
Shai Halevi, IBM T.J. Watson

Yehuda Lindell, Bar-Ilan University

Benny Pinkas, Bar-Ilan University and Google

 Can elections, auctions, statistical analysis of
distributed parties’ data really be carried out
using secure computation?

 Does our model of secure computation really
model the needs of these applications?
◦ And we’re not talking about efficiency concerns…

 In all known protocols, all parties must interact
simultaneously

 Arguably, this is a huge obstacle to adoption
◦ A program committee wants to vote on the best paper

using a secure protocol

 When do they run the protocol?

◦ A website wishes to securely aggregate statistics about
users

 Each user provides information only when connected

 The secure computation model:

 The real-world web model:

 Can secure computation be made non-
simultaneous?
◦ A natural theoretical question

 Deepens our understanding of the required
communication model for secure computation

◦ Important ramifications to practice

 Especially if this can be done efficiently

 Note: fully homomorphic encryption does not solve the
problem

 Most of the parties are “input providers”

 Some parties/servers do the actual computation

 Hack: Input providers send shares of the their inputs to
the servers (non-interactively, whenever they want)

 Servers then do the actual computation (consisting of
multiple interactive rounds)

OUTPUT

Secure as long as not too
many servers collude

 A client-server model
 Auctions [NPS99,BCD+09], surveys [FPRS04], FairplayMP

[BNP09]

OUTPUT

Can we use just a
single server?

 Non-interactive cryptocomputing [SYY99]

 Secure function collection [IKYZ09]

 Parties
◦ One server 𝑺

◦ 𝒏 parties 𝑷𝟏, … , 𝑷𝒏

 Communication model
◦ Each party interacts with the server exactly once

 In all protocols, interaction is a single round
between server and party, but this is not essential

 Order may be important… (in some protocols)

◦ At the end, the server obtains the output

 A problem
◦ A corrupted server can take the message computed by 𝑷𝟏

and play all the roles of 𝑷𝟐, … , 𝑷𝒏 itself, with any set of inputs

 When computing AVG this would reveal 𝑷𝟏’s input

◦ Conclusion: It is not possible to solve this problem in the
plain model

 Solution
◦ We solve this problem by assuming a known public-key

infrastructure

◦ The secret key of 𝑷𝒊 is needed to run 𝑷𝒊’s instructions,
preventing 𝑺 from doing the above

 Consider 𝒏 parties who wish to compute
𝒚 = 𝒇(𝒙𝟏, … , 𝒙𝒏) where the 𝒋th party has input 𝒙𝒋

◦ Consider the residual function
 𝒈𝒊 𝑿𝒊+𝟏, … , 𝑿𝒏 = 𝒇 𝒙𝟏, … , 𝒙𝒊, 𝑿𝒊+𝟏, … , 𝑿𝒏

◦ Clearly, the server and the last 𝒏 − 𝒊 parties must be able to
compute 𝒈𝒊 𝒙𝒊+𝟏, … , 𝒙𝒏 for any set of legit inputs 𝒙𝒊+𝟏, … , 𝒙𝒏

 Consider a semi-honest adversary running 𝑷𝒊+𝟏, … , 𝑷𝒏, 𝑺
◦ It must be able to compute 𝒈𝒊 𝑿𝒊+𝟏, … , 𝑿𝒏 for any set of

inputs 𝒙𝒊+𝟏, … , 𝒙𝒏

◦ This is more than allowed in “classic” secure comp.

 This is an inherent limitation of the model
◦ Honest parties 𝑷𝒊+𝟏, … , 𝑷𝒏 and 𝑺 must be able to

compute 𝒈𝒊 𝑿𝒊+𝟏, … , 𝑿𝒏 for any set of inputs
𝒙𝒊+𝟏, … , 𝒙𝒏

◦ Thus, a semi-honest adversary controlling these
parties can also do that

 We must therefore allow this in the security
definition

𝒚𝒊 is the state of the server
after interaction with 𝑷𝒊

 Are all decompositions equally good?

 Consider 𝑓1 𝑥1 = 𝑥1, … , 𝑓𝑖 𝑦𝑖−1, 𝑥𝑖 = (𝑦𝑖−1, 𝑥𝑖), …
(the identity function)
◦ If 𝑃𝑛 and 𝑆 are corrupted, then all inputs are revealed

 Consider the AVG function, and 𝑓𝑖 𝑦𝑖−1, 𝑥𝑖 = 𝑦𝑖−1 + 𝑥𝑖
◦ Given 𝑦𝑖 we can learn nothing more than sum of first 𝑖

◦ But this can be also learned from setting 𝑥𝑖+1 = ⋯ = 𝑥𝑛 = 0

 This latter decomposition seems better

 A decomposition 𝒇𝟏, … , 𝒇𝒏 of 𝒇 is minimum disclosure if there

exists a simulator 𝑺, s.t. for every vector 𝒙 = (𝒙𝟏, … , 𝒙𝒏) and

every 𝒊, 𝑺 with oracle access to 𝒈𝒊 𝒙 = 𝒈 𝒙𝟏, … , 𝒙𝒊,⋅, … ,⋅

outputs 𝒇𝒊 𝒙𝟏, … , 𝒙𝒊

 Note that if 𝑷𝒊+𝟏, … , 𝑷𝒏 and 𝑺 are corrupted then they inherently

have access to 𝒈𝒊 𝒙 = 𝒈 𝒙𝟏, … , 𝒙𝒊,⋅, … ,⋅

 If the decomposition can be computed from access to

𝒈(𝒙𝟏, … , 𝒙𝒊,⋅, … ,⋅) then learning it does not disclose new

information. Therefore it is minimum disclosure.

 Not all functions have minimum disclosure decompositions

 Assuming that one-way funcs exist, there is a function
for which no minimum disclosure decomposition exists

 𝐹 𝑘, 𝑥 = 𝐸𝑁𝐶𝑘 𝑥 = 𝑓2(𝑓1 𝑘 , 𝑥)

 A corrupt server and 𝑃2 have access to an oracle
𝑓2 𝑋 = 𝐸𝑁𝐶𝑘 𝑋

 Intuitively, if they can compute 𝑓1 𝑘 given access to
encryption oracle, then the encryption is insecure.
◦ This can be shown by a formal reduction

 The sum function 𝑓 𝑥1, … , 𝑥𝑛 = 𝑥1 +⋯+ 𝑥𝑛
◦ The decomposition 𝑓𝑖 𝑥1, … , 𝑥𝑛 = 𝑥1 +⋯+𝑥𝑖 is minimal

disclosure

 Proof of minimal disclosure
◦ Given access to the oracle
𝑔𝑖 𝑥𝑖+1, … , 𝑥𝑛 = 𝑓 𝑥1, … , 𝑥𝑖 , 𝑥𝑖+1, … . , 𝑥𝑛

◦ Compute 𝑔𝑖 0,… , 0 = 𝑥1 +⋯+ 𝑥𝑖 = 𝑓𝑖 𝑥1, … , 𝑥𝑖 , which is
the decomposition.

 We couldn’t have proved a similar reduction for the id
decomposition

 Binary symmetric functions
◦ Depend only on Hamming weight of input

◦ E.g., AND, OR, PARITY, MAJORITY, THRESHOLD

 Concise truth table representation
◦ Example: the MAJORITY function over 5 bits

Hamming
Weight

Output

0 0

1 0

2 0

3 1

4 1

5 1

In general, the
output is a

function of the
weight

 Define 𝒚𝟏 = 𝒇𝟏 𝒙𝟏 to be the truth table, with the first
row erased if 𝒙𝟏 = 𝟏 and the last row erased if 𝒙𝟏 = 𝟎

Hamming
Weight

Output

0 0

1 0

2 0

3 1

4 1

5 1

𝒙𝟏 = 𝟏

𝒙𝟏 = 𝟎

 Define 𝒇𝟐 𝒚𝟏, 𝒙𝟐 to be the truncated truth table, with
the first row erased if 𝒙𝟐 = 𝟎 and the last row erased if
𝒙𝟐 = 𝟏

Hamming
Weight

Output

0 0

1 0

2 0

3 1

4 1

5 1

𝒙𝟐 = 𝟏

𝒙𝟏 = 𝟎

 And so on…
◦ Note, each truth table can be efficiently computed from the

previous one

◦ Indeed, the output of 𝑴𝑨𝑱(𝟎𝟏𝟏𝟎𝟎) = 𝟎

Hamming
Weight

Output

0 0

1 0

2 0

3 1

4 1

5 1

𝒙𝟐 = 𝟏

𝒙𝟏 = 𝟎

𝒙𝟑 = 𝟏

𝒙𝟒 = 𝟎

𝒙𝟓 = 𝟎

 Why is this minimum disclosure?
◦ The truth table reveals nothing more than the output of the

function on all other inputs

 A similar condensed truth table exists for symmetric
functions over (non-binary) constant-size domains

◦ The table size is
𝑛 + 𝑐 − 1

𝑛
= 𝑂 𝑛𝑐−1 for an input

domain of size 𝑐

 We follow the real/ideal paradigm

 Security is defined by comparing a real execution to
an ideal execution with a trusted party
◦ A protocol is secure if no real adversary can do more than

an ideal adversary

 Real execution – as described

 Ideal execution (for a given decomposition)
◦ Honest server:

 All parties give inputs; server gets output

◦ Corrupt server + arbitrary number of corrupt parties:

 As above, except that adversary is also given 𝒇𝒊(𝒙𝟏, … , 𝒙𝒊) where 𝑷𝒊
is the last honest party

 A protocol securely computes a decomposition if there exists
an ideal simulator such that real and ideal executions are
indistinguishable
◦ The protocol is optimally private if the decomposition is

minimum disclosure

 Can the notion of optimally private protocols
be achieved?

 If yes,
◦ Under what assumptions?

◦ At what cost?

 Binary symmetric functions
 Main tool – layer rerandomizable encryption
◦ Denote 𝑬𝒑𝒌(𝒙; 𝒓) and

𝑬𝒑𝒌𝟏,…,𝒑𝒌𝒏+𝟏 𝒙; 𝒓𝟏, … , 𝒓𝒏+𝟏 = 𝑬𝒑𝒌𝟏 ⋯𝑬𝒑𝒌𝒏+𝟏 𝒙; 𝒓𝒏+𝟏 ⋯ ; 𝒓𝟏

◦ This is layer rerandomizable if there exists an efficient
procedure that rerandomizes all layers (given public keys)

◦ Must be able to remove encryptions one by one.
◦ Useful to hide which table entry was removed

 From any randomizable, (e.g. additively homomorphic)
encryption
◦ 𝑬𝒑𝒌𝟏,…,𝒑𝒌𝒏+𝟏 𝒙; 𝒓𝟏, … , 𝒓𝒏+𝟏 = 𝑬𝒑𝒌𝟏 𝒙𝟏; 𝒓𝟏 , … , 𝑬𝒑𝒌𝒏+𝟏 𝒙𝒏+𝟏; 𝒓𝒏+𝟏

s.t. 𝑥 = 𝑥1 + ⋯+ 𝑥𝑛+1
◦ Rerandomize each separately, decrypt one at a time

 Using El Gamal (DDH assumption)
◦ Generator 𝒈, prime-order group of order 𝒒

◦ Public keys 𝒉𝟏 = 𝒈𝜶𝟏 , … , 𝒉𝒏 = 𝒈𝜶𝒏 , 𝒉𝒏+𝟏 = 𝒈𝜶𝒏+𝟏

◦ Define 𝑯𝒊,𝒏+𝟏 = 𝒉𝒋
𝒏+𝟏
𝒋=𝒊 = 𝒈 𝜶𝒋

𝒏+𝟏
𝒋=𝒊

◦ To encrypt: 𝑬𝑯𝟏,𝒏+𝟏
𝒎 = 𝒖, 𝒗 = 𝒈𝒓, 𝑯𝟏,𝒏+𝟏

𝒓
⋅ 𝒎

◦ To decrypt the first key and rerandomize

 Decrypt: compute 𝒖′ = 𝒖 and 𝒗′ = 𝒗 ⋅ 𝒖−𝜶𝟏

 Rerandomize: compute 𝒖′′ = 𝒖′ ⋅ 𝒈𝒔 and 𝒗′′ = 𝒗′ ⋅ 𝑯𝟐,𝒏+𝟏
𝒔

 And so on, for each party

 Server 𝑺 encrypts the truth table under all parties’ keys
◦ Using rerandomizable layer encryption

 Server 𝑺 sends table to first connecting party 𝑷𝟏
 𝑷𝟏 removes first or last row, decrypts every entry of the

truth table using its key and rerandomizes it, and sends to 𝑺
 Server 𝑺 receives and sends to 𝑷𝟐
 𝑷𝟐 removes first or last row, rerandomizes every entry of

the truth table, and sends to 𝑺
 …
 After 𝑷𝒏 concludes, it sends 𝑺 an encryption (under 𝑺’s key)

of the remaining row = output
 Rerandomization is important…

 Majority function with 5 parties

Hamming
Weight

Output

0 0

1 0

2 0

3 1

4 1

5 1

 The server 𝑺 computes the encrypted concise truth
table

𝑬𝒑𝒌𝟏,…,𝒑𝒌𝟔 𝟎; 𝒓𝟏, … , 𝒓𝟔

𝑬𝒑𝒌𝟏,…,𝒑𝒌𝟔 𝟎; 𝒓𝟏, … , 𝒓𝟔

𝑬𝒑𝒌𝟏,…,𝒑𝒌𝟔 𝟎; 𝒓𝟏, … , 𝒓𝟔

𝑬𝒑𝒌𝟏,…,𝒑𝒌𝟔 𝟏; 𝒓𝟏, … , 𝒓𝟔

𝑬𝒑𝒌𝟏,…,𝒑𝒌𝟔 𝟏; 𝒓𝟏, … , 𝒓𝟔

𝑬𝒑𝒌𝟏,…,𝒑𝒌𝟔 𝟏; 𝒓𝟏, … , 𝒓𝟔

 𝑷𝟏 with input 𝒙𝟏 = 𝟎 erases

𝑬𝒑𝒌𝟏,…,𝒑𝒌𝟔 𝟎; 𝒓𝟏, … , 𝒓𝟔

𝑬𝒑𝒌𝟏,…,𝒑𝒌𝟔 𝟎; 𝒓𝟏, … , 𝒓𝟔

𝑬𝒑𝒌𝟏,…,𝒑𝒌𝟔 𝟎; 𝒓𝟏, … , 𝒓𝟔

𝑬𝒑𝒌𝟏,…,𝒑𝒌𝟔 𝟏; 𝒓𝟏, … , 𝒓𝟔

𝑬𝒑𝒌𝟏,…,𝒑𝒌𝟔 𝟏; 𝒓𝟏, … , 𝒓𝟔

𝑬𝒑𝒌𝟏,…,𝒑𝒌𝟔 𝟏; 𝒓𝟏, … , 𝒓𝟔

 𝑷𝟏 with input 𝒙𝟏 = 𝟎 erases, removes its key and
rerandomizes

𝑬𝒑𝒌𝟐,…,𝒑𝒌𝟔 𝟎; 𝒓𝟐, … , 𝒓𝟔

𝑬𝒑𝒌𝟐,…,𝒑𝒌𝟔 𝟎; 𝒓𝟐, … , 𝒓𝟔

𝑬𝒑𝒌𝟐,…,𝒑𝒌𝟔 𝟎; 𝒓𝟐, … , 𝒓𝟔

𝑬𝒑𝒌𝟐,…,𝒑𝒌𝟔 𝟏; 𝒓𝟐, … , 𝒓𝟔

𝑬𝒑𝒌𝟐,…,𝒑𝒌𝟔 𝟏; 𝒓𝟐, … , 𝒓𝟔

𝑬𝒑𝒌𝟏,…,𝒑𝒌𝟔 𝟏; 𝒓𝟏, … , 𝒓𝟔

𝑬𝒑𝒌𝟐,…,𝒑𝒌𝟔 𝟎; 𝒓𝟐, … , 𝒓𝟔

𝑬𝒑𝒌𝟐,…,𝒑𝒌𝟔 𝟎; 𝒓𝟐, … , 𝒓𝟔

𝑬𝒑𝒌𝟐,…,𝒑𝒌𝟔 𝟎; 𝒓𝟐, … , 𝒓𝟔

𝑬𝒑𝒌𝟐,…,𝒑𝒌𝟔 𝟏; 𝒓𝟐, … , 𝒓𝟔

𝑬𝒑𝒌𝟐,…,𝒑𝒌𝟔 𝟏; 𝒓𝟐, … , 𝒓𝟔

 𝑷𝟐 with input 𝒙𝟐 = 𝟏 erases

 𝑷𝟐 with input 𝒙𝟐 = 𝟏 erases, removes its key and
rerandomizes

𝑬𝒑𝒌𝟏,…,𝒑𝒌𝒏+𝟏 𝟎; 𝒓𝟏, … , 𝒓𝒏+𝟏

𝑬𝒑𝒌𝟑,…,𝒑𝒌𝟔 𝟎; 𝒓𝟑, … , 𝒓𝟔

𝑬𝒑𝒌𝟑,…,𝒑𝒌𝟔 𝟎; 𝒓𝟑, … , 𝒓𝟔

𝑬𝒑𝒌𝟑,…,𝒑𝒌𝟔 𝟏; 𝒓𝟑, … , 𝒓𝟔

𝑬𝒑𝒌𝟑,…,𝒑𝒌𝟔 𝟏; 𝒓𝟑, … , 𝒓𝟔

𝑬𝒑𝒌𝟏,…,𝒑𝒌𝒏+𝟏 𝟎; 𝒓𝟏, … , 𝒓𝒏+𝟏

𝑬𝒑𝒌𝟑,…,𝒑𝒌𝟔 𝟎; 𝒓𝟑, … , 𝒓𝟔

𝑬𝒑𝒌𝟑,…,𝒑𝒌𝟔 𝟎; 𝒓𝟑, … , 𝒓𝟔

𝑬𝒑𝒌𝟑,…,𝒑𝒌𝟔 𝟏; 𝒓𝟑, … , 𝒓𝟔

𝑬𝒑𝒌𝟑,…,𝒑𝒌𝟔 𝟏; 𝒓𝟑, … , 𝒓𝟔

 𝑷𝟑 with input 𝒙𝟑 = 𝟏 erases

𝑬𝒑𝒌𝟏,…,𝒑𝒌𝒏+𝟏 𝟎; 𝒓𝟏, … , 𝒓𝒏+𝟏

𝑬𝒑𝒌𝟑,…,𝒑𝒌𝟔 𝟎; 𝒓𝟑, … , 𝒓𝟔

𝑬𝒑𝒌𝟒,…,𝒑𝒌𝟔 𝟎; 𝒓𝟒, … , 𝒓𝟔

𝑬𝒑𝒌𝟒,…,𝒑𝒌𝟔 𝟏; 𝒓𝟒, … , 𝒓𝟔

𝑬𝒑𝒌𝟒,…,𝒑𝒌𝟔 𝟏; 𝒓𝟒, … , 𝒓𝟔

 𝑷𝟑 with input 𝒙𝟑 = 𝟏 erases, removes its key and
rerandomizes

𝑬𝒑𝒌𝟏,…,𝒑𝒌𝒏+𝟏 𝟎; 𝒓𝟏, … , 𝒓𝒏+𝟏

𝑬𝒑𝒌𝟑,…,𝒑𝒌𝟔 𝟎; 𝒓𝟑, … , 𝒓𝟔

𝑬𝒑𝒌𝟒,…,𝒑𝒌𝟔 𝟎; 𝒓𝟒, … , 𝒓𝟔

𝑬𝒑𝒌𝟒,…,𝒑𝒌𝟔 𝟏; 𝒓𝟒, … , 𝒓𝟔

𝑬𝒑𝒌𝟒,…,𝒑𝒌𝟔 𝟏; 𝒓𝟒, … , 𝒓𝟔

 𝑷𝟒 with input 𝒙𝟒 = 𝟎 erases

𝑬𝒑𝒌𝟏,…,𝒑𝒌𝒏+𝟏 𝟎; 𝒓𝟏, … , 𝒓𝒏+𝟏

𝑬𝒑𝒌𝟑,…,𝒑𝒌𝟔 𝟎; 𝒓𝟑, … , 𝒓𝟔

𝑬𝒑𝒌𝟓,𝒑𝒌𝟔 𝟎; 𝒓𝟓, 𝒓𝟔

𝑬𝒑𝒌𝟓,𝒑𝒌𝟔 𝟏; 𝒓𝟓, 𝒓𝟔

𝑬𝒑𝒌𝟒,…,𝒑𝒌𝟔 𝟏; 𝒓𝟒, … , 𝒓𝟔

 𝑷𝟒 with input 𝒙𝟒 = 𝟎 erases, removes its key and
rerandomizes

𝑬𝒑𝒌𝟏,…,𝒑𝒌𝒏+𝟏 𝟎; 𝒓𝟏, … , 𝒓𝒏+𝟏

𝑬𝒑𝒌𝟑,…,𝒑𝒌𝟔 𝟎; 𝒓𝟑, … , 𝒓𝟔

𝑬𝒑𝒌𝟓,𝒑𝒌𝟔 𝟎; 𝒓𝟓, 𝒓𝟔

𝑬𝒑𝒌𝟓,𝒑𝒌𝟔 𝟏; 𝒓𝟓, 𝒓𝟔

𝑬𝒑𝒌𝟒,…,𝒑𝒌𝟔 𝟏; 𝒓𝟒, … , 𝒓𝟔

 A corrupted 𝑷𝟓 colluding with a corrupted server
know that the first 4 parties were divided evenly, but
know nothing else

 Note that parties could connect to server in an
arbitrary order, since decryption and rerandomization
can be done in any order.

 If server is honest, no one learns anything

 If server is corrupt, it cannot decrypt anything which is
still encrypted under an honest party’s public-key

 The server knows the initial encryptions of the table
entries. Even if it colludes with 𝑷𝟐 it does not which
entry was removed by 𝑷𝟏, because of rerandomization

 𝑆 encrypts table at a cost of 𝟐 exponentiations per
truth table entry (equals 𝟐𝒏 exponentiations)

 Each 𝑷𝒊 computes 𝒏 − 𝒊 decryptions and
rerandomizations; each costs 𝟑 exponentiations

 We can do 𝟏𝟎𝟎𝟎 − 𝟐𝟎𝟎𝟎 exponentiations per second,
making this protocol practical even for thousands of
users
◦ Main problem could be sequentiality if many parties come

at the same time

 Possible attacks
◦ Server can send an incorrect truth table or a truth table with

unique values in each row

◦ A corrupted 𝑷𝒊 can generate a new truth table from scratch

 We prevent all of the above using non-interactive zero-
knowledge and signatures
◦ Made efficient using Fiat-Shamir on Sigma protocols (Fiat-Shamir

requires random oracle model)

 All messages are signed to prevent replacement

 For, say, MAJ function, server proves that the first half of
the table entries are encryptions to 0 and the rest are to 1
◦ This statement can be reduced to proving that 𝒏 + 𝟏 tuples are

Diffie-Hellman tuples (𝑶 𝒏 exponentiations)

 Each party needs to prove an OR of two statements.

 Namely that it generated a rerandomization of the
ciphertexts, after decrypting its key and removing either
the first or last table entry
◦ Using [CDS], this is double the cost of a Diffie-Hellman proof

 Pretty efficient!

 Server computes 𝟐𝒏 + 𝟒 𝒏 + 𝟏 exponentiations

 Each 𝑷𝒊 computes less than 𝟖𝒏𝟐 exponentiations
◦ It has to verify all previous proofs and generate own

 With 𝒏 = 𝟏𝟎𝟎, each party computes at most 𝟖𝟎, 𝟎𝟎𝟎
exponentiations (many less)
◦ Can be done in about a minute

 Certainly practical for Program Committee vote
◦ 40 parties: less than 12,800 exponentiations each, taking

about 10 seconds

 Symmetric functions over ℤ𝒄
◦ Extension of previous protocol

 Sum function over large domain
◦ Uses additively homomorphic encryption

 Selection functions
◦ Different ideas…

 Theorem:
◦ Any decomposition 𝒇𝟏, … , 𝒇𝒏 can be securely computed,

under the DDH assumption and assuming NIZK (for security
against malicious adversaries)

 The main tool: rerandomizable Yao circuits
◦ As in the i-Hop homomorphic encryption [GHV], with some

modifications

 Given a garbled circuit, rerandomize all labels
◦ This involves rerandomizing ciphertexts AND keys

◦ As in i-Hop, this can be done using [BHHO]

◦ Labels are balanced bit strings, encrypted bit by bit

 𝑷𝟏’s instructions
◦ Generate a rerandomizable Yao circuit for 𝒇𝟏
◦ Encrypt the input labels (determining its own input) under all

parties’ public keys (as in the efficient solution)
◦ (For malicious: prove correct behavior and sign)

 Any other party 𝑷𝒊
◦ Decrypt with its key all encrypted labels of previous parties
◦ Add a rerandomizable Yao circuit for 𝒇𝒊, and join it to the

previous circuit
◦ Rerandomize the previous circuit (so that even its creator won’t

recognize its new labels)
◦ (For malicious: prove correct behavior and sign)

0

ek 1

ek

0

gk
1

gk

0

ak
1

ak 0

bk 1

bk

0

ck 1

ck0

dk
1

dk

0

fk
1

fk

AND

AND OR

))(k(EE 1

ckk 1
b

1
a

))(k(EE 0

ckk 1
b

0
a

))(k(EE 0

ckk 0
b

0
a

))(k(EE 0

ckk 0
b

1
a

))(k(EE 1

fkk 1
c

1
d

))(k(EE 0

fkk 1
c

0
d

))(k(EE 0

fkk 0
c

0
d

))(k(EE 0

fkk 0
c

1
d

))(k(EE 1

gkk 1
e

1
c

))(k(EE 1

gkk 1
e

0
c

))(k(EE 0

gkk 0
e

0
c

))(k(EE 1

gkk 0
e

1
c

 1

f

0

f k1,,k0, 1

g

0

g k1,,k0,

0

ek 1

ek

0

gk
1

gk

0

ak
1

ak 0

bk 1

bk

0

ck 1

ck0

dk
1

dk

0

fk
1

fk

AND

AND OR

 1

f

0

f k1,,k0, 1

g

0

g k1,,k0,

0

ek 1

ek

0

gk
1

gk

0

ak
1

ak 0

bk 1

bk

0

ck 1

ck0

dk
1

dk

0

fk
1

fk

AND

AND OR

 1

f

0

f k1,,k0, 1

g

0

g k1,,k0,

New inputs

 In order to compose, the
output keys must equal the
input keys
◦ I.e., 𝑘𝑑

0 = 𝑘𝑓
0 and so on

 This can be done because
the output labels (and
associated values) are given

 New party also rerandomizes
all intermediate values of
circuits

 By the security of the Yao circuit construction, nothing
can be learned without any input labels
◦ While there is still at least one honest party, its public key

hides all input labels

 Given the input labels of all the honest parties, the
remaining corrupted parties only see random
intermediate values and the output of the last circuit.

 Can now only compute the remaining circuit on
different inputs of their own

 Fully interactive secure computation is a problem in
practice
◦ A one-pass client/server is essential for many applications,

and is also interesting from a theoretical point of view

 There are inherent limitations to the model
◦ Captured by computing function decompositions

 Under the DDH assumption
◦ Any function decomposition can be computed

◦ Highly efficient and practical protocols exist for many natural
problems in this setting

◦ New results [GMRW]: sparse polynomials, branching programs

