Hyper-Invertible Matrices and Applications

Martin Hirt

ETH Zurich

Theory and Practice of MPC, Aarhus, June 2012

Outline

Hyper-Invertible Matrices

- Motivation
- Definition \& Properties
- Construction
- Applications
- Conclusions

How can n parties generate random values?

Model

- n parties, t are bad
- aim for random shared values (sharing doesn't matter)

Approach 1

1. Every P_{i} shares random value x_{i}
2. $y=\sum_{i=1}^{n} x_{i}$

Only one good sharing from n sharings

Approach 2

1. Every P_{i} shares random value x_{i}
2. $y_{1}=\sum_{i} \lambda_{1 i} x_{i}$,

$$
y_{2}=\sum_{i} \lambda_{2 i} x_{i}
$$

How many good sharings from n sharings?
Best we can hope for: $n-t$

More Abstractly ...

Given: n values

$$
\begin{array}{lllllll}
x_{1} & x_{2} & x_{3} & x_{4} & x_{5} & \ldots & x_{n}
\end{array}
$$

where

- $n-t$ values are good (e.g. uniformly random),
- t values are bad (e.g. chosen by adversary).

Goal: Find (the) $n-t$ good values
Goal': Find y_{1}, \ldots, y_{n-t} which are "as good as" $x_{2}, x_{5}, \ldots, x_{n}$.

$$
\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{n-t} \\
y_{n-t+1} \\
\vdots \\
y_{n}
\end{array}\right]=\left[\begin{array}{c}
\\
\text { Hyper-Invertible } \\
\text { Matrix } \\
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5} \\
\vdots \\
x_{n}
\end{array}\right]
$$

Hyper-Invertible Matrix - The Definition

Def: M is hyper-invertible $: \Longleftrightarrow$ every square sub-matrix M_{R}^{C} is invertible.

$$
\left[\begin{array}{ccccc}
\lambda_{11} & \lambda_{12} & \lambda_{13} & \cdots & \lambda_{1 n} \\
\lambda_{21} & \lambda_{22} & \lambda_{23} & & \lambda_{2 n} \\
\vdots & & & & \vdots \\
\lambda_{m 1} & \lambda_{m 2} & \lambda_{m 3} & \cdots & \lambda_{m n}
\end{array}\right]
$$

Note: Cf. Parity-check matrix of MDS-Codes, Cauchy matrices, ...

Properties (1/2)

Property 1: Given some x_{j}-s and some y_{i}-s (in total n values), one can compute all other x_{j}-s and y_{i}-s.

$$
\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\cdot \\
y_{m}
\end{array}\right]=\left[\begin{array}{ll}
\quad M
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\cdot \\
\cdot \\
x_{n}
\end{array}\right]
$$

Lemma 1: Given HIM M, index sets $C \subseteq\{1 \ldots n\}, R \subseteq\{1 \ldots m\}$ with $|\bar{C}|=|R|$. Then given $\left(\vec{x}_{C}, \vec{y}_{R}\right)$ one can compute $\left(\vec{x}_{\bar{C}}, \vec{y}_{\bar{R}}\right)$.

Proof: 1. $\quad \vec{y}_{R}=M_{R} \vec{x}=M_{R}^{C} \vec{x}_{C}+M_{R}^{\bar{C}} \vec{x}_{\bar{C}}$
2. $\vec{x}_{\bar{C}}=\left(M_{R}^{\bar{C}}\right)^{-1}\left(\vec{y}_{R}-M_{R}^{C} \vec{x}_{C}\right)$

Properties (1/2)

Property 1: Given some x_{j}-s and some y_{i}-s (in total n values), one can compute all other x_{j}-s and y_{i}-s.

$$
\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\cdot \\
y_{m}
\end{array}\right]=\left[\begin{array}{l}
\\
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\cdot \\
\cdot \\
x_{n}
\end{array}\right]
$$

Lemma 2: Given matrix M. If for all $C \subseteq\{1 \ldots n\}, R \subseteq\{1 \ldots m\}$ with
$|\bar{C}|=|R|$ one can compute $\vec{x}_{\bar{C}}$ from $\left(\vec{x}_{C}, \vec{y}_{R}\right)$, then \mathbf{M} is HIM.
Proof: Invert $M_{R}^{\bar{C}}$ as follows:

1. Given \vec{y}_{R}. Let $\vec{x}_{C}=\overrightarrow{0}$
2. Can compute $\vec{x}_{\bar{C}} \rightarrow\left(M_{R}^{\bar{C}}\right)^{-1}$

Properties (2/2)

Property 2: Fix k values, then there is a bijection from any $n-k$ values to any other $n-k$ values .

$$
\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\cdot \\
y_{m}
\end{array}\right]=\left[\begin{array}{ll}
\quad M
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\cdot \\
\cdot \\
x_{n}
\end{array}\right]
$$

The Construction

Idea: Construct mapping $\left(x_{1}, . ., x_{n}\right) \mapsto\left(y_{1}, . ., y_{m}\right)$ with Property 1.

Construction

1. fix values $\alpha_{1}, \ldots, \alpha_{n}, \beta_{1}, \ldots, \beta_{m}$ in \mathcal{F}
2. let polynomial $f(z)$ s.t. $f\left(\alpha_{j}\right)=x_{j} \quad \forall j$
3. compute $y_{i}=f\left(\beta_{i}\right) \quad \forall i$

Formally

- $f(z)=\sum_{j=1}^{n} \prod_{\substack{k=1 \\ k \neq j}}^{n} \frac{z-\alpha_{k}}{\alpha_{j}-\alpha_{k}} x_{j}$
- $y_{i}=f\left(\beta_{i}\right)=\sum_{j=1}^{n} \underbrace{\prod_{\substack{k=1 \\ k \neq j}}^{n} \frac{\beta_{i}-\alpha_{k}}{\alpha_{j}-\alpha_{k}}}_{\lambda_{i, j}} x_{j}=\sum_{j=1}^{n} \lambda_{i, j} x_{j}$
- $M:=\left[\lambda_{i, j}\right]$

The Field

The Field Size

- Previous construction requires $|\mathcal{F}| \geq n+m$.
- Easy patch: $|\mathcal{F}|=n+m-1$.

Lower Bounds (Conjecture)

- $|\mathcal{F}|=n+m-1$ is optimal for $\mathcal{F} \neq \operatorname{GF}\left(2^{k}\right)$
- But: $\left[\begin{array}{lll}1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 3 & 2\end{array}\right]$ is HIM over GF(4) \quad (though $m+n-1=5$)

Randomness Extraction - Passive Security

Model

- n parties, t are bad (passive only)
- aim for random shared values
- given $n \times n$ hyper-invertible matrix M

Protocol

1. Every P_{i} shares random value $x_{i} \rightarrow\left[x_{i}\right]$
2. $\left(\left[y_{1}\right], \ldots,\left[y_{n}\right]\right)=M\left(\left[x_{1}\right], \ldots,\left[x_{n}\right]\right)$
3. Output $\left[y_{1}\right], \ldots,\left[y_{n-t}\right]$

Analysis

- Adversary $A \subseteq\{1, \ldots, n\},|A|=t$, hence knows $\left[\overrightarrow{[x]}{ }_{A}\right.$.
- Prop. 2: Fix $A, \overrightarrow{[x]}_{A}$, mapping $\overrightarrow{[x]}_{\vec{A}} \mapsto \overrightarrow{[y]}_{\{1, \ldots, n-t\}}$ is bijective.

Randomness Extraction - Active Security - Attempt \#1

Model

- n parties, t are bad (active)

Protocol

- Every P_{i} VSSes random value $x_{i} \rightarrow\left[x_{i}\right]$

Analysis

- works, but complicated \& inefficient

Randomness Extraction - Active Security - Attempt \#2

Model

- n parties, t are bad (active)
- detectable security (cf player elimination / dispute control)

Protocol

1. Every P_{i} passively shares random $x_{i} \rightarrow\left[x_{i}\right]$
2. $\left(\left[y_{1}\right], \ldots,\left[y_{n}\right]\right)=M\left(\left[x_{1}\right], \ldots,\left[x_{n}\right]\right)$
3. Reconstruct and check degree of $\left[y_{1}\right], \ldots,\left[y_{t}\right]$
4. Output $\left[y_{t+1}\right], \ldots,\left[y_{n-t}\right]$

Analysis

- Adversary $A \subseteq\{1, \ldots, n\},|A|=t ; H \subseteq \bar{A},|H|=n-2 t$.
- Prop. 1: Degrees of $\overrightarrow{[x]}_{\bar{A}}$ and $\overrightarrow{[y]}_{\{1, \ldots, t\}}$ ok \rightarrow all degrees ok.
- Prop. 2: Fix $A, \overrightarrow{[x]}_{A}, \vec{y}_{\{1, \ldots, t\}}$, bij. mapping $\overrightarrow{[x]}_{H} \mapsto \overrightarrow{[y]}_{\{t+1, \ldots, n-t\}}$.

Randomness Extraction - Active Security - Attempt \#3

Protocol

1. Every P_{i} passively shares random $x_{i} \rightarrow\left[x_{i}\right]$
2. $\left(\left[y_{1}\right], \ldots,\left[y_{n}\right]\right)=M\left(\left[x_{1}\right], \ldots,\left[x_{n}\right]\right)$
3. For $i=1, \ldots, 2 t$, have P_{i} check degree of [y_{i}]
4. Output $\left[y_{2 t+1}\right], \ldots,\left[y_{n}\right]$

Analysis

- Adversary $A \subseteq\{1, \ldots, n\},|A|=t ; H \subseteq \bar{A},|H|=n-2 t$.
- Prop. 1: Degrees of $\overrightarrow{[x]_{\bar{A}}}$ and $\overrightarrow{[y]}_{\{1, \ldots, 2 t\} \cap \bar{A}}$ ok \rightarrow all degrees ok.
- Prop. 2: Fix $A, \overrightarrow{[x]}_{A}, \overrightarrow{[y]}_{\{1, \ldots, 2 t\} \cap A}$,

$$
\text { mapping } \overrightarrow{[x]}_{H} \mapsto \overrightarrow{[y]}_{\{2 t+1, \ldots, n\}} \text { is bijective. }
$$

Efficiency

- n passive sharings $\rightarrow n-2 t$ good random sharings

Enhanced Checks

Example: Random Zero-Sharings [0]

1. Every P_{i} passively shares $x_{i}=0 \rightarrow\left[x_{i}\right]$
2. $\left(\left[y_{1}\right], \ldots,\left[y_{n}\right]\right)=M\left(\left[x_{1}\right], \ldots,\left[x_{n}\right]\right)$
3. For $i=1, \ldots, 2 t$, have P_{i} check degree of $\left[y_{i}\right]$ and $y_{i} \stackrel{?}{=} 0$.
4. Output $\left[y_{2 t+1}\right], \ldots,\left[y_{n}\right]$

Analysis

- Adversary $A \subseteq\{1, \ldots, n\},|A|=t$
- Prop. 1: If $\overrightarrow{[x]}_{\bar{A}}$ and $\overrightarrow{[y]}_{\{1, \ldots, 2 t\} \cap \bar{A}}$ have right degree and share 0 \Rightarrow all sharings have right degree and share 0 .

Enhanced Checks - More Abstractly

Requirements

- "Goodness" must be linear: x_{1} and x_{2} good $\Rightarrow x_{1}+x_{2}$ good.
- Remember: $\left(\overrightarrow{[x]}_{A}, \overrightarrow{[y]}_{\{t+1, \ldots, n\}}\right)=\mathcal{L}\left(\overrightarrow{[x]}_{A}, \overrightarrow{[y]}_{\{1, \ldots, t\}}\right)$
- "Badness" does not need to be linear.

Examples

- Sharings $\left[x_{i}\right]$ of degree $\leq t$
- Sharings $\left[x_{i}\right]$ of degree $\leq t$ and $x_{i}=0$
- Shared random bits $\left[b_{i}\right]$ over GF $\left(2^{k}\right)$.
- Double-sharings $\left[x_{i}\right]$, $\left[y_{i}\right]$ of degrees $\leq t, \leq 2 t$, resp., and $x_{i}=y_{i}$.

Perfect MPC with Active Security

Model

- n parties, $t<n / 3$ actively corrupted
- secure channels model (w/o broadcast)

Achievements

- $\mathcal{O}(n \kappa)$ bits for multiplying two κ-bit values

Tools

- Use HIM to generate random $[x],[y]$ of degree $t, 2 t$ and $x=y$.
- Mult.: $\forall P_{i}$ compute $v_{i}=a_{i} b_{i}-y_{i}$, reconstruct v, use $[x]-v$ for $[a b]$.
- Beaver's circuit randomization + Player Elimination

Conclusions

Hyper-Invertible Matrices

- easy to construct
- very good diffusing properties
- perfect security, no probabilities

Applications

- extract randomness (propagate good properties)
- check consistency (concentrate bad properties)
- linear-complexity perfectly-secure MPC, very small overhead
- many more?

