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Secure Computation 

 Privacy 

 Correctness 

 Input Independence 

 “The protocol is as secure as the ideal world”.  

Or is it? 
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Cryptographic Protocol Trusted Party 



Size matters! 
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 Private Set Intersection: the size of a list might be confidential 

 Padding? 

 Just add a lot of “fake entries” to your DB  

 Requires an upper bound  

 Inherent inefficiency  



Related Work 

 MicaliRabinKilian’03:  

 Zero Knowledge Sets 

 IshaiPaskin’07:  

 Branching programs (implies PSI, server size is hidden). 

 AggarwalMishraPinkas’10: 

 Computing median. 

 AtenieseDeCristofaroTsudik’11: 

 Specific protocol for PSI, client size is hidden. 
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Dealing with input size 

 Standard definition, e.g. [Gol04] 

 

 

 

 

 

 Need to know other party’s size in advance 

 (Also: input size independence?) 

if |x|=|y| 
z=f(x,y) 

else 
z = fail 

x y 
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Dealing with input size 

 Standard definition 

 

 

 

 More Natural? 

if |x|=|y| 
z=f(x,y) 

Else 
z = fail 

x y 

z 

 

z 

 

z=f(x,y) 
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z,|x| 

 



Ideal Model - Classes 

 Classes 

 0: both input size are leaked 

 1: Bob learns |𝑥|, Alice does not learn 𝑦  

 2: both input size are hidden 

 Subclasses 

 Who gets output?  

 Is the output size leaked? 

 Complete classification for symmetric functions 

𝑓 𝑥, 𝑦 = 𝑓(𝑦, 𝑥) 



Class 0 

Class 0 

𝑥 

1 𝑦 , 𝑓(𝑥, 𝑦) 

𝑦 

1 𝑥 , 𝑓(𝑥, 𝑦) 



Class 1 

Class 
1.a 

𝑥 

𝑓(𝑥, 𝑦) 

𝑦 

1 𝑥 , 𝑓(𝑥, 𝑦) 
Class 
1.b 

𝑥 

𝑓(𝑥, 𝑦) 

𝑦 

1 𝑥  

1 𝑥 , 1 𝑓 𝑥,𝑦  
Class  
1.c 

𝑥 

𝑓(𝑥, 𝑦) 

𝑦 

Class 
1.d 

𝑥 𝑦 

1 𝑥 , 𝑓(𝑥, 𝑦) 

1 𝑥 , 𝑓(𝑥, 𝑦) 
Class 
1.e 

𝑥 

1 𝑓 𝑥,𝑦  

𝑦 

Essentially equivalent classes 

(outputs have same length) 



Class 2 

Class 
2.a 

𝑥 

𝑓(𝑥, 𝑦) 

𝑦 

𝑓(𝑥, 𝑦) 
Class 
2.b 

𝑥 

𝑓(𝑥, 𝑦) 

𝑦 

1 𝑓(𝑥,𝑦)  
Class  
2.c 

𝑥 

𝑓(𝑥, 𝑦) 

𝑦 



Definitional Issues 

 (Std.) poly-time = 𝑝𝑜𝑙𝑦(𝑥, 𝑘)  

 But here |𝑓(𝑥,𝑦)| is not bounded by 𝑝𝑜𝑙𝑦(𝑥,𝑘) 

 How to define poly-time?  

 Vs. semi-honest: running-time is polynomial in the 

lengths of input, output and security parameter. 

 Security definition: quantify the size of the inputs at 

the end 
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Tools 

 Fully Homomorphic Encryption 

 𝐺, 𝐸, 𝐷, 𝐸𝑣𝑎𝑙  

 

 Correctness: (ewnp) 

𝐷𝑠𝑘(𝐸𝑣𝑎𝑙𝑝𝑘 𝑓, 𝐸𝑝𝑘 𝑥 , 𝐸𝑝𝑘 𝑦 = 𝑓(𝑥, 𝑦) 

 

 Circuit privacy: 

𝐸𝑣𝑎𝑙𝑝𝑘  𝑓, 𝐸𝑝𝑘 𝑥 , 𝐸𝑝𝑘  𝑦 ≈ 𝐸𝑝𝑘(𝑓 𝑥, 𝑦 ) 



Class 1.a 

𝑝𝑘, 𝑐𝑥 

𝑐𝑧 = 𝐸𝑣𝑎𝑙𝑝𝑘(𝑓(⋅, 𝑦), 𝑐) 𝑐𝑧 

𝑧 = 𝐷𝑒𝑐𝑠𝑘 (𝑐𝑧) 

𝑝𝑘, 𝑠𝑘 ← 𝐺𝑒𝑛(1𝑘) 

𝑐𝑥 ← 𝐸𝑛𝑐𝑝𝑘(𝑥) 

Class 
1.a 

𝑥 

𝑓(𝑥, 𝑦) 

𝑦 

1 𝑥 , 𝑓(𝑥, 𝑦) 

𝑧 



How big should the output be? 

𝐸(𝑥) 

𝑓(⋅, 𝑦) 

𝐸(𝑧) 

e.g. 𝑧 = 𝑥 ∪ 𝑦 

Clear that 𝑧 ≤ 𝑥 + |𝑦| 
But how long exactly? 

Any upper bound reveals info about |𝑦| 



 Thm: FHE  ∀𝑓 can be securely computed  

 in Classes 1.a/c/e 

𝑝𝑘, 𝑐𝑥 

𝑐ℓ 

ℓ ℓ = 𝐷𝑒𝑐𝑠𝑘 (𝑐ℓ) 

𝑐𝑧 = 𝐸𝑣𝑎𝑙𝑝𝑘(𝒇ℓ(⋅, 𝑦), 𝑐) 

𝑐ℓ = 𝐸𝑣𝑎𝑙𝑝𝑘(𝒔𝒊𝒛𝒆𝒐𝒇(𝑓 ⋅, 𝑦 ), 𝑐) 

𝑐𝑧 

𝑧 = 𝐷𝑒𝑐𝑠𝑘 (𝑐𝑓) 

𝑝𝑘, 𝑠𝑘 ← 𝐺𝑒𝑛(1𝑘) 

𝑐𝑥 ← 𝐸𝑛𝑐𝑝𝑘(𝑥) 

𝑧 

Class 1.a 
Class 
1.a 

𝑥 

𝑓(𝑥, 𝑦) 

𝑦 

1 𝑥 , 𝑓(𝑥, 𝑦) 



How big should the output be? 

𝐸(𝑥) 

𝐸(|𝑧|) 

𝑠𝑖𝑧𝑒𝑜𝑓(𝑓 ⋅, 𝑦 ) 

 

𝐸(𝑥) 

𝑓(⋅, 𝑦) 

𝐸(𝑧) 

𝑓ℓ(⋅, 𝑦) 

𝐸(𝑧) 

Alice opens ℓ = |𝑧| 

Send  

to Alice 
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Class 2 

 Thm (informal): (Assuming FHE) 

 if 𝑓 admits a size-independent protocol, then 𝑓 can be 

computed in Class 2.a 

 

 Proof idea: 

 compile the (insecure) communication efficient protocol 

into a secure one using FHE 

 

 

 

Class 
2.a 

𝑥 

𝑓(𝑥, 𝑦) 

𝑦 

𝑓(𝑥, 𝑦) 



Size Independent Protocols 

 

 𝜋 is size independent for 𝑓 if 

 Correct (except for negl(𝑘)) 

 Computation efficient (runtime 𝑝𝑜𝑙𝑦(𝑖𝑛𝑝𝑢𝑡+𝑘)) 

 Communication efficient (bounded by 𝑝𝑜𝑙𝑦(𝑘)) 

 

 (no “security” so far) 

 



Example: Size-Independent  

protocol for Millionaire 

 Tools: 

 Let 𝐻 ∶  0,1 2𝑘 →  0,1 𝑘 s.t.  𝐻 0,0 = 0 

 

 𝑇𝑟𝑒𝑒 𝑥 =  
𝑥 𝑖𝑓 𝑥 = 𝑘, 𝑒𝑙𝑠𝑒

𝐻(𝑇𝑟𝑒𝑒 𝑥𝐿 , 𝑇𝑟𝑒𝑒 𝑥𝑅 )
 

  

Can compute Merkle Tree of depth log2 𝑘 in time 

𝑝𝑜𝑙𝑦 𝑘  

 

 



Merkle Tree 

0000000000000000000 𝑥 

log2 𝑘 

𝑘log 𝑘 

0 

0 

0 

0 

𝑅𝑜𝑜𝑡 



Size-Independent Millionaire’s Protocol 

𝑟𝑜𝑜𝑡𝑥 

𝑧 

𝑧 ← 𝑅, else, z ← 𝐿 

𝑥 = (𝑥𝐿, 𝑥𝑅)  

𝑖𝑓 𝑟𝑜𝑜𝑡 = 𝑇𝑟𝑒𝑒(𝑦𝐿) 

𝑟𝑜𝑜𝑡 ← 𝑇𝑟𝑒𝑒(𝑥𝐿) 

𝑦 = (𝑦𝐿, 𝑦𝑅)  

Until  

𝑥 > 𝑘 

𝑥 ← 𝑥𝑧 𝑦 ← 𝑦𝑧 

|𝑥| = 𝑘 𝑥 

Output z ← (𝑥 > 𝑦) 

Not secure!!! 



Summary 

 Take size-independent protocol  

 (like the one just seen) 

 Compile using FHE  

 (similar to Class 1 protocol) 

 

 2 Size-Hiding protocol 
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Lower Bounds 

 There are functions that cannot be computed while 
hiding both parties’ input size. 

 (Not everything can be computed in Class 2) 

 

 Proof idea:  

 𝐼𝑃(𝑥, 𝑦) has comm. complexity 𝑂(min (|𝑥|, |𝑦|)) 

 Size Hiding IP must have comm. complexity 𝑝𝑜𝑙𝑦(𝑘) 

 Contradiction! 

 

 (Also: Intersection, Hamming distance, etc.) 

Class 
2.a 

𝑥 

𝑓(𝑥, 𝑦) 

𝑦 

𝑓(𝑥, 𝑦) 



Class 1.b 

 Size-hiding OT: 

 𝑥 = selection bit 

 𝑦 =  (𝑦0, 𝑦1) two strings of different length 

 𝑓 𝑥, 𝑦 = 𝑦𝑥 

 Thm: OT cannot be computed in Class 1.b 

 Proof idea:  

 Transcript are independent of 𝑦1−𝑥 , (security of sender) 

 Also independent of 𝑥, (security of receiver) 

 must be poly(k) 

 But! OT can be used to send more than 𝑝𝑜𝑙𝑦(𝑘) bits. 

 Contradiction! 

Class 
1.b 

𝑥 

𝑓(𝑥, 𝑦) 

𝑦 

1 𝑥  



Class 1.d 

 Oblivious multipoint PRF 

 𝑥 = a PRF key 

 𝑦 = (𝑦0, … , 𝑦𝑛)  

 𝑓 𝑥, 𝑦 = (𝑃𝑅𝐹𝑥 𝑦0 , … , 𝑃𝑅𝐹𝑥 𝑦𝑛 ) 

 Thm: OMPRF cannot be computed in Class 1.d  

 Proof idea: 

 Transcript must be independent of 𝑦  

 Simulator needs to “compress” the output. 

 PRF is indistinguishable from random function. 

 Simulator cannot compress random data. 

Class 
1.d 

𝑥 𝑦 

1 𝑥 , 𝑓(𝑥, 𝑦) 



Summary of Feasibility 
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Dealing with Malicious Adversaries 

 Definition? 

 For semi-honest: poly-time in input/output 

 For malicious: inputs/outputs are not well defined! 

 

 Protocol is poly time if honest party run in 

poly(adversary runtime) 

 

 Inherent “DoS” 



Size-hiding GMW? 

 Standard ZK reveals witness size 

 Universal argument + FHE  Size-hiding ZK 

 But it has only “weak” proof of knowledge! 

 Simulator can extract every bit from the input in poly-

time. 

 

 Fix: add an “oblivious proof of work”  

 Can be proven secure under exact birthday paradox 

assumption. 
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Conclusions 

 Hiding the input size is (sometimes) possible. 

 Don’t give up! 

 

 

 Open problems: 

 Efficient protocols for specific tasks 

 Malicious security under standard assumption? 

 … 


