On the Intrinsic Complexity of Broadcast

Martin Hirt

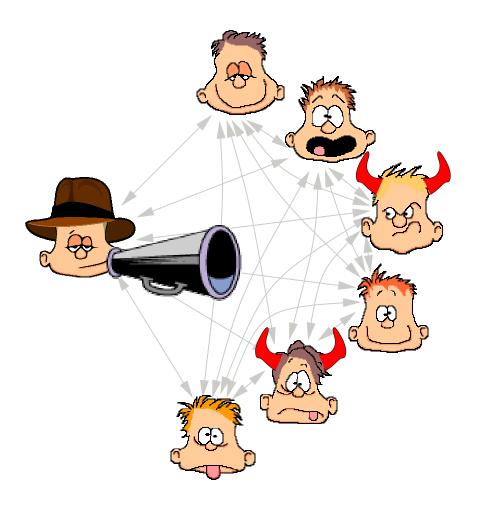
joint work with Ueli Maurer and Pavel Raykov

ETH Zurich

Theory and Practice of MPC, Aarhus, May 2014

The Setting

- A sender, and n recipients (up to t dishonest)
- Bilateral channels (available for free)
- Goal: broadcast arbitrary long message



Broadcast:

Consistency: All recipients get the same value

Validity: If the sender is honest, this is his value

How to achieve Broadcast?

- t < n/3: use your favorite protocol, e.g. [LSP82,BGP89,CW89,...]
- t > n/3: impossible [LSP82]

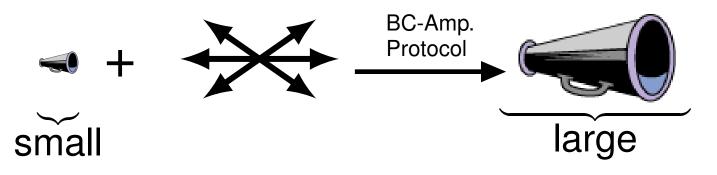
How to achieve Broadcast anyway? ($t \ge n/3$)

- Assume trusted party that distributes PKI (consistently!), then use [DS82,PW96,...]
- Assume "small" broadcast primitive

Broadcast Amplification

Broadcast Amplification

What it is



Note

• Only interesting for $t \ge n/3$

Goals

- 1. Find amplification protocols: $\blacktriangleleft + \nleftrightarrow \rightarrow \checkmark$
- 2. Proof lower bounds for size of <

Def: d-broadcast = broadcast for domain size d (i.e., log d bits)

The Intrinsic Complexity of Broadcast

 $\phi_n(d)$ = minimal domain size of the available broadcast primitive to achieve *d*-broadcast among *n* parties.

Note: $\phi_n(d) \leq d$

We totally ignore the size of \nleftrightarrow

Outline

On the Intrinsic Complexity of Broadcast

- Warm-Up
- The n = 3 Case
- The $n \ge 4$ Case
- Conclusions

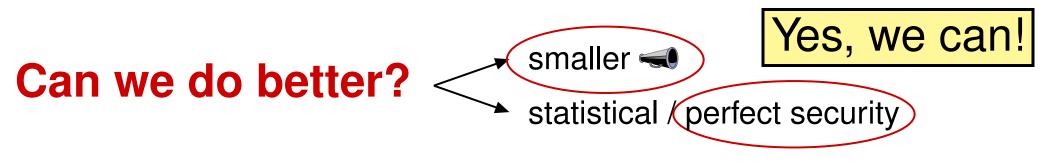
Model: cryptographic security, t < n

Protocol

- 1. $\forall P_i$: select random SK/PK
- 2. $\forall P_i$: broadcast PK (using available \triangleleft)
- 3. invoke [DS82] to broadcast message (using ≯↔)

Analysis

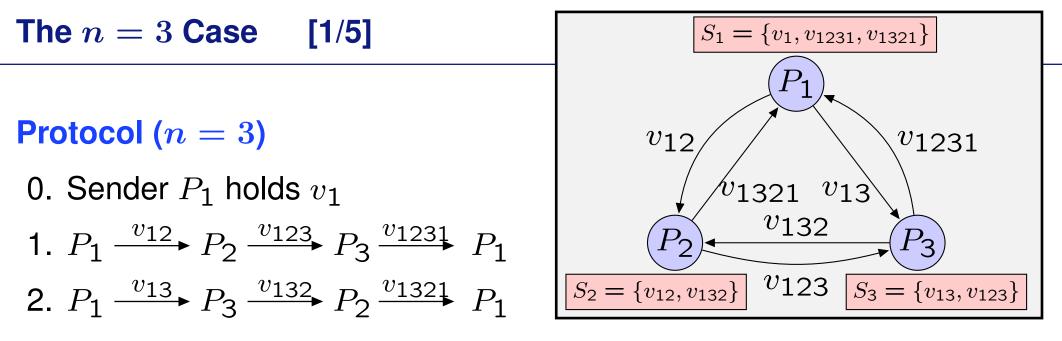
• $n\kappa$ bits through \blacktriangleleft (+ some \nleftrightarrow , we don't care)



Outline

On the Intrinsic Complexity of Broadcast

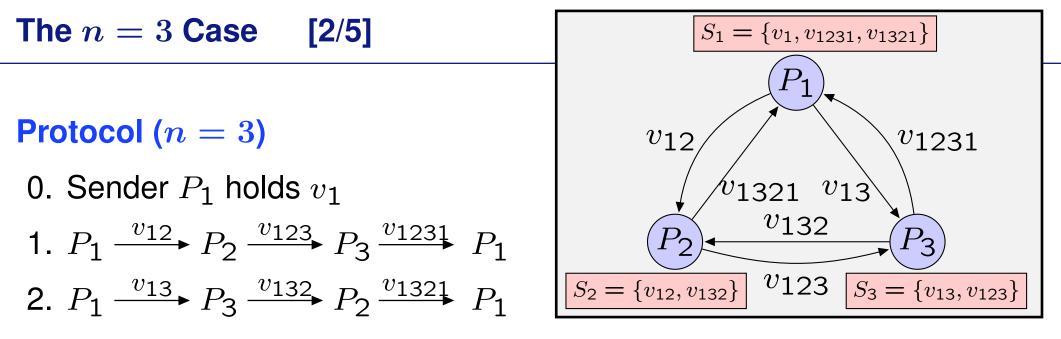
- Warm-Up
- The n = 3 Case
- The $n \ge 4$ Case
- Conclusions



3. P_1 : hint h supports v_1 , excludes v_{1231} and v_{1321} , broadcast using \blacktriangleleft 4. P_2/P_3 : accept value in S_2/S_3 supported by h

Computing the Hint

v_1	=	a_1	a_2	aз	<i>a</i> 4	a_5	<i>a</i> ₆	<i>a</i> 7	<i>a</i> 8	i = 3, j = 7,
v_{1231}	—	b_1	<i>b</i> ₂	<i>b</i> 3	b_4	b_5	b_6	<i>b</i> 7	b_8	$h=(i,a_i,j,a_j)$
v_{1321}	—	c_1	<i>c</i> ₂	сз	С4	<i>c</i> 5	<i>c</i> 6	<i>c</i> 7	<i>c</i> 8	



3. P_1 : hint h supports v_1 , excludes v_{1231} and v_{1321} , broadcast using \triangleleft

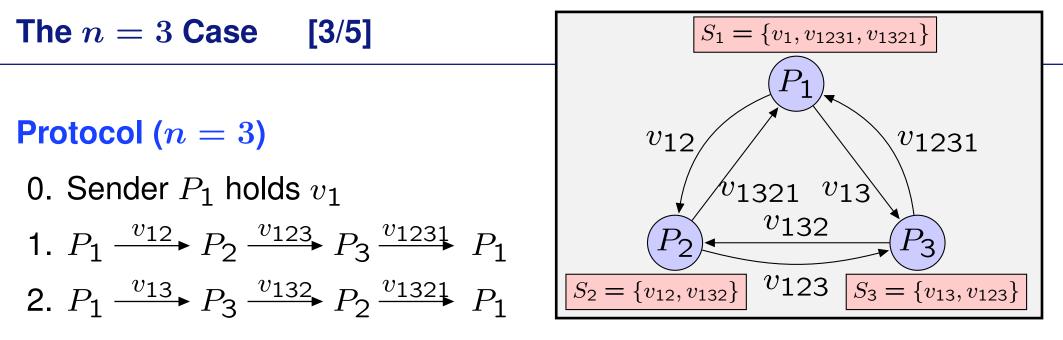
4. P_2/P_3 : accept value in S_2/S_3 supported by h

Analysis

- Validity: P_1 and P_i honest $\rightarrow v_1 \in S_i \subseteq S_1 \rightarrow P_i$ decides on v_1
- Consistency: P_2 and P_3 honest $\rightarrow S_2 = S_3 \rightarrow$ decide the same
- Efficiency: $\ell' = 2 \log \ell + 2$

Example: 1 MB \rightarrow 42 Bits

Can we do better? Yes, use Recursion



3. P_1 : hint h supports v_1 , excludes v_{1231} and v_{1321} , broadcast using \triangleleft

4. P_2/P_3 : accept value in S_2/S_3 supported by h

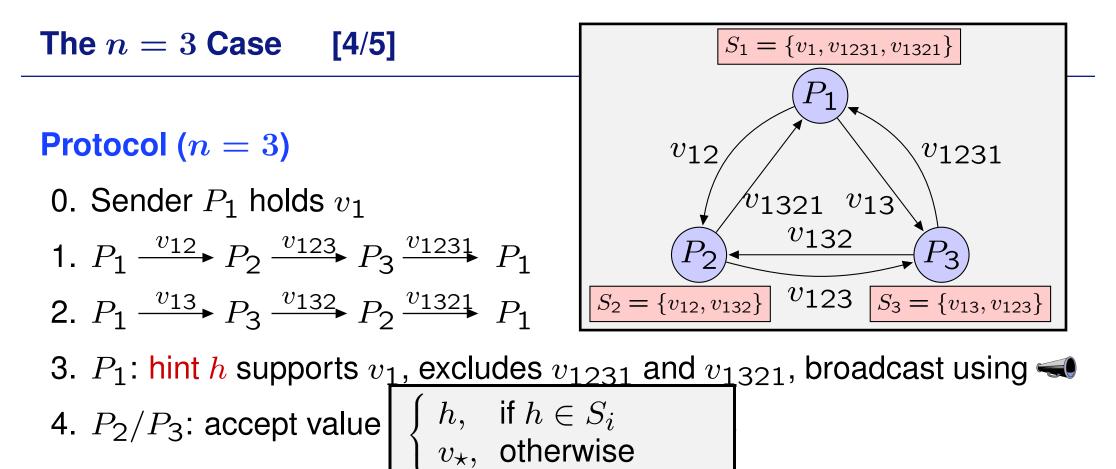
Recursion

- Remember $\ell' = 2 \log \ell + 2$
- Recursion: ℓ bits $\rightarrow 2 \log \ell + 2$ bits $\rightarrow 2 \log(2 \log \ell + 2) + 2$ bits

 \rightarrow 10 bits

• I.e.: $\phi_3(\cdot) \le 2^{10}$

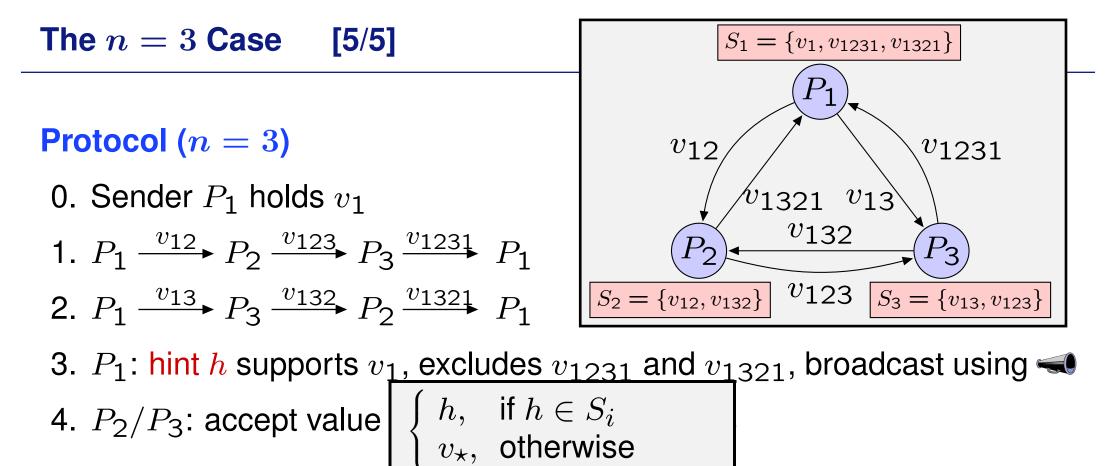
Can we do better? Yes, use better Hint



"Better" Hints

• Domain D, i.e., $v_1 \in D$, with $|D| \ge 4$

•
$$D' := D \setminus \{v_{\star}\}$$
, where $v_{\star} =$ "largest value in D ", $h \in D'$
• $h \leftarrow \begin{cases} v_1, & \text{if } v_1 \neq v_{\star} \\ v \in D' \setminus S_1, & \text{otherwise} \end{cases}$



Analysis

- Validity: P_1 and P_i honest $\rightarrow v_1 \in S_i \subseteq S_1 \rightarrow P_i$ decides on v_1
- Consistency: P_2 and P_3 honest $\rightarrow S_2 = S_3 \rightarrow$ decide the same
- Efficiency: |D'| = |D| 1
- Recursion: $|D^{(k)}| = 3$

Can we do better?								
ightarrow No!	$\phi_3(\cdot)=3$							

Outline

On the Intrinsic Complexity of Broadcast

- Warm-Up
- The n = 3 Case
- The $n \ge 4$ Case
- Conclusions

Definition

Sender P_1 inputs v_1 , every recipient P_i outputs (v_i, g_i) s.t.

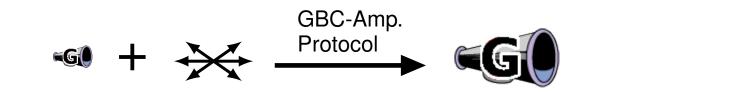
- Validity: P_1 honest $\rightarrow \forall j : v_j = v_1 \land g_j = 1$
- Consistency: P_i honest, $g_i < n \rightarrow \forall j : v_j = v_i \land g_j \leq g_i + 1$

Intuition

- Grade 1: Sender "looks" honest
- Grade 2: Sender is cheating, but other recipients might not know
- Grade 3: ... others know, but might not know that everybody knows

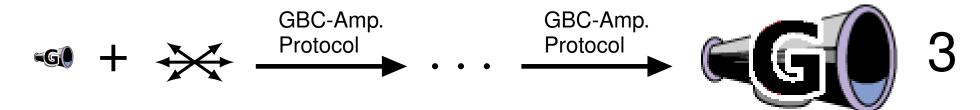
• . . .

1. Graded-Broadcast Amplification Protocol

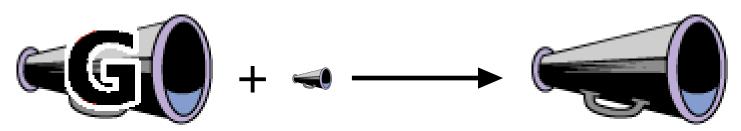


2

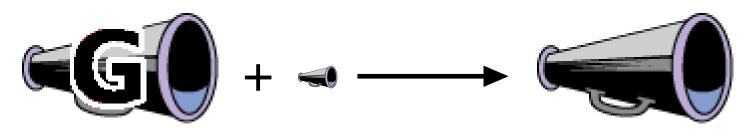
2. Recursion



3. Graded Broadcast \rightarrow Broadcast



$\textbf{Graded Broadcast} \rightarrow \textbf{Broadcast}$



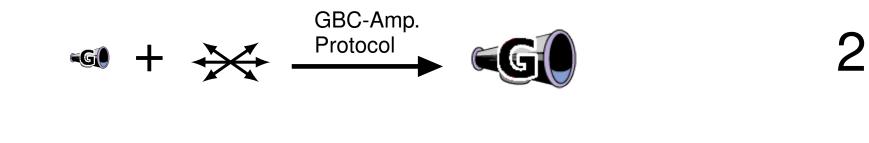
Protocol

- 0. P_i holds (v_i, g_i) (output from Graded Broadcast)
- 1. $\forall P_i : \blacktriangleleft g_i$ 2. $\forall Pi$: Accept $\begin{cases} v_i, \text{ if } \{1, \dots, g_i\} \subseteq \{g_1, g_2, \dots, g_n\} \\ \bot, \text{ otherwise} \end{cases}$

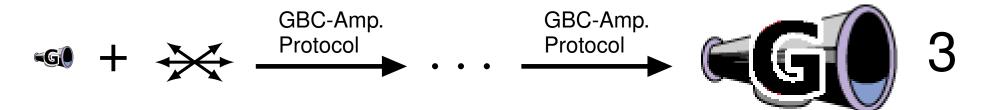
Analysis

- Validity: Trivial because $\forall P_i : (v_i, g_i) = (v_1, 1)$
- Consistency:
 - Consider honest P_i accepting v_i with smallest g_i
 - Honest $P_j \rightarrow g_i < n \rightarrow v_j = v_i$ and $g_j \leq g_i + 1 \rightarrow \text{accepts } v_j$

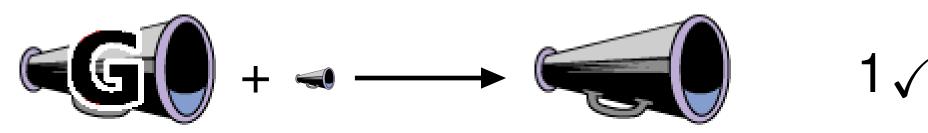
1. Graded-Broadcast Amplification Protocol



2. Recursion



3. Graded Broadcast \rightarrow Broadcast



Hint Systems

Def: A *hint system* for domain D, set $S \subset D$, value $\hat{v} \in S$: $G : (S, \hat{v}) \to h$ $V : (v, h) \to \{0, 1\}$ such that for $h \leftarrow G(S, \hat{v}), \forall v \in S : V(h, v) \Leftrightarrow (v = \hat{v})$

Intuition

- For each S, \hat{v} , there *exists* a hint h s.t.
 - \hat{v} is accepted by h, and
 - Every $v \in S \setminus \{\hat{v}\}$ is rejected by h

Properties (totally trivial)

- For any set S and a hint h, either
 - h supports no value in S,
 - -h supports one value in S, or
 - h supports multiple values in S

Hints from Universal Hashing

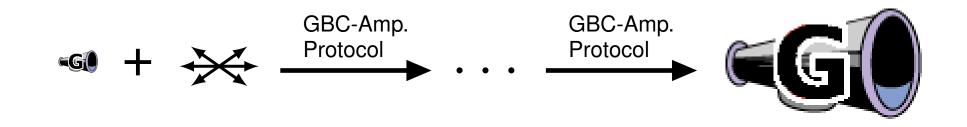
Def: A *hint system* for domain D, set $S \subset D$, value $\hat{v} \in S$: $G : (S, \hat{v}) \to h$ $V : (v, h) \to \{0, 1\}$ such that for $h \leftarrow G(S, \hat{v}), \forall v \in S : V(h, v) \Leftrightarrow (v = \hat{v})$

Construction (for $D = \{0, 1\}^{\ell}$)

- For fixed k, interpret $v \in D$ as polynomial over $GF(2^k)$ (degree ℓ/k)
- Idea: Hint h = (x, y) s.t. $\forall v \in S : f_v(x) = y \Leftrightarrow (v = \hat{v})$
- For $v \neq \hat{v}$, $f_{\hat{v}}$ and f_v coincide in at most ℓ/k positions
- For set S, $f_{\hat{v}}$ and f_v for any $v \in S$ coincide in at most $|S|\ell/k$ positions
- Choose k such that $2^k > |S|\ell/k$, e.g. $k = \log(|S|\ell)$
- Hint $h = (x, f_{\hat{v}}(x))$ for x which does not coincide within S

Analysis: Hint size: $2 \log(|S|\ell)$ bits.

Graded-Broadcast Amplification



The Protocol (Sketch)

- 0. Sender P_1 holds v_1 , recipients P_i hold nothing
- 1. 2*n*. Every P_i sends to every P_j all values he has seen so far
 - 2*n*+1. Sender $P_1 \iff$ hint *h*, recipients P_i decide on (v_i, g_i)

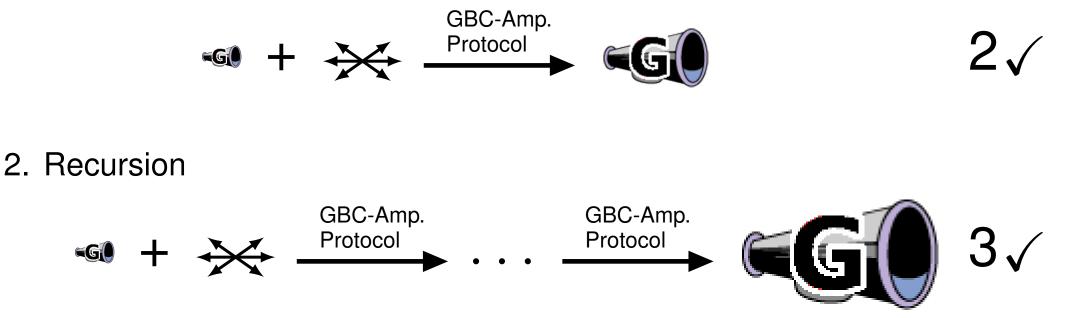
Graded Broadcast – A Protocol Execution

		1	1	1		
Rd	P_1	P ₂	• • •	P_i	• • •	\mathbf{V}_{P_n}
0	$\{v_1\}$					
1		S _{2,1}		$S_{i,1}$		$S_{n,1}$
2		S _{2,2}		$S_{i,2}$		$S_{n,2}$
3		S _{2,3}		$S_{i,3}$		$S_{n,3}$
4		S _{2,4}		$S_{i,4}$		$S_{n,4}$
2 <i>n</i> -2		S _{2,2n-2}		S _{i,2n-2}		S _{n,2n-2}
2 <i>n</i> -1		S _{2,2n-1}		$S_{i,2n-1}$		$S_{n,2n-1}$
2n	$S_{1,2n}$					

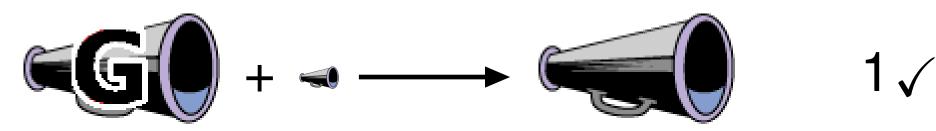
Grade: $g_i = \min g$ s.t. $S_{i,g} \dots S_{i,2n-g}$ are green

- Analysis: Validity: trivial
 - Consistency: think :-)

1. Graded-Broadcast Amplification Protocol



3. Graded Broadcast \rightarrow Broadcast



Putting things together

- Observe: $|S_{1,2n}| \leq n^{2n}$
- Hint size for $S: 2\log(|S|\ell)$ bits
- Needed hint size: $2\log(n^{2n}\ell) = 4n\log n + 2\log \ell$ bits
- Recursion: Hint size $7n \log n$ bits
- Graded Broadcast \rightarrow Broadcast: another $n \log n$ bits
- Grand total: $8n \log n$ bits

Conclusions

n = 3

- Domain size 3 (1.6 bits) is sufficient for arbitrary broadcasts
- Domain size 2 (1 bit) is not sufficient

•
$$\phi_3(\cdot) = 3$$
 $\blacksquare + 2 \blacksquare \rightarrow \blacksquare$

$n \ge 4$

- $8n \log n$ bits is sufficient for arbitrary broadcasts
- n-3 bits is not sufficient
- $n-3 \leq \log \phi_n(\cdot) \leq 8n \log n$

Remarks

- Communication through \triangleleft is independent of ℓ
- Perfect security