Arithmetic Cryptography

or

what Garbled Circuits CAN'T do

Benny Applebaum, Jonathan Avron, Christina Brzuska Tel Aviv University

Motivating Example

FHE

Factory

Option 1:
Construct three different FHEs

FHE that supports operations overs finite-precision reals

FHE that supports mod-N operations

FHE that supports operations over some field or a ring F

Motivating Example

FHE
 Factory

Clients

Option 2:
Simulate computation via Boolean circuit

FHE that supports operations overs finite-precision reals

FHE that supports mod-N operations

FHE that supports operations over some field or a ring F

- Infeasible
if there's no access to the bit-wise representation of field elements

Motivating Example

FHE

Factory

Option 3:
Arithmetic FHE ?

Clients

FHE that supports operations overs finite-precision reals

FHE that supports mod-N operations

FHE that supports operations over some field or a ring F

Arithmetic Cryptography

Expressive power:

- Can solve linear equations
- Cannot sample a Gaussian over F
- Cannot get the i-th bit of \mathbf{x}

Arithmetic Cryptography

Previous Works

- Information-theoretic primitives
- one-time pad, one-time MACs
- Secret-sharing over fields [Sha79] rings [DF94,CF02]
- MPC over fields [BGW88,CCD88]
- Randomized encoding: fields [IK00], rings [CFIK03]

Previous Works

- So far, no computational primitives in this model
- Some results in weaker models
- Given (arbitrary) bit-representation of F's elements: secure 2-party computation [NP99, IPS09]
- Given a special encryption scheme over F arithmetic garble circuits [AIK11]
- Given threshold Add-Hom-Enc over F: secure multiparty computation [FH96,CDN01,CDN03]

Our Results

Positive*

- Commitments
- Symmetric Encryption
- Public-key Encryption
- Arithmetic OT
\Rightarrow Secure 2-PC (using [IPS])
- Arithmetic model is non-trivial
- The model allows Computational Crypto

Our Results

Positive*

- Commitments
- Symmetric Encryption
- Public-key Encryption
- Arithmetic OT
\Rightarrow Secure 2-PC (using [IPS])

Negative

- Additive-Homomorphic-Enc
- Arithmetic Garbled Circuit
- Secure computation with "low" online complexity
- Separation: Arithmetic model \neq Boolean model Intuition: Easier to "analyze" arithmetic circuits
- E.g., can check if $f=g$ (polynomial identity testing)
- Algorithms for AC's \Rightarrow Attacks on Arithmetic Crypto

What does this mean?

Arithmetization Barrier: If your construction "arithmetize" then face the lower-bounds

Example 1:

Explains the limitations of LPN-based primitives as LPN-based constructions typically arithmetize (e.g., hard to base FHE on LPN see also [Br13])

What does this mean?

Arithmetization Barrier: If your construction "arithmetize" then face the lower-bounds

Example 2:

Explains why the gadget needed for [AIK11] does not have an arithmetic implementation

Also explains the communication complexity of
[CFIK00, IPS09]

What does this mean?

Arithmetization Barrier: If your construction "arithmetize" then face the lower-bounds

Example 3:

Most information-theoretic MPC's arithmetize so they cannot achieve low online complexity

Proving Lower Bounds

Private Simultaneous Messages [FKN]

Privacy: Receiver learns $g(x, y)$ and nothing else.
Goal: Minimize the communication of Alice and Bob.

Private Simultaneous Messages [FKN]

Boolean case: Alice's communication ind. of Bob's input and g's complexity. - $|A(x)|=|x|^{*}$ security-parameter or even $|x|+$ security-parameter [AIKW13]

Thm: in the Arithmetic case $|\mathrm{A}(\mathrm{x})| \geq|\mathrm{y}|$

- We will later show that $|\mathrm{A}(\mathrm{x})|$ grows with g's complexity
- Both claims generalize to standard MPC setting

Lower Bound for Affine Functions

Goal: Assuming $|A(x ; r)|<n$, the Receiver learns information about \mathbf{y}. - The receiver will output \mathbf{y}^{\star} such that $\mathbf{y}^{\star} \neq \mathbf{y}$.

Simplification: For now we disallow division gates and zero-testing

- So all parties are polynomials over F

Observations

Fix r,y,z, C(r).
Consider Alice's polynomial and the Receiver's polynomial.

Observations

Fix a sufficiently large F such that |F|>>exp(circuit-depth)
The formal (univariate) polynomials are equivalent (since the field is large)

Observations

The formal derivatives are also equivalent

Observations

The formal derivatives are also equivalent

Observations

By the chain rule $\partial_{x} P(Q(x))=\partial_{Q} P(Q(x)) * \partial_{x} Q(x)$

Key Observation

- The attacker (Rec) doesn't have Alice's polynomial.
- But has a point $\mathrm{a}_{0}=A\left(\mathrm{x}_{0}\right)$ for some x_{0} !
- There must exist a vector v_{0} such that $\mathrm{M}_{0}{ }^{*} \mathrm{v}_{0}=\mathrm{y}$
- So $y \in$ column_Span $\left(\mathrm{M}_{0}\right)$

Key Observation

Attack:

- Compute ($\mathrm{n} \times \mathrm{n}-1$) matrix M_{0}
- Bob's input y must be spanned by this matrix
- Find a vector $\mathbf{y}^{\star} \notin \operatorname{span}\left(\mathrm{M}_{0}\right)$ which is not held by Bob.
\Rightarrow Violates privacy

Coping with Is-Zero gates

Problem: If there are Is-Zero gates then the computation of Alice and Receiver is not a polynomial Sol: Eliminate zero gates

Coping with Is-Zero gates

Consider a single Is-Zero gate.
Case 1: P is the zero polynomial
\Rightarrow can eliminate the gate

Coping with Is-Zero gates

Consider a single Is-Zero gate.
Case 2: P is non-zero polynomial of degree $<\exp ($ depth $) \ll|F|$
\Rightarrow For almost all points $\mathrm{P}(\mathrm{x}) \neq 0$
\Rightarrow Eliminate the gate and get an approximation of g

Coping with Is-Zero gates

Consider a single Is-Zero gate.
Case 2: P is non-zero polynomial of degree $<$ circuit-size $\ll|F|$
\Rightarrow For almost all points $\mathrm{P}(\mathrm{x}) \neq 0$
\Rightarrow Eliminate the gate and get an approximation of g
Handle many Is-Zero gates iteratively
Attack easily generalizes to Division gates

Extension I: Shortening Bob's Input

We showed: in the Arithmetic case $|A(x)| \geq|y|$ What if both \mathbf{x} and \mathbf{y} are short?

Extension I: Shortening Bob's Input

Thm: Assume the existence of a (standard) pseudorandom generator. Then, $\forall \mathbf{c}>0$ there exists a function \mathbf{g} such that:

- Alice and Bob inputs are of length \mathbf{n}
- Alice's communication > $\mathbf{n}^{\mathbf{c}}$

Proof Idea: Let $g(x$, seed $)=x^{*} Y+Z$ where $(Y, Z)=P R G^{\prime}($ seed $)$ Low communication \Rightarrow can break the PRG
Open: Improve to a single-output function
shared randomness r

Extension II: Multiple Players

Each player holds a single input [IK97]
Equivalent to Decomposable Randomized Encoding (aka Projective Garbling Scheme [BHR])

Thm: Assume the existence of a (standard) PRG.
Then, \forall polynomial $\mathbf{m}()$ there exists a function $\mathbf{g}: \mathbf{F}^{\mathbf{n}} \rightarrow \mathbf{F}^{\mathrm{m}}$ s.t. each player has to send \mathbf{m} field elements, total communication: $\mathbf{m * n}$.
shared randomness r

Impossibility of Homomorphic Encryption

Thm [DGW09]: Let $\mathrm{g}: \mathbf{F}^{\mathrm{n}} \rightarrow \mathbf{F}^{\mathrm{m}}$ be an arithmetic circuit. The entropy of the distribution $g\left(U_{n}\right)$ can be approximated

In the binary setting this is hard

- complete for Statistical Zero Knowledge [GV99]

Impossibility of Homomorphic Encryption

- Assumption: Enc supports scalar multiplication $a \otimes \operatorname{Enc}(b) \equiv \operatorname{Enc}\left(\mathbf{a}^{*} b\right)$
- Given a challenge $c \in\{\operatorname{Enc}(0), \operatorname{Enc}(1)\}$ define:

$$
g_{c}: x \rightarrow x \otimes c
$$

- If $c=E n c(1) \Rightarrow g_{c}\left(U_{n}\right)=E\left(U_{n}\right)$ has high entropy
- If $\mathrm{c}=\mathrm{Enc}(0) \Rightarrow \mathrm{g}_{\mathrm{c}}\left(\mathrm{U}_{\mathrm{n}}\right)=\mathrm{E}(0)$ has low entropy
\Rightarrow Can break the encryption!

The argument can be extended to other primitives

A word about Positive Results

Arithmetic Public-Key based on Alekhnnovich

Public-key: (A,b)
Private-key: low-weight vector $\mathrm{e} \in \mathrm{ColSpan}(\mathrm{A}, \mathrm{b})$
Encrypt(\mathbf{x}): $\leftarrow \leftarrow \operatorname{Ker}(\mathrm{A}, \mathrm{b}), \mathrm{e}^{\prime} \leftarrow \operatorname{Weight}(\sqrt{ } \mathrm{n})$

$$
\text { output } \mathrm{C}=\mathrm{r}+\mathrm{e}^{\prime}+\mathrm{x} \cdot \mathbf{1}
$$

Decryption: <c,e>/|e|

$$
=\left(<r, e>+<e^{\prime}, e>+<x \cdot \mathbf{1}, \mathrm{e}>\right) /|e|={ }_{\text {whp }} x
$$

RLC assumption(m, ε):
(A, b) is pseudorandom

Random Code $\quad \sqrt{n}$-noisy codeword

Arithmetic Public-Key based on Alekhnnovich

Public-key: (A,b)
Private-key: low-weight vector e $\in \operatorname{ColSpan}(\mathrm{A}, \mathrm{b})$
Observation: The scheme has a "lossy mode"
If b is replaced with a random vector decryption is
computationally infeasible
$\Rightarrow(1: 2)$-Arithmetic OT
$\Rightarrow{ }_{\text {RLc }}$ Oblivious Linear Function Evaluation [NP,IPS]

RLC assumption(m, ε):
(A,b) is pseudorandom

Conclusion

- New (stronger) notion of Arithmetic Cryptography
- Captures classical information-theoretic results
- Feasibility results for computational crypto
- Non-trivial lower-bounds
- Communication complexity of MPC
- Different technique to rule out Homomorphic Encryption

Future Works: Negative

Hope: Establish stronger lower-bounds on efficient information-theoretic cryptography

- Several old (and hard) open problem

Arithmetic setting is a new promising starting point

- Easier for lower-bounds
- Meaningful as it captures natural IT-MPC

Future Works: Positive

Construct more primitives in the Arithmetic model

- Hash functions, Signatures, PRFs?

Understand the Random Linear Code assumption

RLC assumption(m, ε):
(A,b) is pseudorandom

Future Works: Positive

Construct more primitives in the Arithmetic model

- Hash functions, Signatures, PRFs?

Understand the Random Linear Code assumption

- Harder or easier than LWE?

ε-noisy codeword

Gaussian noise of width ε

