Functional Encryption with Bounded Collusions

Hoeteck Wee
George Washington University

JOINT WORK WITH:
Serge Gorbunov \& Vinod Vaikuntanathan
(University of Toronto)

Public Key Encryption

Functional Encryption

$$
\text { simulator }\left(K_{1}, K_{5}, K_{7}, F\left(K_{1}, M\right), F\left(K_{5}, M\right), F\left(K_{7}, M\right)\right)
$$

[Boneh Sahai Waters 11, O'Neill 11]

Functional Encryption

$$
\text { simulator }\left(K_{1}, K_{5}, K_{7}, F\left(K_{1}, M\right), F\left(K_{5}, M\right), F\left(K_{7}, M\right)\right)
$$

SIM security \Rightarrow IND security, one-msg IND \Rightarrow many-msg IND

Functional Encryption

- Predicate encryption $P(\cdot, \cdot)$ (public index)

$$
F(K, w \| m)= \begin{cases}(w, m) & \text { if } P(K, w)=1 \\ (w, \perp) & \text { otherwise }\end{cases}
$$

Functional Encryption

- Predicate encryption $P(\cdot, \cdot)$ (public index)

$$
F(K, w \| m)= \begin{cases}(w, m) & \text { if } P(K, w)=1 \\ (w, \perp) & \text { otherwise }\end{cases}
$$

Identity-based (IBE) [S84, BF01, C01]	$K \stackrel{?}{=} w$
Attribute-based (ABE) [GPSW06]	$K(w) \stackrel{?}{=} 1$, formula K
Inner product (IPE) [KSW08]	$\langle K, w\rangle \stackrel{?}{=} 0$

Can we construct Functional Encryption

 for all functions?
Can we construct Functional Encryption

 for all functions?
66
 9
 Yes, we can!

Can we construct Functional Encryption for all functions? (with bounded collusions)

66
99
Yes, we can! ... with a small catch

Can we construct Functional Encryption

 for all functions? (with bounded collusions)66
99
Yes, we can! ... with a small catch

bounded by q

Can we construct Functional Encryption for all functions? (with bounded collusions)

66
99
Yes, we can! ... with a small catch
note. unbounded collusions impossible
[Agrawal Gorbunov Vaikuntanathan W 12]

Can we construct Functional Encryption for all functions? (with bounded collusions)

THIS WORK.

- poly-size circuits \Longleftarrow IND-CPA PKE + small depth PRG
- predicate encryption \Longleftarrow IND-CPA PKE

$$
\ldots \text { for } q=\operatorname{poly}(\cdot)
$$

Can we construct Functional Encryption for all functions? (with bounded collusions)

THIS WORK.

- poly-size circuits \Longleftarrow IND-CPA PKE + small depth PRG
> predicate encryption \Longleftarrow IND-CPA PKE

PREVIOUS WORK.

- IBE, $q=\operatorname{poly}(\cdot)$ [Dodis Katz Xu Yung 02, Goldwasser Lewko Wilson 12]
- poly-size circuits, $q=1$ [Sahai Seyalioglu 10, Yao 86]

Overview of Our Construction

$$
q=1, \text { poly-size circuits }
$$

- based on Yao's garbled circuits
- can learn all input labels (thus M) with two queries

Overview of Our Construction

$$
q=1, \text { poly-size circuits }
$$

$$
\begin{aligned}
& + \text { MPC [Ben-Or Goldwasser Wigderson 88] } \\
& \text { c.f. [Ishai Kushilevitz Ostrovsky Sahai 07] }
\end{aligned}
$$

$q=\operatorname{poly}(\cdot)$, degree 3 polynomials

Overview of Our Construction

$$
q=1, \text { poly-size circuits }
$$

+ MPC [Ben-Or Goldwasser Wigderson 88]
c.f. [Ishai Kushilevitz Ostrovsky Sahai 07]
$q=\operatorname{poly}(\cdot)$, degree 3 polynomials
+ randomized encodings + small depth PRG
[Applebaum Ishai Kushilevitz 05]
$q=\operatorname{poly}(\cdot)$, poly-size circuits

Construction for $q=\operatorname{poly}(\cdot)$, Degree 3 Polynomials

$$
q=1, \text { poly-size circuits }
$$

+ MPC [Ben-Or Goldwasser Wigderson 88]
c.f. [Ishai Kushilevitz Ostrovsky Sahai 07]
$q=\operatorname{poly}(\cdot)$, degree 3 polynomials
i.e., $F(K, \cdot)$ is degree 3 (multivariate) for all K

Construction for $q=\operatorname{poly}(\cdot)$, Degree 3 Polynomials

public: $\mathrm{MPK}_{1}, \ldots, \mathrm{MPK}_{N}$

$$
\begin{aligned}
& \qquad 3 t+1 \text { keys }\left(\mathrm{SK}_{i, K}\right) \\
& \text { decryptor } \\
& K
\end{aligned}
$$

1. generate N copies of $q=1$ scheme for $F_{\text {ONE }}:=F$
2. decryptor gets random subset of $3 t+1$ secret keys

Construction for $q=\operatorname{poly}(\cdot)$, Degree 3 Polynomials

public: $\mathrm{MPK}_{1}, \ldots, \mathrm{MPK}_{N}$
$\downarrow 3 t+1$ keys $\left(\mathrm{SK}_{i, K}\right)$

1. t-out-of- N secret share $M \rightarrow\left(M_{1}, \ldots, M_{N}\right)$ (ala [BGW 88])
2. encrypt the shares

Construction for $q=\operatorname{poly}(\cdot)$, Degree 3 Polynomials

q-FE for Degree 3 Polynomials

issue 1. adversary gets two secret keys for MPK_{i}, learns M_{i}

- okay if this happens at most t times (due to secret sharing)

q－FE for Degree 3 Polynomials

issue 1．adversary gets two secret keys for MPK_{i} ，learns M_{i}
— use family of sets with small pairwise intersection（at most t ）

q-FE for Degree 3 Polynomials

issue 1. adversary gets two secret keys for MPK_{i}, learns M_{i}
— use family of sets with small pairwise intersection (at most t)
issue 2. shares $\left\{F\left(K, M_{i}\right)\right\}$ of $F(K, M)$ not random

q-FE for Degree 3 Polynomials

issue 1. adversary gets two secret keys for MPK_{i}, learns M_{i}

- use family of sets with small pairwise intersection (at most t)
issue 2. shares $\left\{F\left(K, M_{i}\right)\right\}$ of $F(K, M)$ not random
— randomize by adding random shares $\left\{\sigma_{i}\right\}$ of 0
- $F_{\mathrm{ONE}}\left(K, M_{i} \| \sigma_{i}\right):=F\left(K, M_{i}\right)+\sigma_{i}$

q-FE for Degree 3 Polynomials

issue 1. adversary gets two secret keys for MPK_{i}, learns M_{i}

- use family of sets with small pairwise intersection (at most t)
issue 2. shares $\left\{F\left(K, M_{i}\right)\right\}$ of $F(K, M)$ not random
- randomize by adding random shares $\left\{\sigma_{i}\right\}$ of 0
- $F_{\mathrm{ONE}}\left(K, M_{i} \| \sigma_{i}\right):=F\left(K, M_{i}\right)+\sigma_{i}$
issue 3. correlation amongst shares of $F\left(K_{1}, M\right), F\left(K_{5}, M\right), \ldots$

q-FE for Degree 3 Polynomials

issue 1. adversary gets two secret keys for MPK_{i}, learns M_{i}

- use family of sets with small pairwise intersection (at most t)
issue 2. shares $\left\{F\left(K, M_{i}\right)\right\}$ of $F(K, M)$ not random
- randomize by adding random shares $\left\{\sigma_{i}\right\}$ of 0
- $F_{\mathrm{ONE}}\left(K, M_{i} \| \sigma_{i}\right):=F\left(K, M_{i}\right)+\sigma_{i}$
issue 3. correlation amongst shares of $F\left(K_{1}, M\right), F\left(K_{5}, M\right), \ldots$
- refresh using q-wise independent random shares of 0

q-FE for Degree 3 Polynomials

issue 1. adversary gets two secret keys for MPK_{i}, learns M_{i}

- use family of sets with small pairwise intersection (at most t)
issue 2. shares $\left\{F\left(K, M_{i}\right)\right\}$ of $F(K, M)$ not random
- randomize by adding random shares $\left\{\sigma_{i}\right\}$ of 0
- $F_{\mathrm{ONE}}\left(K, M_{i} \| \sigma_{i}\right):=F\left(K, M_{i}\right)+\sigma_{i}$
issue 3. correlation amongst shares of $F\left(K_{1}, M\right), F\left(K_{5}, M\right), \ldots$
$-F_{\mathrm{ONE}}\left(K\left\|\Delta, M_{i}\right\| \vec{\sigma}_{i}\right):=F\left(K, M_{i}\right)+\sum_{a \in \Delta} \vec{\sigma}_{i}[a]$
- Δ : family of cover-free sets

Conclusion

THIS WORK. Functional Encryption with bounded collusion

- feasibilty result via MPC
- poly-size circuits \Longleftarrow IND-CPA PKE + 'small depth' PRG
- predicate encryption \Longleftarrow IND-CPA PKE

Conclusion

THIS WORK. Functional Encryption with bounded collusion

- feasibilty result via MPC
- poly-size circuits \Longleftarrow IND-CPA PKE + 'small depth' PRG
- predicate encryption \Longleftarrow IND-CPA PKE

NEXT?

- IND-based functional encryption with unbounded collusion
- further connections between MPC and functional encryption?

终

