Secure Computation on the Web: Computing without Simultaneous Interaction

Shai Halevi, IBM T.J. Watson
Yehuda Lindell, Bar-Ilan University
Benny Pinkas, Bar-Ilan University and Google

Standard First Slide

Secure Computation

- A set of parties with private inputs
- Parties wish to jointly compute a function of their inputs so that certain security properties (like privacy, correctness and independence of inputs) are preserved
- Properties must be ensured even if some of the parties attack the protocol
- Models any problem:
- Elections, auctions, private statistical analysis,...

A Question

- Can elections, auctions, statistical analysis of distributed parties' data really be carried out using secure computation?
- Does our model of secure computation really model the needs of these applications?
- And we're not talking about efficiency concerns...

A Big Problem

- In all known protocols, all parties must interact simultaneously

Arguably, this is a huge obstacle to adoption

- A program committee wants to vote on the best paper using a secure protocol
- When do they run the protocol?
- A website wishes to securely aggregate statistics about users
- Each user provides information only when connected

Stated Differently

- The secure computation model:

Stated Differently

- The real-world web model:

An Important Question

- Can secure computation be made nonsimultaneous?
- A natural theoretical question
- Deepens our understanding of the required communication model for secure computation
- Important ramifications to practice
- Especially if this can be done efficiently
- Note: fully homomorphic encryption does not solve the problem

A Hack around this Issue

- Most of the parties are "input providers"
- Some parties/servers do the actual computation

A Hack around this Issue

- Hack: Input providers send shares of the their inputs to the servers (non-interactively, whenever they want)

A Hack around this Issue

- Servers then do the actual computation (consisting of multiple interactive rounds)

Secure as long as not too many servers collude

A Hack around this Issue

- A client-server model
- Auctions [NPS99,BCD+09], surveys [FPRS04], FairplayMP [BNP09]

Related Work

- Non-interactive cryptocomputing [SYY99]
- Secure function collection [IKYZO9]

Our Model

- Parties
- One server \boldsymbol{S}
${ }^{\circ} \boldsymbol{n}$ parties $\boldsymbol{P}_{\mathbf{1}}, \ldots, \boldsymbol{P}_{\boldsymbol{n}}$
- Communication model
- Each party interacts with the server exactly once
- In all protocols, interaction is a single round between server and party, but this is not essential
- Order may be important... (in some protocols)
- At the end, the server obtains the output

Limitations

- A problem
- A corrupted server can take the message computed by $\boldsymbol{P}_{\mathbf{1}}$ and play all the roles of $\boldsymbol{P}_{2}, \ldots, \boldsymbol{P}_{\boldsymbol{n}}$ itself, with any set of inputs
- When computing AVG this would reveal $\boldsymbol{P}_{\mathbf{1}}$'s input
- Conclusion: It is not possible to solve this problem in the plain model
- Solution
- We solve this problem by assuming a known public-key infrastructure
- The secret key of $\boldsymbol{P}_{\boldsymbol{i}}$ is needed to run $\boldsymbol{P}_{\boldsymbol{i}}$'s instructions, preventing S from doing the above

Limitations

- Consider \boldsymbol{n} parties who wish to compute $\boldsymbol{y}=\boldsymbol{f}\left(\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{\boldsymbol{n}}\right)$ where the $\boldsymbol{j}^{\text {th }}$ party has input $\boldsymbol{x}_{\boldsymbol{j}}$
- Consider the residual function

$$
g_{i}\left(X_{i+1}, \ldots, X_{n}\right)=f\left(x_{1}, \ldots, x_{i}, X_{i+1}, \ldots, X_{n}\right)
$$

- Clearly, the server and the last $\boldsymbol{n}-\boldsymbol{i}$ parties must be able to compute $\boldsymbol{g}_{\boldsymbol{i}}\left(\boldsymbol{x}_{\boldsymbol{i}+\mathbf{1}}, \ldots, \boldsymbol{x}_{\boldsymbol{n}}\right)$ for any set of legit inputs $\boldsymbol{x}_{\boldsymbol{i}+\boldsymbol{1}}, \ldots, \boldsymbol{x}_{\boldsymbol{n}}$
- Consider a semi-honest adversary running $\boldsymbol{P}_{\boldsymbol{i + 1}}, \ldots, \boldsymbol{P}_{\boldsymbol{n}}, \boldsymbol{S}$
- It must be able to compute $\boldsymbol{g}_{\boldsymbol{i}}\left(\boldsymbol{X}_{\boldsymbol{i}+\boldsymbol{1}}, \ldots, \boldsymbol{X}_{\boldsymbol{n}}\right)$ for any set of inputs $\boldsymbol{x}_{\boldsymbol{i + 1}}, \ldots, \boldsymbol{x}_{\boldsymbol{n}}$
- This is more than allowed in "classic" secure comp.

Limitations

- This is an inherent limitation of the model
- Honest parties $\boldsymbol{P}_{\boldsymbol{i}+\boldsymbol{1}}, \ldots, \boldsymbol{P}_{\boldsymbol{n}}$ and \boldsymbol{S} must be able to compute $\boldsymbol{g}_{\boldsymbol{i}}\left(\boldsymbol{X}_{\boldsymbol{i + 1}}, \ldots, \boldsymbol{X}_{\boldsymbol{n}}\right)$ for any set of inputs $\boldsymbol{x}_{\boldsymbol{i}+1}, \ldots, \boldsymbol{x}_{\boldsymbol{n}}$
- Thus, a semi-honest adversary controlling these parties can also do that
- We must therefore allow this in the security definition

Function Decomposition

- A decomposition of a function $f\left(x_{1}, \ldots, x_{n}\right)$ is a vector of functions

$$
f_{1}\left(\lambda, x_{1}\right), f_{2}\left(y_{1}, x_{2}\right), \ldots, f_{n}\left(y_{n-1}, x_{n}\right)
$$

such that

$$
f_{n}\left(\cdots f_{2}\left(f_{1}\left(x_{1}\right), x_{2}\right) \cdots x_{n}\right)=f\left(x_{1}, \ldots, x_{n}\right)
$$

Intuition:
$\boldsymbol{y}_{\boldsymbol{i}}$ is the state of the server after interaction with $\boldsymbol{P}_{\boldsymbol{i}}$

- At each stage, $\boldsymbol{P}_{\boldsymbol{i}}$ computes $\boldsymbol{f}_{\boldsymbol{i}}$
- If \boldsymbol{S} and $\boldsymbol{P}_{\boldsymbol{i + 1}}, \ldots, \boldsymbol{P}_{\boldsymbol{n}}$ are corrupted in our setting, then they can compute $\boldsymbol{f}_{\boldsymbol{i}}\left(\boldsymbol{x}_{\boldsymbol{i}+1}, \ldots, \boldsymbol{x}_{\boldsymbol{n}}\right)$ on any inputs they like, but nothing else

Decompositions

- Are all decompositions equally good?
- Consider $f_{1}\left(x_{1}\right)=x_{1}, \ldots, f_{i}\left(y_{i-1}, x_{i}\right)=\left(y_{i-1}, x_{i}\right), \ldots$ (the identity function)
- If P_{n} and S are corrupted, then all inputs are revealed
- Consider the AVG function, and $f_{i}\left(y_{i-1}, x_{i}\right)=y_{i-1}+x_{i}$
- Given y_{i} we can learn nothing more than sum of first i
- But this can be also learned from setting $x_{i+1}=\cdots=x_{n}=0$
- This latter decomposition seems better

Minimum Disclosure

- A decomposition $\boldsymbol{f}_{\mathbf{1}}, \ldots, \boldsymbol{f}_{\boldsymbol{n}}$ of \boldsymbol{f} is minimum disclosure if there exists a simulator \boldsymbol{S}, s.t. for every vector $\overline{\boldsymbol{x}}=\left(\boldsymbol{x}_{\mathbf{1}}, \ldots, \boldsymbol{x}_{\boldsymbol{n}}\right)$ and every $\boldsymbol{i}, \boldsymbol{S}$ with oracle access to $\boldsymbol{g}_{\boldsymbol{i}}(\overline{\boldsymbol{x}})=\boldsymbol{g}\left(\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{\boldsymbol{i}}, \cdot, \ldots, \cdot\right)$ outputs $\boldsymbol{f}_{\boldsymbol{i}}\left(\boldsymbol{x}_{\mathbf{1}}, \ldots, \boldsymbol{x}_{\boldsymbol{i}}\right)$
- Note that if $\boldsymbol{P}_{\boldsymbol{i + 1}}, \ldots, \boldsymbol{P}_{\boldsymbol{n}}$ and \boldsymbol{S} are corrupted then they inherently have access to $g_{i}(\bar{x})=g\left(x_{1}, \ldots, x_{i}, \cdot, \ldots, \cdot\right)$
- If the decomposition can be computed from access to $\boldsymbol{g}\left(\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{\boldsymbol{i}}, \cdot, \ldots, \cdot\right)$ then learning it does not disclose new information. Therefore it is minimum disclosure.
- Not all functions have minimum disclosure decompositions

Not all Functions have a Minimum Disclosure Decomposition

- Assuming that one-way funcs exist, there is a function for which no minimum disclosure decomposition exists
- $F(k, x)=E N C_{k}(x)=f_{2}\left(f_{1}(k), x\right)$
- A corrupt server and P_{2} have access to an oracle $f_{2}(X)=E N C_{k}(X)$
- Intuitively, if they can compute $f_{1}(k)$ given access to encryption oracle, then the encryption is insecure.
- This can be shown by a formal reduction

Minimum Disclosure Examples

- The sum function $f\left(x_{1}, \ldots, x_{n}\right)=x_{1}+\cdots+x_{n}$
- The decomposition $f_{i}\left(x_{1}, \ldots, x_{n}\right)=x_{1}+\cdots+x_{i}$ is minimal disclosure
- Proof of minimal disclosure
- Given access to the oracle

$$
g_{i}\left(x_{i+1}, \ldots, x_{n}\right)=f\left(x_{1}, \ldots, x_{i}, x_{i+1}, \ldots, x_{n}\right)
$$

- Compute $g_{i}(0, \ldots, 0)=x_{1}+\cdots+x_{i}=f_{i}\left(x_{1}, \ldots, x_{i}\right)$, which is the decomposition.
- We couldn't have proved a similar reduction for the id decomposition

Minimum Disclosure Examples

- Binary symmetric functions
- Depend only on Hamming weight of input
- E.g., AND, OR, PARITY, MAJORITY, THRESHOLD
- Concise truth table representation
- Example: the MAJORITY function over 5 bits

Hamming Weight	Output
0	0
1	0
2	
3	
4	
5	

Minimum Disclosure Binary Symmetric

- Define $y_{1}=f_{1}\left(x_{1}\right)$ to be the truth table, with the first row erased if $\boldsymbol{x}_{\mathbf{1}}=\mathbf{1}$ and the last row erased if $\boldsymbol{x}_{\mathbf{1}}=\mathbf{0}$

Minimum Disclosure Binary Symmetric

- Define $\boldsymbol{f}_{2}\left(\boldsymbol{y}_{1}, \boldsymbol{x}_{2}\right)$ to be the truncated truth table, with the first row erased if $\boldsymbol{x}_{\mathbf{2}}=\mathbf{0}$ and the last row erased if $x_{2}=1$

Minimum Disclosure Binary Symmetric

- And so on...
- Note, each truth table can be efficiently computed from the previous one

- Indeed, the output of $\operatorname{MAJ}(\mathbf{0 1 1 0 0})=\mathbf{0}$

Minimum Disclosure Binary Symmetric

- Why is this minimum disclosure?
- The truth table reveals nothing more than the output of the function on all other inputs
- A similar condensed truth table exists for symmetric functions over (non-binary) constant-size domains
- The table size is $\binom{n+c-1}{n}=O\left(n^{c-1}\right)$ for an input domain of size c

Definition of Security

- We follow the real/ideal paradigm
- Security is defined by comparing a real execution to an ideal execution with a trusted party
- A protocol is secure if no real adversary can do more than an ideal adversary

Definition of Security

- Real execution - as described
- Ideal execution (for a given decomposition)
- Honest server:
- All parties give inputs; server gets output
- Corrupt server + arbitrary number of corrupt parties:
- As above, except that adversary is also given $\boldsymbol{f}_{\boldsymbol{i}}\left(\boldsymbol{x}_{\boldsymbol{1}}, \ldots, \boldsymbol{x}_{\boldsymbol{i}}\right)$ where $\boldsymbol{P}_{\boldsymbol{i}}$ is the last honest party
- A protocol securely computes a decomposition if there exists an ideal simulator such that real and ideal executions are indistinguishable
- The protocol is optimally private if the decomposition is minimum disclosure

Questions

- Can the notion of optimally private protocols be achieved?
- If yes,
- Under what assumptions?
- At what cost?

Practical Optimal Protocols

- Binary symmetric functions
- Main tool - layer rerandomizable encryption
- Denote $\boldsymbol{E}_{\boldsymbol{p} \boldsymbol{k}}(\boldsymbol{x} \boldsymbol{;} \boldsymbol{r})$ and
$E_{p k_{1} \ldots, \ldots k_{n+1}}\left(x ; r_{1}, \ldots, r_{n+1}\right)=E_{p k_{1}}\left(\cdots E_{p k_{n+1}}\left(x ; r_{n+1}\right) \cdots ; r_{1}\right)$
- This is layer rerandomizable if there exists an efficient procedure that rerandomizes all layers (given public keys)
- Must be able to remove encryptions one by one.
- Useful to hide which table entry was removed
- From any randomizable, (e.g. additively homomorphic) encryption
$E_{p k_{1}, \ldots, p k_{n+1}}\left(x ; r_{1}, \ldots, r_{n+1}\right)=E_{p k_{1}}\left(x_{1} ; r_{1}\right), \ldots, E_{p k_{n+1}}\left(x_{n+1} ; r_{n+1}\right)$
s.t. $x=x_{1}+\cdots+x_{n+1}$
- Rerandomize each separately, decrypt one at a time

More Efficient Layer Rerand. Encryption

- Using El Gamal (DDH assumption)
- Generator \boldsymbol{g}, prime-order group of order \boldsymbol{q}
- Public keys $\boldsymbol{h}_{\mathbf{1}}=\boldsymbol{g}^{\alpha_{1}}, \ldots, \boldsymbol{h}_{\boldsymbol{n}}=\boldsymbol{g}^{\alpha_{n}}, \boldsymbol{h}_{\boldsymbol{n + 1}}=\boldsymbol{g}^{\alpha_{n+1}}$

。Define $\boldsymbol{H}_{i, n+1}=\prod_{j=i}^{n+1} \boldsymbol{h}_{\boldsymbol{j}}=\boldsymbol{g}^{\sum_{j=i}^{n+1} \alpha_{j}}$

- To encrypt: $\boldsymbol{E}_{\boldsymbol{H}_{\mathbf{1}, \boldsymbol{n}+\mathbf{1}}}(\boldsymbol{m})=(\boldsymbol{u}, \boldsymbol{v})=\left(\boldsymbol{g}^{\boldsymbol{r}},\left(\boldsymbol{H}_{\mathbf{1}, \boldsymbol{n + 1}}\right)^{\boldsymbol{r}} \cdot \boldsymbol{m}\right)$
- To decrypt the first key and rerandomize
- Decrypt: compute $\boldsymbol{u}^{\prime}=\boldsymbol{u}$ and $\boldsymbol{v}^{\prime}=\boldsymbol{v} \cdot \boldsymbol{u}^{-\boldsymbol{\alpha}_{\mathbf{1}}}$
- Rerandomize: compute $\boldsymbol{u}^{\prime \prime}=\boldsymbol{u}^{\prime} \cdot \boldsymbol{g}^{\boldsymbol{s}}$ and $\boldsymbol{v}^{\prime \prime}=\boldsymbol{v}^{\prime} \cdot\left(\boldsymbol{H}_{2, \boldsymbol{n + 1}}\right)^{\boldsymbol{s}}$
- And so on, for each party

The Protocol (Semi-Honest)

- Server \boldsymbol{S} encrypts the truth table under all parties' keys
- Using rerandomizable layer encryption
- Server \boldsymbol{S} sends table to first connecting party $\boldsymbol{P}_{\mathbf{1}}$
- $\boldsymbol{P}_{\mathbf{1}}$ removes first or last row, decrypts every entry of the truth table using its key and rerandomizes it, and sends to S
- Server \boldsymbol{S} receives and sends to \boldsymbol{P}_{2}
- \boldsymbol{P}_{2} removes first or last row, rerandomizes every entry of the truth table, and sends to S
- After $\boldsymbol{P}_{\boldsymbol{n}}$ concludes, it sends \boldsymbol{S} an encryption (under \boldsymbol{S} 's key) of the remaining row = output
- Rerandomization is important...

Example

- Majority function with 5 parties

Hamming Weight	Output
0	0
1	0
2	0
3	1
4	1
5	1

Example

- The server S computes the encrypted concise truth table

$$
\begin{aligned}
& E_{p k_{1}, \ldots, p k_{6}}\left(0 ; r_{1}, \ldots, r_{6}\right) \\
& E_{p k_{1}, \ldots, p k_{6}}\left(0 ; r_{1}, \ldots, r_{6}\right) \\
& E_{p k_{1}, \ldots, p k_{6}}\left(0 ; r_{1}, \ldots, r_{6}\right) \\
& E_{p k_{1}, \ldots, p k_{6}}\left(1 ; r_{1}, \ldots, r_{6}\right) \\
& E_{p k_{1}, \ldots, p k_{6}}\left(1 ; r_{1}, \ldots, r_{6}\right) \\
& E_{p k_{1}, \ldots, p k_{6}}\left(1 ; r_{1}, \ldots, r_{6}\right)
\end{aligned}
$$

Example

- $\boldsymbol{P}_{\mathbf{1}}$ with input $\boldsymbol{x}_{\mathbf{1}}=\mathbf{0}$ erases
$E_{p k_{1}, \ldots, p k_{6}}\left(0 ; r_{1}, \ldots, r_{6}\right)$
$E_{p k_{1}, \ldots, p k_{6}}\left(0 ; r_{1}, \ldots, r_{6}\right)$
$E_{p k_{1}, \ldots, p k_{6}}\left(0 ; r_{1}, \ldots, r_{6}\right)$
$E_{p k_{1}, \ldots, p k_{6}}\left(1 ; r_{1}, \ldots, r_{6}\right)$
$E_{p k_{1}, \ldots, p k_{6}}\left(1 ; r_{1}, \ldots, r_{6}\right)$

Example

- $\boldsymbol{P}_{\mathbf{1}}$ with input $\boldsymbol{x}_{\mathbf{1}}=\mathbf{0}$ erases, removes its key and rerandomizes

$$
\begin{aligned}
& E_{p k_{2}, \ldots, p k_{6}}\left(0 ; r_{2}, \ldots, r_{6}\right) \\
& E_{p k_{2}, \ldots, p k_{6}}\left(0 ; r_{2}, \ldots, r_{6}\right) \\
& E_{p k_{2}, \ldots, p k_{6}}\left(0 ; r_{2}, \ldots, r_{6}\right) \\
& E_{p k_{2}, \ldots, p k_{6}}\left(1 ; r_{2}, \ldots, r_{6}\right) \\
& E_{p k_{2}, \ldots, p k_{6}}\left(1 ; r_{2}, \ldots, r_{6}\right)
\end{aligned}
$$

Example

- $\boldsymbol{P}_{\mathbf{2}}$ with input $\boldsymbol{x}_{\mathbf{2}}=\mathbf{1}$ erases

$$
\begin{aligned}
& E_{p k_{2}, \ldots, p k_{6}}\left(0 ; r_{2}, \ldots, r_{6}\right) \\
& E_{p k_{2}, \ldots, p k_{6}}\left(0 ; r_{2}, \ldots, r_{6}\right) \\
& E_{p k_{2}, \ldots, p k_{6}}\left(1 ; r_{2}, \ldots, r_{6}\right) \\
& E_{p k_{2}, \ldots, p k_{6}}\left(1 ; r_{2}, \ldots, r_{6}\right)
\end{aligned}
$$

Example

- \boldsymbol{P}_{2} with input $\boldsymbol{x}_{2}=\mathbf{1}$ erases, removes its key and rerandomizes

$$
\begin{aligned}
& E_{p k_{3}, \ldots, p k_{6}}\left(0 ; r_{3}, \ldots, r_{6}\right) \\
& E_{p k_{3}, \ldots, p k_{6}}\left(0 ; r_{3}, \ldots, r_{6}\right) \\
& E_{p k_{3}, \ldots, p k_{6}}\left(1 ; r_{3}, \ldots, r_{6}\right) \\
& E_{p k_{3}, \ldots, p k_{6}}\left(1 ; r_{3}, \ldots, r_{6}\right)
\end{aligned}
$$

Example

- $\boldsymbol{P}_{\mathbf{3}}$ with input $\boldsymbol{x}_{\mathbf{3}}=\mathbf{1}$ erases

$$
\begin{aligned}
& E_{p k_{3}, \ldots, p k_{6}}\left(0 ; r_{3}, \ldots, r_{6}\right) \\
& E_{p k_{3}, \ldots, p k_{6}}\left(1 ; r_{3}, \ldots, r_{6}\right) \\
& E_{p k_{3}, \ldots, p k_{6}}\left(1 ; r_{3}, \ldots, r_{6}\right)
\end{aligned}
$$

Example

- $\boldsymbol{P}_{\mathbf{3}}$ with input $\boldsymbol{x}_{\mathbf{3}}=\mathbf{1}$ erases, removes its key and rerandomizes

$$
\begin{aligned}
& \boldsymbol{E}_{\boldsymbol{p} \boldsymbol{k}_{4}, \ldots \boldsymbol{p} \boldsymbol{k}_{6}}\left(\mathbf{0} ; r_{4}, \ldots, r_{6}\right) \\
& \boldsymbol{E}_{\boldsymbol{p} \boldsymbol{k}_{4}, \ldots \boldsymbol{p} \boldsymbol{k}_{6}}\left(\mathbf{1} ; r_{4}, \ldots, r_{6}\right) \\
& \boldsymbol{E}_{\boldsymbol{p} \boldsymbol{k}_{4}, \ldots, p \boldsymbol{k}_{6}}\left(\mathbf{1} ; r_{4}, \ldots, r_{6}\right)
\end{aligned}
$$

Example

- $\boldsymbol{P}_{\mathbf{4}}$ with input $\boldsymbol{x}_{\mathbf{4}}=\mathbf{0}$ erases

$$
\boldsymbol{E}_{\boldsymbol{p} \boldsymbol{k}_{4}, \ldots \boldsymbol{p} \boldsymbol{k}_{6}}\left(\mathbf{0} ; r_{4}, \ldots, r_{6}\right)
$$

$$
\boldsymbol{E}_{\boldsymbol{p} \boldsymbol{k}_{4}, \ldots, \boldsymbol{k}_{6}}\left(\mathbf{1} ; r_{4}, \ldots, r_{6}\right)
$$

Example

- \boldsymbol{P}_{4} with input $\boldsymbol{x}_{\mathbf{4}}=\mathbf{0}$ erases, removes its key and rerandomizes

$$
\begin{aligned}
& E_{p k_{5}, p k_{6}}\left(\mathbf{0} ; r_{5}, r_{6}\right) \\
& \boldsymbol{E}_{\boldsymbol{p k _ { 5 }}, \boldsymbol{p} k_{6}}\left(\mathbf{1} ; r_{5}, r_{6}\right)
\end{aligned}
$$

Example

- A corrupted \boldsymbol{P}_{5} colluding with a corrupted server know that the first 4 parties were divided evenly, but know nothing else

$$
\begin{aligned}
& \boldsymbol{E}_{\boldsymbol{p} k_{5}, \boldsymbol{p} k_{6}}\left(\mathbf{0} ; r_{5}, r_{6}\right) \\
& \boldsymbol{E}_{\boldsymbol{p} k_{5}, \boldsymbol{p} k_{6}}\left(\mathbf{1} ; \boldsymbol{r}_{5}, r_{6}\right)
\end{aligned}
$$

- Note that parties could connect to server in an arbitrary order, since decryption and rerandomization can be done in any order.

Security

- If server is honest, no one learns anything
- If server is corrupt, it cannot decrypt anything which is still encrypted under an honest party's public-key
- The server knows the initial encryptions of the table entries. Even if it colludes with $\boldsymbol{P}_{\mathbf{2}}$ it does not which entry was removed by $\boldsymbol{P}_{\mathbf{1}}$, because of rerandomization

Concrete Cost (Semi-Honest)

- S encrypts table at a cost of 2 exponentiations per truth table entry (equals $2 \boldsymbol{n}$ exponentiations)
- Each $\boldsymbol{P}_{\boldsymbol{i}}$ computes $\boldsymbol{n}-\boldsymbol{i}$ decryptions and rerandomizations; each costs 3 exponentiations
- We can do $\mathbf{1 0 0 0} \mathbf{- 2 0 0 0}$ exponentiations per second, making this protocol practical even for thousands of users
- Main problem could be sequentiality if many parties come at the same time

Security for Malicious

- Possible attacks
- Server can send an incorrect truth table or a truth table with unique values in each row
- A corrupted $\boldsymbol{P}_{\boldsymbol{i}}$ can generate a new truth table from scratch
- We prevent all of the above using non-interactive zeroknowledge and signatures
- Made efficient using Fiat-Shamir on Sigma protocols (Fiat-Shamir requires random oracle model $: \cdot$)
- All messages are signed to prevent replacement

Zero-Knowledge Proofs

- For, say, MAJ function, server proves that the first half of the table entries are encryptions to 0 and the rest are to 1
- This statement can be reduced to proving that $\boldsymbol{n}+\mathbf{1}$ tuples are Diffie-Hellman tuples ($\boldsymbol{O}(\boldsymbol{n})$ exponentiations)
- Each party needs to prove an OR of two statements.
- Namely that it generated a rerandomization of the ciphertexts, after decrypting its key and removing either the first or last table entry
- Using [CDS], this is double the cost of a Diffie-Hellman proof

Concrete Cost (Malicious)

- Pretty efficient!
- Server computes $\mathbf{2 n}+\mathbf{4}(\boldsymbol{n}+\mathbf{1})$ exponentiations
- Each \boldsymbol{P}_{i} computes less than $\mathbf{8 n} \boldsymbol{n}^{\mathbf{2}}$ exponentiations
- It has to verify all previous proofs and generate own
- With $\boldsymbol{n}=\mathbf{1 0 0}$, each party computes at most $\mathbf{8 0 , 0 0 0}$ exponentiations (many less)
- Can be done in about a minute
- Certainly practical for Program Committee vote
- 40 parties: less than 12,800 exponentiations each, taking about 10 seconds

Additional Practical Protocols

- Symmetric functions over $\mathbb{Z}_{\boldsymbol{c}}$
- Extension of previous protocol
- Sum function over large domain
- Uses additively homomorphic encryption
- Selection functions
- Different ideas...

A General Result

- Theorem:
- Any decomposition $\boldsymbol{f}_{\mathbf{1}}, \ldots, \boldsymbol{f}_{\boldsymbol{n}}$ can be securely computed, under the DDH assumption and assuming NIZK (for security against malicious adversaries)
- The main tool: rerandomizable Yao circuits
- As in the i-Hop homomorphic encryption [GHV], with some modifications
- Given a garbled circuit, rerandomize all labels
- This involves rerandomizing ciphertexts AND keys
- As in i-Hop, this can be done using [BHHO]
- Labels are balanced bit strings, encrypted bit by bit

Protocol Outline

- $\boldsymbol{P}_{\mathbf{1}}$'s instructions
- Generate a rerandomizable Yao circuit for $\boldsymbol{f}_{\mathbf{1}}$
- Encrypt the input labels (determining its own input) under all parties' public keys (as in the efficient solution)
- (For malicious: prove correct behavior and sign)
- Any other party $\boldsymbol{P}_{\boldsymbol{i}}$
- Decrypt with its key all encrypted labels of previous parties
- Add a rerandomizable Yao circuit for $\boldsymbol{f}_{\boldsymbol{i}}$, and join it to the previous circuit
- Rerandomize the previous circuit (so that even its creator won't recognize its new labels)
- (For malicious: prove correct behavior and sign)

Yao Circuit

Yao Circuit Composition

- In order to compose, the output keys must equal the input keys
- I.e., $k_{d}^{0}=k_{f}^{0}$ and so on
- This can be done because the output labels (and associated values) are given
- New party also rerandomizes all intermediate values of circuits

Security

- By the security of the Yao circuit construction, nothing can be learned without any input labels
- While there is still at least one honest party, its public key hides all input labels
- Given the input labels of all the honest parties, the remaining corrupted parties only see random intermediate values and the output of the last circuit.
- Can now only compute the remaining circuit on different inputs of their own

Summary

- Fully interactive secure computation is a problem in practice
- A one-pass client/server is essential for many applications, and is also interesting from a theoretical point of view
- There are inherent limitations to the model
- Captured by computing function decompositions
- Under the DDH assumption
- Any function decomposition can be computed
- Highly efficient and practical protocols exist for many natural problems in this setting
- New results [GMRW]: sparse polynomials, branching programs

