• M :=
[
λi,j

]

The Field

The Field Size

• Previous construction requires |F| ≥ n+m.

• Easy patch: |F| = n+m− 1.

Lower Bounds (Conjecture)

• |F| = n+m− 1 is optimal for F 6= GF(2k)

• But:

1 1 1
1 2 3
1 3 2

 is HIM over GF(4) (though m+ n− 1 = 5)

Randomness Extraction – Passive Security

Model

• n parties, t are bad (passive only)

• aim for random shared values

• given n×n hyper-invertible matrix M

Protocol

1. Every Pi shares random value xi→ [xi]

2. ([y1], . . . , [yn]) =M([x1], . . . , [xn])

3. Output [y1], . . . , [yn−t]

Analysis

• Adversary A ⊆ {1, . . . , n}, |A| = t, hence knows
−→
[x]A .

• Prop. 2: Fix A,
−→
[x]A , mapping

−→
[x]A 7→

−→
[y]{1,...,n−t} is bijective.

Randomness Extraction – Active Security – Attempt #1

Model

• n parties, t are bad (active)

Protocol

• Every Pi VSSes random value xi→ [xi]

• . . .

Analysis

• works, but complicated & inefficient

Randomness Extraction – Active Security – Attempt #2

Model

• n parties, t are bad (active)

• detectable security (cf player elimination / dispute control)

Protocol

1. Every Pi passively shares random xi→ [xi]

2. ([y1], . . . , [yn]) =M([x1], . . . , [xn])

3. Reconstruct and check degree of [y1], . . . , [yt]

4. Output [yt+1], . . . , [yn−t]

Analysis

• Adversary A ⊆ {1, . . . , n}, |A| = t; H ⊆ A, |H| = n− 2t.

• Prop. 1: Degrees of
−→
[x]A and

−→
[y]{1,...,t} ok→ all degrees ok.

• Prop. 2: Fix A,
−→
[x]A,−→y {1,...,t}, bij. mapping

−→
[x]H 7→

−→
[y]{t+1,...,n−t}.

Randomness Extraction – Active Security – Attempt #3

Protocol

1. Every Pi passively shares random xi→ [xi]

2. ([y1], . . . , [yn]) =M([x1], . . . , [xn])

3. For i = 1, . . . ,2t, have Pi check degree of [yi]

4. Output [y2t+1], . . . , [yn]

Analysis

• Adversary A ⊆ {1, . . . , n}, |A| = t; H ⊆ A, |H| = n− 2t.

• Prop. 1: Degrees of
−→
[x]A and

−→
[y]{1,...,2t}∩A ok→ all degrees ok.

• Prop. 2: Fix A,
−→
[x]A,

−→
[y]{1,...,2t}∩A,

mapping
−→
[x]H 7→

−→
[y]{2t+1,...,n} is bijective.

Efficiency

• n passive sharings→ n− 2t good random sharings

Enhanced Checks

Example: Random Zero-Sharings [0]

1. Every Pi passively shares xi = 0→ [xi]

2. ([y1], . . . , [yn]) =M([x1], . . . , [xn])

3. For i = 1, . . . ,2t, have Pi check degree of [yi] and yi
?
= 0.

4. Output [y2t+1], . . . , [yn]

Analysis

• Adversary A ⊆ {1, . . . , n}, |A| = t

• Prop. 1: If
−→
[x]A and

−→
[y]{1,...,2t}∩A have right degree and share 0

⇒ all sharings have right degree and share 0.

Enhanced Checks – More Abstractly

Requirements

• “Goodness” must be linear: x1 and x2 good⇒ x1 + x2 good.

• Remember:
(−→
[x]A ,

−→
[y]{t+1,...,n}

)
= L

(−→
[x]A ,

−→
[y]{1,...,t}

)
• “Badness” does not need to be linear.

Examples

• Sharings [xi] of degree ≤ t

• Sharings [xi] of degree ≤ t and xi = 0

• Shared random bits [bi] over GF(2k).

• Double-sharings [xi], [yi] of degrees ≤ t, ≤ 2t, resp., and xi = yi.

• . . .

Perfect MPC with Active Security

Model

• n parties, t < n/3 actively corrupted

• secure channels model (w/o broadcast)

Achievements

• O(nκ) bits for multiplying two κ-bit values

Tools

• Use HIM to generate random [x], [y] of degree t,2t and x = y.

• Mult.: ∀ Pi compute vi = aibi − yi, reconstruct v, use [x]− v for [ab].

• Beaver’s circuit randomization + Player Elimination

Conclusions

Hyper-Invertible Matrices

• easy to construct

• very good diffusing properties

• perfect security, no probabilities

Applications

• extract randomness (propagate good properties)

• check consistency (concentrate bad properties)

• linear-complexity perfectly-secure MPC, very small overhead

• many more?

