
.

Functional Encryption with Bounded Collusions

.

. Hoeteck Wee
George Washington University

joint work with:

Serge Gorbunov & Vinod Vaikuntanathan

(University of Toronto)



.

Public Key Encryption

.

..

public: pk

..

encryptor

.

M
.

Enc(pk,M)

.

sk

..

decryptor

..
computes M

..

key set-up

.



.

Functional Encryption

.

..

public: pk, F (·, ·)

..

encryptor

.

M
.

Enc(pk,M)

.

sk

..

decryptor

.

K
.

computes F (K,M)
..

key set-up

..

▶ K name, M patient records

▶ F (K,M) record matching K



.

Functional Encryption

.

..

public: mpk, F (·, ·)

..

encryptor

.

M
.

Enc(mpk,M)

.

skK

..

decryptor

.

K
.

computes F (K,M)
..

key set-up

.

msk



.

Functional Encryption

.

..

public: mpk, F (·, ·)

..

encryptor

.

M
.

Enc(mpk,M)

.

skK

..

decryptor

.

K
.

only learns F (K,M)
..

key set-up

.

msk



.

Functional Encryption

.

..

public: mpk, F (·, ·)

..

encryptor

.

M
.

Enc(mpk,M)

.

skK1 , skK5 , skK7

..

collusion

.

K1
...

K5
...

K7
.

only learns F (K1,M), F (K5,M), F (K7,M)
..

key set-up

.

msk



.

Functional Encryption

.

..

public: mpk, F (·, ·)

.

Enc(mpk,M)

.

skK1 , skK5 , skK7

..

collusion

.

K1
...

K5
...

K7
.

[Boneh Sahai Waters 11, O’Neill 11]

.

simulator (K1,K5,K7, F (K1,M), F (K5,M), F (K7,M) )

.

≈



.

Functional Encryption

.

..

public: mpk, F (·, ·)

.

Enc(mpk,M)

.

skK1 , skK5 , skK7

..

collusion

.

K1
...

K5
...

K7
.

SIM security ⇒ IND security, one-msg IND ⇒ many-msg IND

.

simulator (K1,K5,K7, F (K1,M), F (K5,M), F (K7,M) )

.

≈



.

Functional Encryption

.

▶ Predicate encryption P (·, ·) (public index)

F (K,w∥m) =

(w,m) if P (K,w) = 1

(w,⊥) otherwise

Identity-based (IBE) [S84, BF01, C01] K
?
= w

Attribute-based (ABE) [GPSW06] K(w)
?
= 1, formula K

Inner product (IPE) [KSW08] ⟨K,w⟩ ?
= 0



.

Functional Encryption

.

▶ Predicate encryption P (·, ·) (public index)

F (K,w∥m) =

(w,m) if P (K,w) = 1

(w,⊥) otherwise

Identity-based (IBE) [S84, BF01, C01] K
?
= w

Attribute-based (ABE) [GPSW06] K(w)
?
= 1, formula K

Inner product (IPE) [KSW08] ⟨K,w⟩ ?
= 0



.

Q Can we construct Functional Encryption

for all functions?

(with bounded collusions)

“ Yes, we can!

... with a small catch

note. unbounded collusions impossible

[Agrawal Gorbunov Vaikuntanathan W 12]

”

.



.

Q Can we construct Functional Encryption

for all functions?

(with bounded collusions)

“ Yes, we can!

... with a small catch

note. unbounded collusions impossible

[Agrawal Gorbunov Vaikuntanathan W 12]

”.



.

Q Can we construct Functional Encryption

for all functions? (with bounded collusions)

“ Yes, we can! ... with a small catch

note. unbounded collusions impossible

[Agrawal Gorbunov Vaikuntanathan W 12]

”.



.

Q Can we construct Functional Encryption

for all functions? (with bounded collusions)

“ Yes, we can! ... with a small catch

note. unbounded collusions impossible

[Agrawal Gorbunov Vaikuntanathan W 12]

”

..

Enc(mpk,M)

.

skK1 , skK5 , skK7

..

collusion

.

K1
.

bounded by q
...

K5
...

K7



.

Q Can we construct Functional Encryption

for all functions? (with bounded collusions)

“ Yes, we can! ... with a small catch

note. unbounded collusions impossible

[Agrawal Gorbunov Vaikuntanathan W 12]

”.



.

Q Can we construct Functional Encryption

for all functions? (with bounded collusions)

this work.

▶ poly-size circuits ⇐= IND-CPA PKE + small depth PRG

▶ predicate encryption ⇐= IND-CPA PKE

... for q = poly(·)

previous work.

▶ IBE, q = poly(·) [Dodis Katz Xu Yung 02, Goldwasser Lewko Wilson 12]

▶ poly-size circuits, q = 1 [Sahai Seyalioglu 10, Yao 86]

⇐= IND-CPA PKE



.

Q Can we construct Functional Encryption

for all functions? (with bounded collusions)

this work.

▶ poly-size circuits ⇐= IND-CPA PKE + small depth PRG

▶ predicate encryption ⇐= IND-CPA PKE

... for q = poly(·)

previous work.

▶ IBE, q = poly(·) [Dodis Katz Xu Yung 02, Goldwasser Lewko Wilson 12]

▶ poly-size circuits, q = 1 [Sahai Seyalioglu 10, Yao 86]

⇐= IND-CPA PKE



.

Overview of Our Construction

.

..

q = 1, poly-size circuits

.

▶ based on Yao’s garbled circuits

▶ can learn all input labels (thus M) with two queries



.

Overview of Our Construction

.

..

q = 1, poly-size circuits

.

q = poly(·), degree 3 polynomials

.

+ MPC [Ben-Or Goldwasser Wigderson 88]

c.f. [Ishai Kushilevitz Ostrovsky Sahai 07]



.

Overview of Our Construction

.

..

q = 1, poly-size circuits

.

q = poly(·), degree 3 polynomials

.

q = poly(·), poly-size circuits

.

+ MPC [Ben-Or Goldwasser Wigderson 88]

c.f. [Ishai Kushilevitz Ostrovsky Sahai 07]

.

+ randomized encodings + small depth PRG

[Applebaum Ishai Kushilevitz 05]



.

Construction for q = poly(·), Degree 3 Polynomials

.

..

q = 1, poly-size circuits

.

q = poly(·), degree 3 polynomials

.

i.e., F (K, ·) is degree 3 (multivariate) for all K

.

+ MPC [Ben-Or Goldwasser Wigderson 88]

c.f. [Ishai Kushilevitz Ostrovsky Sahai 07]



.

Construction for q = poly(·), Degree 3 Polynomials

.

..

public: mpk1, . . . ,mpkN

.

1. generate N copies of q = 1 scheme for Fone := F

2. decryptor gets random subset of 3t+ 1 secret keys

.

3t+ 1 keys (ski,K)

..

decryptor

.

K



.

Construction for q = poly(·), Degree 3 Polynomials

.

..

public: mpk1, . . . ,mpkN

..

encryptor

.

M
.

1. t-out-of-N secret share M → (M1, . . . ,MN ) (ala [BGW 88])

2. encrypt the shares

.

3t+ 1 keys (ski,K)

..

decryptor

.

K



.

Construction for q = poly(·), Degree 3 Polynomials

.

...

encryptor

.

M
.

Enc(mpk1,M1)

.

Enc(mpk2,M2)

.

...
.

Enc(mpkN ,MN )
.

3t+ 1 keys (ski,K)

..

decryptor

.

K



.

Construction for q = poly(·), Degree 3 Polynomials

.

...

encryptor

.

M
.

Enc(mpk1,M1)

.

Enc(mpk2,M2)

.

...
.

Enc(mpkN ,MN )
.

3t+ 1 keys (ski,K)

..

decryptor

.

K
.

1. get 3t+ 1 shares F (K,Mi)

(shares lie on deg 3t poly)

2. reconstruct F (K,M)



.

Construction for q = poly(·), Degree 3 Polynomials

.

...

encryptor

.

M
.

Enc(mpk1,M1)

.

Enc(mpk2,M2)

.

...
.

Enc(mpkN ,MN )
.

3t+ 1 keys (ski,K)

..

decryptor

.

K
.

1. get 3t+ 1 shares F (K,Mi)

(shares lie on deg 3t poly)

2. reconstruct F (K,M)



.

Construction for q = poly(·), Degree 3 Polynomials

.

...

encryptor

.

M
.

Enc(mpk1,M1)

.

Enc(mpk2,M2)

.

...
.

Enc(mpkN ,MN )
.

(ski,K1), (skj,K5)

..

collusion

.

K1
...

K5
.

only learns F (K1,M), F (K5,M)?



.

q-FE for Degree 3 Polynomials

.

issue 1. adversary gets two secret keys for mpki, learns Mi

— okay if this happens at most t times (due to secret sharing)

issue 2. shares {F (K,Mi)} of F (K,M) not random

— randomize by adding random shares {σi} of 0

— Fone(K,Mi∥σi) := F (K,Mi) + σi

issue 3. correlation amongst shares of F (K1,M), F (K5,M), . . .

— Fone(K∥∆,Mi∥σ⃗i) := F (K,Mi) +
∑

a∈∆ σ⃗i[a]

— ∆ : family of cover-free sets



.

q-FE for Degree 3 Polynomials

.

issue 1. adversary gets two secret keys for mpki, learns Mi

— use family of sets with small pairwise intersection (at most t)

issue 2. shares {F (K,Mi)} of F (K,M) not random

— randomize by adding random shares {σi} of 0

— Fone(K,Mi∥σi) := F (K,Mi) + σi

issue 3. correlation amongst shares of F (K1,M), F (K5,M), . . .

— Fone(K∥∆,Mi∥σ⃗i) := F (K,Mi) +
∑

a∈∆ σ⃗i[a]

— ∆ : family of cover-free sets



.

q-FE for Degree 3 Polynomials

.

issue 1. adversary gets two secret keys for mpki, learns Mi

— use family of sets with small pairwise intersection (at most t)

issue 2. shares {F (K,Mi)} of F (K,M) not random

— randomize by adding random shares {σi} of 0

— Fone(K,Mi∥σi) := F (K,Mi) + σi

issue 3. correlation amongst shares of F (K1,M), F (K5,M), . . .

— Fone(K∥∆,Mi∥σ⃗i) := F (K,Mi) +
∑

a∈∆ σ⃗i[a]

— ∆ : family of cover-free sets



.

q-FE for Degree 3 Polynomials

.

issue 1. adversary gets two secret keys for mpki, learns Mi

— use family of sets with small pairwise intersection (at most t)

issue 2. shares {F (K,Mi)} of F (K,M) not random

— randomize by adding random shares {σi} of 0

— Fone(K,Mi∥σi) := F (K,Mi) + σi

issue 3. correlation amongst shares of F (K1,M), F (K5,M), . . .

— Fone(K∥∆,Mi∥σ⃗i) := F (K,Mi) +
∑

a∈∆ σ⃗i[a]

— ∆ : family of cover-free sets



.

q-FE for Degree 3 Polynomials

.

issue 1. adversary gets two secret keys for mpki, learns Mi

— use family of sets with small pairwise intersection (at most t)

issue 2. shares {F (K,Mi)} of F (K,M) not random

— randomize by adding random shares {σi} of 0

— Fone(K,Mi∥σi) := F (K,Mi) + σi

issue 3. correlation amongst shares of F (K1,M), F (K5,M), . . .

— Fone(K∥∆,Mi∥σ⃗i) := F (K,Mi) +
∑

a∈∆ σ⃗i[a]

— ∆ : family of cover-free sets



.

q-FE for Degree 3 Polynomials

.

issue 1. adversary gets two secret keys for mpki, learns Mi

— use family of sets with small pairwise intersection (at most t)

issue 2. shares {F (K,Mi)} of F (K,M) not random

— randomize by adding random shares {σi} of 0

— Fone(K,Mi∥σi) := F (K,Mi) + σi

issue 3. correlation amongst shares of F (K1,M), F (K5,M), . . .

— refresh using q-wise independent random shares of 0

— ∆ : family of cover-free sets



.

q-FE for Degree 3 Polynomials

.

issue 1. adversary gets two secret keys for mpki, learns Mi

— use family of sets with small pairwise intersection (at most t)

issue 2. shares {F (K,Mi)} of F (K,M) not random

— randomize by adding random shares {σi} of 0

— Fone(K,Mi∥σi) := F (K,Mi) + σi

issue 3. correlation amongst shares of F (K1,M), F (K5,M), . . .

— Fone(K∥∆,Mi∥σ⃗i) := F (K,Mi) +
∑

a∈∆ σ⃗i[a]

— ∆ : family of cover-free sets



.

Conclusion

.

this work. Functional Encryption with bounded collusion

▶ feasibilty result via MPC

▶ poly-size circuits ⇐= IND-CPA PKE + ‘small depth’ PRG

▶ predicate encryption ⇐= IND-CPA PKE

next?

▶ IND-based functional encryption with unbounded collusion

▶ further connections between MPC and functional encryption?



.

Conclusion

.

this work. Functional Encryption with bounded collusion

▶ feasibilty result via MPC

▶ poly-size circuits ⇐= IND-CPA PKE + ‘small depth’ PRG

▶ predicate encryption ⇐= IND-CPA PKE

next?

▶ IND-based functional encryption with unbounded collusion

▶ further connections between MPC and functional encryption?



.


