
Hiding the Input Size

in Secure Two-Party Computation

Yehuda Lindell, Kobbi Nissim, Claudio Orlandi

Secure Computation

 Privacy

 Correctness

 Input Independence

 “The protocol is as secure as the ideal world”.

Or is it?

f(x,y)

x y

z

z

8dx2rru3d0fW2TS

muv6tbWg32flqIo

s1e4xq13OtTzoJc

Cryptographic Protocol Trusted Party

Size matters!

𝑋 ∩ 𝑌

X=x1……xn Y=y1..ym

Z Z

8dx2rru3d0fW2TS

muv6tbWg32flqIo

s1e4xq13OtTzoJc

Z , m Z , n

X=x1……xn Y=y1..ym …xB ….…xB

B
B

 Private Set Intersection: the size of a list might be confidential

 Padding?

 Just add a lot of “fake entries” to your DB

 Requires an upper bound

 Inherent inefficiency

Related Work

 MicaliRabinKilian’03:

 Zero Knowledge Sets

 IshaiPaskin’07:

 Branching programs (implies PSI, server size is hidden).

 AggarwalMishraPinkas’10:

 Computing median.

 AtenieseDeCristofaroTsudik’11:

 Specific protocol for PSI, client size is hidden.

Outline

 Definition and Classification

 Feasibility

 1-size hiding

 2-size hiding

 Negative Results

 Malicious Security

 Conclusions and Open Problems

Outline

 Definition and Classification

 Feasibility

 1-size hiding

 2-size hiding

 Negative Results

 Malicious Security

 Conclusions and Open Problems

Dealing with input size

 Standard definition, e.g. [Gol04]

 Need to know other party’s size in advance

 (Also: input size independence?)

if |x|=|y|
z=f(x,y)

else
z = fail

x y

z

z

Dealing with input size

 Standard definition

 More Natural?

if |x|=|y|
z=f(x,y)

Else
z = fail

x y

z

z

z=f(x,y)

x y

z,|y|

z,|x|

Ideal Model - Classes

 Classes

 0: both input size are leaked

 1: Bob learns |𝑥|, Alice does not learn 𝑦

 2: both input size are hidden

 Subclasses

 Who gets output?

 Is the output size leaked?

 Complete classification for symmetric functions

𝑓 𝑥, 𝑦 = 𝑓(𝑦, 𝑥)

Class 0

Class 0

𝑥

1 𝑦 , 𝑓(𝑥, 𝑦)

𝑦

1 𝑥 , 𝑓(𝑥, 𝑦)

Class 1

Class
1.a

𝑥

𝑓(𝑥, 𝑦)

𝑦

1 𝑥 , 𝑓(𝑥, 𝑦)
Class
1.b

𝑥

𝑓(𝑥, 𝑦)

𝑦

1 𝑥

1 𝑥 , 1 𝑓 𝑥,𝑦
Class
1.c

𝑥

𝑓(𝑥, 𝑦)

𝑦

Class
1.d

𝑥 𝑦

1 𝑥 , 𝑓(𝑥, 𝑦)

1 𝑥 , 𝑓(𝑥, 𝑦)
Class
1.e

𝑥

1 𝑓 𝑥,𝑦

𝑦

Essentially equivalent classes

(outputs have same length)

Class 2

Class
2.a

𝑥

𝑓(𝑥, 𝑦)

𝑦

𝑓(𝑥, 𝑦)
Class
2.b

𝑥

𝑓(𝑥, 𝑦)

𝑦

1 𝑓(𝑥,𝑦)
Class
2.c

𝑥

𝑓(𝑥, 𝑦)

𝑦

Definitional Issues

 (Std.) poly-time = 𝑝𝑜𝑙𝑦(𝑥, 𝑘)

 But here |𝑓(𝑥,𝑦)| is not bounded by 𝑝𝑜𝑙𝑦(𝑥,𝑘)

 How to define poly-time?

 Vs. semi-honest: running-time is polynomial in the

lengths of input, output and security parameter.

 Security definition: quantify the size of the inputs at

the end

Outline

 Definition and Classification

 Feasibility

 1-size hiding

 2-size hiding

 Negative Results

 Malicious Security

 Conclusions and Open Problems

Tools

 Fully Homomorphic Encryption

 𝐺, 𝐸, 𝐷, 𝐸𝑣𝑎𝑙

 Correctness: (ewnp)

𝐷𝑠𝑘(𝐸𝑣𝑎𝑙𝑝𝑘 𝑓, 𝐸𝑝𝑘 𝑥 , 𝐸𝑝𝑘 𝑦 = 𝑓(𝑥, 𝑦)

 Circuit privacy:

𝐸𝑣𝑎𝑙𝑝𝑘 𝑓, 𝐸𝑝𝑘 𝑥 , 𝐸𝑝𝑘 𝑦 ≈ 𝐸𝑝𝑘(𝑓 𝑥, 𝑦)

Class 1.a

𝑝𝑘, 𝑐𝑥

𝑐𝑧 = 𝐸𝑣𝑎𝑙𝑝𝑘(𝑓(⋅, 𝑦), 𝑐) 𝑐𝑧

𝑧 = 𝐷𝑒𝑐𝑠𝑘 (𝑐𝑧)

𝑝𝑘, 𝑠𝑘 ← 𝐺𝑒𝑛(1𝑘)

𝑐𝑥 ← 𝐸𝑛𝑐𝑝𝑘(𝑥)

Class
1.a

𝑥

𝑓(𝑥, 𝑦)

𝑦

1 𝑥 , 𝑓(𝑥, 𝑦)

𝑧

How big should the output be?

𝐸(𝑥)

𝑓(⋅, 𝑦)

𝐸(𝑧)

e.g. 𝑧 = 𝑥 ∪ 𝑦

Clear that 𝑧 ≤ 𝑥 + |𝑦|
But how long exactly?

Any upper bound reveals info about |𝑦|

 Thm: FHE ∀𝑓 can be securely computed

 in Classes 1.a/c/e

𝑝𝑘, 𝑐𝑥

𝑐ℓ

ℓ ℓ = 𝐷𝑒𝑐𝑠𝑘 (𝑐ℓ)

𝑐𝑧 = 𝐸𝑣𝑎𝑙𝑝𝑘(𝒇ℓ(⋅, 𝑦), 𝑐)

𝑐ℓ = 𝐸𝑣𝑎𝑙𝑝𝑘(𝒔𝒊𝒛𝒆𝒐𝒇(𝑓 ⋅, 𝑦), 𝑐)

𝑐𝑧

𝑧 = 𝐷𝑒𝑐𝑠𝑘 (𝑐𝑓)

𝑝𝑘, 𝑠𝑘 ← 𝐺𝑒𝑛(1𝑘)

𝑐𝑥 ← 𝐸𝑛𝑐𝑝𝑘(𝑥)

𝑧

Class 1.a
Class
1.a

𝑥

𝑓(𝑥, 𝑦)

𝑦

1 𝑥 , 𝑓(𝑥, 𝑦)

How big should the output be?

𝐸(𝑥)

𝐸(|𝑧|)

𝑠𝑖𝑧𝑒𝑜𝑓(𝑓 ⋅, 𝑦)

𝐸(𝑥)

𝑓(⋅, 𝑦)

𝐸(𝑧)

𝑓ℓ(⋅, 𝑦)

𝐸(𝑧)

Alice opens ℓ = |𝑧|

Send

to Alice

Outline

 Definition and Classification

 Feasibility

 1-size hiding

 2-size hiding

 Negative Results

 Malicious Security

 Conclusions and Open Problems

Class 2

 Thm (informal): (Assuming FHE)

 if 𝑓 admits a size-independent protocol, then 𝑓 can be

computed in Class 2.a

 Proof idea:

 compile the (insecure) communication efficient protocol

into a secure one using FHE

Class
2.a

𝑥

𝑓(𝑥, 𝑦)

𝑦

𝑓(𝑥, 𝑦)

Size Independent Protocols

 𝜋 is size independent for 𝑓 if

 Correct (except for negl(𝑘))

 Computation efficient (runtime 𝑝𝑜𝑙𝑦(𝑖𝑛𝑝𝑢𝑡+𝑘))

 Communication efficient (bounded by 𝑝𝑜𝑙𝑦(𝑘))

 (no “security” so far)

Example: Size-Independent

protocol for Millionaire

 Tools:

 Let 𝐻 ∶ 0,1 2𝑘 → 0,1 𝑘 s.t. 𝐻 0,0 = 0

 𝑇𝑟𝑒𝑒 𝑥 =
𝑥 𝑖𝑓 𝑥 = 𝑘, 𝑒𝑙𝑠𝑒

𝐻(𝑇𝑟𝑒𝑒 𝑥𝐿 , 𝑇𝑟𝑒𝑒 𝑥𝑅)

Can compute Merkle Tree of depth log2 𝑘 in time

𝑝𝑜𝑙𝑦 𝑘

Merkle Tree

0000000000000000000 𝑥

log2 𝑘

𝑘log 𝑘

0

0

0

0

𝑅𝑜𝑜𝑡

Size-Independent Millionaire’s Protocol

𝑟𝑜𝑜𝑡𝑥

𝑧

𝑧 ← 𝑅, else, z ← 𝐿

𝑥 = (𝑥𝐿, 𝑥𝑅)

𝑖𝑓 𝑟𝑜𝑜𝑡 = 𝑇𝑟𝑒𝑒(𝑦𝐿)

𝑟𝑜𝑜𝑡 ← 𝑇𝑟𝑒𝑒(𝑥𝐿)

𝑦 = (𝑦𝐿, 𝑦𝑅)

Until

𝑥 > 𝑘

𝑥 ← 𝑥𝑧 𝑦 ← 𝑦𝑧

|𝑥| = 𝑘 𝑥

Output z ← (𝑥 > 𝑦)

Not secure!!!

Summary

 Take size-independent protocol

 (like the one just seen)

 Compile using FHE

 (similar to Class 1 protocol)

 2 Size-Hiding protocol

Outline

 Definition and Classification

 Feasibility

 1-size hiding

 2-size hiding

 Negative Results

 Malicious Security

 Conclusions and Open Problems

Lower Bounds

 There are functions that cannot be computed while
hiding both parties’ input size.

 (Not everything can be computed in Class 2)

 Proof idea:

 𝐼𝑃(𝑥, 𝑦) has comm. complexity 𝑂(min (|𝑥|, |𝑦|))

 Size Hiding IP must have comm. complexity 𝑝𝑜𝑙𝑦(𝑘)

 Contradiction!

 (Also: Intersection, Hamming distance, etc.)

Class
2.a

𝑥

𝑓(𝑥, 𝑦)

𝑦

𝑓(𝑥, 𝑦)

Class 1.b

 Size-hiding OT:

 𝑥 = selection bit

 𝑦 = (𝑦0, 𝑦1) two strings of different length

 𝑓 𝑥, 𝑦 = 𝑦𝑥

 Thm: OT cannot be computed in Class 1.b

 Proof idea:

 Transcript are independent of 𝑦1−𝑥 , (security of sender)

 Also independent of 𝑥, (security of receiver)

 must be poly(k)

 But! OT can be used to send more than 𝑝𝑜𝑙𝑦(𝑘) bits.

 Contradiction!

Class
1.b

𝑥

𝑓(𝑥, 𝑦)

𝑦

1 𝑥

Class 1.d

 Oblivious multipoint PRF

 𝑥 = a PRF key

 𝑦 = (𝑦0, … , 𝑦𝑛)

 𝑓 𝑥, 𝑦 = (𝑃𝑅𝐹𝑥 𝑦0 , … , 𝑃𝑅𝐹𝑥 𝑦𝑛)

 Thm: OMPRF cannot be computed in Class 1.d

 Proof idea:

 Transcript must be independent of 𝑦

 Simulator needs to “compress” the output.

 PRF is indistinguishable from random function.

 Simulator cannot compress random data.

Class
1.d

𝑥 𝑦

1 𝑥 , 𝑓(𝑥, 𝑦)

Summary of Feasibility

Outline

 Definition and Classification

 Feasibility

 1-size hiding

 2-size hiding

 Negative Results

 Malicious Security

 Conclusions and Open Problems

Dealing with Malicious Adversaries

 Definition?

 For semi-honest: poly-time in input/output

 For malicious: inputs/outputs are not well defined!

 Protocol is poly time if honest party run in

poly(adversary runtime)

 Inherent “DoS”

Size-hiding GMW?

 Standard ZK reveals witness size

 Universal argument + FHE Size-hiding ZK

 But it has only “weak” proof of knowledge!

 Simulator can extract every bit from the input in poly-

time.

 Fix: add an “oblivious proof of work”

 Can be proven secure under exact birthday paradox

assumption.

Outline

 Definition and Classification

 Feasibility

 1-size hiding

 2-size hiding

 Negative Results

 Malicious Security

 Conclusions and Open Problems

Conclusions

 Hiding the input size is (sometimes) possible.

 Don’t give up!

 Open problems:

 Efficient protocols for specific tasks

 Malicious security under standard assumption?

 …

