Hyper-Invertible Matrices and Applications

Martin Hirt

ETH Zurich

Theory and Practice of MPC, Aarhus, June 2012

Outline

Hyper-Invertible Matrices

- Motivation
- Definition & Properties
- Construction
- Applications
- Conclusions

- n parties, t are bad
- aim for random *shared* values (sharing doesn't matter)

Approach 1

1. Every P_i shares random value x_i 2. $y = \sum_{i=1}^{n} x_i$ Only one good sharing from *n* sharings

Approach 2

1. Every P_i shares random value x_i

2.
$$y_1 = \sum_i \lambda_{1i} x_i$$
, $y_2 = \sum_i \lambda_{2i} x_i$, ...

How many good sharings from *n* sharings?

Best we can hope for: n - t

Given: *n* values

 $x_1 x_2 x_3 x_4 x_5 \ldots x_n$

where

- n-t values are good (e.g. uniformly random),
- *t* values are bad (e.g. chosen by adversary).

Goal: Find (the) n - t good values

Goal': Find y_1, \ldots, y_{n-t} which are "as good as" x_2, x_5, \ldots, x_n .

$egin{array}{c} y_1 \ y_2 \ dots \ y_{n-t} \ y_{n-t+1} \ dots \ y_n \end{array}$		Hyper-Invertible Matrix	$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \\ \vdots \\ x_n \end{bmatrix}$
--	--	----------------------------	--

Def: M is *hyper-invertible* : \iff every square sub-matrix M_R^C is invertible.

Note: Cf. Parity-check matrix of MDS-Codes, Cauchy matrices, ...

Property 1: Given some x_j -s and some y_i -s (in total *n* values), one can compute all other x_j -s and y_i -s.

$$\begin{bmatrix} y_1 \\ y_2 \\ \cdot \\ y_m \end{bmatrix} = \begin{bmatrix} M \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \cdot \\ \cdot \\ x_n \end{bmatrix}$$

Lemma 1: Given HIM M, index sets $C \subseteq \{1 \dots n\}, R \subseteq \{1 \dots m\}$ with $|\overline{C}| = |R|$. Then given $(\overrightarrow{x}_C, \overrightarrow{y}_R)$ one can compute $(\overrightarrow{x}_{\overline{C}}, \overrightarrow{y}_{\overline{R}})$. Proof: 1. $\overrightarrow{y}_R = M_R \overrightarrow{x} = M_R^C \overrightarrow{x}_C + M_R^{\overline{C}} \overrightarrow{x}_{\overline{C}}$ 2. $\overrightarrow{x}_{\overline{C}} = (M_R^{\overline{C}})^{-1} (\overrightarrow{y}_R - M_R^C \overrightarrow{x}_C)$ **Property 1:** Given some x_j -s and some y_i -s (in total *n* values), one can compute all other x_j -s and y_i -s.

$$\begin{bmatrix} y_1 \\ y_2 \\ \cdot \\ y_m \end{bmatrix} = \begin{bmatrix} M \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \cdot \\ \cdot \\ x_n \end{bmatrix}$$

Lemma 2: Given matrix M. If for all $C \subseteq \{1 \dots n\}, R \subseteq \{1 \dots m\}$ with $|\overline{C}| = |R|$ one can compute $\overrightarrow{x}_{\overline{C}}$ from $(\overrightarrow{x}_{C}, \overrightarrow{y}_{R})$, then M is HIM. Proof: Invert $M_{R}^{\overline{C}}$ as follows:

1. Given
$$\overrightarrow{y}_R$$
. Let $\overrightarrow{x}_C = \overrightarrow{0}$

2. Can compute
$$\overrightarrow{x}_{\overline{C}} \to \left(M_R^{\overline{C}}\right)^{-1}$$

Property 2: Fix *k* values, then there is a bijection from any n - k values to any other n - k values.

$$\begin{bmatrix} y_1 \\ y_2 \\ \cdot \\ y_m \end{bmatrix} = \begin{bmatrix} M \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \cdot \\ \cdot \\ x_n \end{bmatrix}$$

The Construction

Idea: Construct mapping $(x_1, .., x_n) \mapsto (y_1, .., y_m)$ with Property 1. Construction

- 1. fix values $\alpha_1, \ldots, \alpha_n, \beta_1, \ldots, \beta_m$ in \mathcal{F}
- 2. let polynomial f(z) s.t. $f(\alpha_j) = x_j \quad \forall j$
- 3. compute $y_i = f(\beta_i) \quad \forall i$

Formally

•
$$f(z) = \sum_{\substack{j=1 \ k \neq j}}^{n} \prod_{\substack{k=1 \ k \neq j}}^{n} \frac{z - \alpha_k}{\alpha_j - \alpha_k} x_j$$

•
$$y_i = f(\beta_i) = \sum_{j=1}^n \prod_{\substack{k=1 \ k \neq j}}^n \frac{\beta_i - \alpha_k}{\alpha_j - \alpha_k} \quad x_j = \sum_{j=1}^n \lambda_{i,j} x_j$$

• $M := [\lambda_{i,j}]$

The Field

The Field Size

- Previous construction requires $|\mathcal{F}| \ge n + m$.
- Easy patch: $|\mathcal{F}| = n + m 1$.

Lower Bounds (Conjecture)

•
$$|\mathcal{F}| = n + m - 1$$
 is optimal for $\mathcal{F} \neq GF(2^k)$
• But: $\begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 3 & 2 \end{bmatrix}$ is HIM over GF(4) (though $m + n - 1 = 5$)

- *n* parties, *t* are bad (passive only)
- aim for random *shared* values
- given $n \times n$ hyper-invertible matrix M

Protocol

- 1. Every P_i shares random value $x_i \rightarrow [x_i]$
- 2. $([y_1], \ldots, [y_n]) = M([x_1], \ldots, [x_n])$
- 3. Output $[y_1], \ldots, [y_{n-t}]$

Analysis

- Adversary $A \subseteq \{1, \ldots, n\}$, |A| = t, hence knows $[x]_A$.
- Prop. 2: Fix A, $[\overrightarrow{x}]_A$, mapping $[\overrightarrow{x}]_{\overline{A}} \mapsto [\overrightarrow{y}]_{\{1,...,n-t\}}$ is bijective.

• *n* parties, *t* are bad (active)

Protocol

- Every P_i VSSes random value $x_i \rightarrow [x_i]$
- . . .

Analysis

• works, but complicated & inefficient

- *n* parties, *t* are bad (active)
- detectable security (cf player elimination / dispute control)

Protocol

- 1. Every P_i passively shares random $x_i \rightarrow [x_i]$
- 2. $([y_1], \ldots, [y_n]) = M([x_1], \ldots, [x_n])$
- 3. Reconstruct and **check degree** of $[y_1], \ldots, [y_t]$
- 4. Output $[y_{t+1}], \ldots, [y_{n-t}]$

Analysis

- Adversary $A \subseteq \{1, \ldots, n\}$, |A| = t; $H \subseteq \overline{A}$, |H| = n 2t.
- Prop. 1: Degrees of $\overrightarrow{[x]}_{\overline{A}}$ and $\overrightarrow{[y]}_{\{1,...,t\}}$ ok \rightarrow all degrees ok.
- Prop. 2: Fix $A, [\overrightarrow{x}]_A, \overrightarrow{y}_{\{1,...,t\}}, \text{ bij. mapping } \overrightarrow{[x]}_H \mapsto \overrightarrow{[y]}_{\{t+1,...,n-t\}}.$

Protocol

- 1. Every P_i passively shares random $x_i \rightarrow [x_i]$
- 2. $([y_1], \ldots, [y_n]) = M([x_1], \ldots, [x_n])$
- 3. For i = 1, ..., 2t, have P_i check degree of $[y_i]$
- 4. Output $[y_{2t+1}], \ldots, [y_n]$

Analysis

- Adversary $A \subseteq \{1, \ldots, n\}$, |A| = t; $H \subseteq \overline{A}$, |H| = n 2t.
- Prop. 1: Degrees of $\overrightarrow{[x]}_{\overline{A}}$ and $\overrightarrow{[y]}_{\{1,...,2t\}\cap\overline{A}}$ ok \rightarrow all degrees ok.
- Prop. 2: Fix $A, [\overrightarrow{x}]_A, [\overrightarrow{y}]_{\{1,...,2t\}\cap A}$, mapping $\overrightarrow{[x]}_H \mapsto \overrightarrow{[y]}_{\{2t+1,...,n\}}$ is bijective.

Efficiency

• n **passive** sharings $\rightarrow n - 2t$ good random sharings

Example: Random Zero-Sharings [0]

- 1. Every P_i passively shares $x_i = 0 \rightarrow [x_i]$
- 2. $([y_1], \ldots, [y_n]) = M([x_1], \ldots, [x_n])$
- 3. For i = 1, ..., 2t, have P_i check degree of $[y_i]$ and $y_i \stackrel{?}{=} 0$.
- 4. Output $[y_{2t+1}], \ldots, [y_n]$

Analysis

- Adversary $A \subseteq \{1, \ldots, n\}, |A| = t$
- Prop. 1: If $\overrightarrow{[x]}_{\overline{A}}$ and $\overrightarrow{[y]}_{\{1,...,2t\}\cap\overline{A}}$ have right degree and share 0 \Rightarrow all sharings have right degree and share 0.

Requirements

- "Goodness" must be linear: x_1 and x_2 good $\Rightarrow x_1 + x_2$ good.
- Remember: $\left(\overrightarrow{[x]}_A, \overrightarrow{[y]}_{\{t+1,\dots,n\}} \right) = \mathcal{L}\left(\overrightarrow{[x]}_{\overline{A}}, \overrightarrow{[y]}_{\{1,\dots,t\}} \right)$
- "Badness" does not need to be linear.

Examples

- Sharings $[x_i]$ of degree $\leq t$
- Sharings $[x_i]$ of degree $\leq t$ and $x_i = 0$
- Shared random bits $[b_i]$ over $GF(2^k)$.
- Double-sharings $[x_i], [y_i]$ of degrees $\leq t, \leq 2t$, resp., and $x_i = y_i$.

• . . .

- n parties, t < n/3 actively corrupted
- secure channels model (w/o broadcast)

Achievements

• $\mathcal{O}(n\kappa)$ bits for multiplying two κ -bit values

Tools

- Use HIM to generate random [x], [y] of degree t, 2t and x = y.
- Mult.: $\forall P_i$ compute $v_i = a_i b_i y_i$, reconstruct v, use [x] v for [ab].
- Beaver's circuit randomization + Player Elimination

Hyper-Invertible Matrices

- easy to construct
- very good diffusing properties
- perfect security, no probabilities

Applications

- extract randomness (propagate good properties)
- check consistency (concentrate bad properties)
- linear-complexity perfectly-secure MPC, very small overhead
- many more?