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▶ Predicate encryption P (·, ·) (public index)

F (K,w∥m) =

(w,m) if P (K,w) = 1

(w,⊥) otherwise

Identity-based (IBE) [S84, BF01, C01] K
?
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?
= 1, formula K

Inner product (IPE) [KSW08] ⟨K,w⟩ ?
= 0
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Construction for q = poly(·), Degree 3 Polynomials
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q = poly(·), degree 3 polynomials
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i.e., F (K, ·) is degree 3 (multivariate) for all K
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c.f. [Ishai Kushilevitz Ostrovsky Sahai 07]
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q-FE for Degree 3 Polynomials
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— okay if this happens at most t times (due to secret sharing)
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— randomize by adding random shares {σi} of 0

— Fone(K,Mi∥σi) := F (K,Mi) + σi

issue 3. correlation amongst shares of F (K1,M), F (K5,M), . . .

— Fone(K∥∆,Mi∥σ⃗i) := F (K,Mi) +
∑

a∈∆ σ⃗i[a]

— ∆ : family of cover-free sets
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