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Functional Encryption

.

▶ Predicate encryption P (·, ·) (public index)

F (K,w∥m) =

(w,m) if P (K,w) = 1

(w,⊥) otherwise

Identity-based (IBE) [S84, BF01, C01] K
?
= w

Attribute-based (ABE) [GPSW06] K(w)
?
= 1, formula K

Inner product (IPE) [KSW08] ⟨K,w⟩ ?
= 0
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for all functions?

(with bounded collusions)

“ Yes, we can!

... with a small catch

note. unbounded collusions impossible
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Overview of Our Construction
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q = 1, poly-size circuits

.

▶ based on Yao’s garbled circuits

▶ can learn all input labels (thus M) with two queries
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Construction for q = poly(·), Degree 3 Polynomials
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q = 1, poly-size circuits

.

q = poly(·), degree 3 polynomials

.

i.e., F (K, ·) is degree 3 (multivariate) for all K

.

+ MPC [Ben-Or Goldwasser Wigderson 88]

c.f. [Ishai Kushilevitz Ostrovsky Sahai 07]
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q-FE for Degree 3 Polynomials

.

issue 1. adversary gets two secret keys for mpki, learns Mi

— okay if this happens at most t times (due to secret sharing)

issue 2. shares {F (K,Mi)} of F (K,M) not random

— randomize by adding random shares {σi} of 0

— Fone(K,Mi∥σi) := F (K,Mi) + σi

issue 3. correlation amongst shares of F (K1,M), F (K5,M), . . .

— Fone(K∥∆,Mi∥σ⃗i) := F (K,Mi) +
∑

a∈∆ σ⃗i[a]

— ∆ : family of cover-free sets
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▶ poly-size circuits ⇐= IND-CPA PKE + ‘small depth’ PRG

▶ predicate encryption ⇐= IND-CPA PKE
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▶ IND-based functional encryption with unbounded collusion

▶ further connections between MPC and functional encryption?
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