Functional Encryption with Bounded Collusions

Hoeteck Wee George Washington University

JOINT WORK WITH:

Serge Gorbunov & Vinod Vaikuntanathan

(University of Toronto)

Public Key Encryption

computes M

computes F(K, M)

only learns F(K, M)

only learns $F(K_1, M), F(K_5, M), F(K_7, M)$

SIM security \Rightarrow IND security, one-msg IND \Rightarrow many-msg IND

• Predicate encryption $P(\cdot, \cdot)$ (public index)

$$F(K,w\|m) = \begin{cases} (w,m) & \text{if } P(K,w) = 1\\ (w,\bot) & \text{otherwise} \end{cases}$$

• Predicate encryption $P(\cdot, \cdot)$ (public index)

$$F(K,w\|m) = \begin{cases} (w,m) & \text{if } P(K,w) = 1\\ (w,\bot) & \text{otherwise} \end{cases}$$

Identity-based (IBE) [S84, BF01, C01]	$K \stackrel{?}{=} w$
Attribute-based (ABE) [GPSW06]	$K(w) \stackrel{?}{=} 1$, formula K
Inner product (IPE) [KSW08]	$\langle K, w \rangle \stackrel{?}{=} 0$

Can we construct Functional Encryption for all functions?

Q Can we construct Functional Encryption for all functions?

Yes, we can!

Yes, we can! ... with a small catch

"

Can we construct Functional Encryption for all functions? (with bounded collusions) $\binom{11}{\text{Yes, we can! ... with a small catch}}$

bounded by \boldsymbol{q}

Yes, we can! ... with a small catch

note. unbounded collusions impossible [Agrawal Gorbunov Vaikuntanathan W 12] "

THIS WORK.

- ▶ poly-size circuits ⇐ IND-CPA PKE + small depth PRG
- predicate encryption \Leftarrow IND-CPA PKE

... for $q = poly(\cdot)$

THIS WORK.

- ▶ poly-size circuits ⇐ IND-CPA PKE + small depth PRG
- predicate encryption \Leftarrow IND-CPA PKE

PREVIOUS WORK.

- ▶ IBE, $q = \mathrm{poly}(\cdot)$ [Dodis Katz Xu Yung 02, Goldwasser Lewko Wilson 12]
- poly-size circuits, q = 1 [Sahai Seyalioglu 10, Yao 86]

⇐ IND-CPA PKE

Overview of Our Construction

$$q = 1$$
, poly-size circuits

- based on Yao's garbled circuits
- \blacktriangleright can learn all input labels (thus M) with two queries

Overview of Our Construction

Overview of Our Construction

i.e., $F(K, \cdot)$ is degree 3 (multivariate) for all K

public: MPK₁,..., $\overline{MPK_N}$

1. generate N copies of q = 1 scheme for $F_{\text{ONE}} := F$

2. decryptor gets random subset of 3t + 1 secret keys

1. *t*-out-of-N secret share $M \to (M_1, \ldots, M_N)$ (ala [BGW 88]) 2. encrypt the shares

issue 1. adversary gets two secret keys for MPK_i , learns M_i

— okay if this happens at most t times (due to secret sharing)

issue 1. adversary gets two secret keys for MPK_i , learns M_i

— use family of sets with small pairwise intersection (at most t)

issue 1. adversary gets two secret keys for MPK_i , learns M_i

— use family of sets with small pairwise intersection (at most t)

issue 2. shares $\{F(K, M_i)\}$ of F(K, M) not random

- issue 1. adversary gets two secret keys for MPK_i , learns M_i
- use family of sets with small pairwise intersection (at most t)

- randomize by adding random shares $\{\sigma_i\}$ of 0
- $F_{\text{ONE}}(K, M_i \| \sigma_i) := F(K, M_i) + \sigma_i$

- issue 1. adversary gets two secret keys for MPK_i , learns M_i
- use family of sets with small pairwise intersection (at most t)

— randomize by adding random shares $\{\sigma_i\}$ of 0

$$- F_{\text{ONE}}(K, M_i \| \sigma_i) := F(K, M_i) + \sigma_i$$

issue 3. correlation amongst shares of $F(K_1, M), F(K_5, M), \ldots$

- issue 1. adversary gets two secret keys for MPK_i , learns M_i
- use family of sets with small pairwise intersection (at most t)

— randomize by adding random shares $\{\sigma_i\}$ of 0

$$- F_{\text{ONE}}(K, M_i \| \sigma_i) := F(K, M_i) + \sigma_i$$

issue 3. correlation amongst shares of $F(K_1, M), F(K_5, M), \ldots$

— refresh using q-wise independent random shares of 0

- issue 1. adversary gets two secret keys for MPK_i , learns M_i
- use family of sets with small pairwise intersection (at most t)

— randomize by adding random shares $\{\sigma_i\}$ of 0

$$- F_{\text{ONE}}(K, M_i \| \sigma_i) := F(K, M_i) + \sigma_i$$

issue 3. correlation amongst shares of $F(K_1, M), F(K_5, M), \ldots$

-
$$F_{\text{ONE}}(K \| \Delta, M_i \| \vec{\sigma}_i) := F(K, M_i) + \sum_{a \in \Delta} \vec{\sigma}_i[a]$$

— Δ : family of cover-free sets

Conclusion

 $\ensuremath{\mathsf{THIS}}$ WORK. Functional Encryption with bounded collusion

- ► feasibilty result via MPC
- poly-size circuits \Leftarrow IND-CPA PKE + 'small depth' PRG
- $\blacktriangleright \text{ predicate encryption} \Longleftarrow \text{IND-CPA PKE}$

Conclusion

 $\ensuremath{\mathsf{THIS}}$ WORK. Functional Encryption with bounded collusion

- ► feasibilty result via MPC
- poly-size circuits \Leftarrow IND-CPA PKE + 'small depth' PRG
- predicate encryption \Leftarrow IND-CPA PKE

NEXT?

- ▶ IND-based functional encryption with unbounded collusion
- ▶ further connections between MPC and functional encryption?

THE END