Arithmetic Cryptography or what Garbled Circuits CAN'T do

Benny Applebaum, Jonathan Avron, Christina Brzuska Tel Aviv University

Motivating Example

FHE Factory

Clients

Too much work...

Option 1: Construct three different FHEs

FHE that supports operations overs **finite-precision reals**

FHE that supports **mod-N** operations

FHE that supports operations over **some field or a ring F**

Motivating Example

FHE Factory

Clients

Option 2: Simulate computation via Boolean circuit

FHE that supports operations overs **finite-precision reals**

But Boolean simulation may be

• Expensive

cost may be much larger than log |F|

Not Modular

sensitive to the bit-representation of field elements

Infeasible

if there's no access to the bit-wise representation of field elements

FHE that supports **mod-N** operations

FHE that supports operations over **some field or a ring F**

Motivating Example

FHE Factory

Clients

Option 3: Arithmetic FHE ?

FHE that supports operations overs **finite-precision reals**

FHE that supports **mod-N** operations

Ideally:

- Design general scheme with oracle to a field/ring F
- Can be later instantiated with any concrete field

FHE that supports operations over **some field or a ring F**

Arithmetic Cryptography

Expressive power:

- Can solve linear equations
- Cannot sample a Gaussian over F
- Cannot get the i-th bit of x

Which primitives can be implemented in this model?

Previous Works

- Information-theoretic primitives
 - one-time pad, one-time MACs
 - Secret-sharing over fields [Sha79] rings [DF94,CF02]
 - MPC over fields [BGW88,CCD88]
 - Randomized encoding: fields [IK00], rings [CFIK03]

Previous Works

• So far, no computational primitives in this model

- Some results in weaker models
 - Given (arbitrary) bit-representation of F's elements: secure 2-party computation [NP99, IPS09]
 - Given a special encryption scheme over F arithmetic garble circuits [AIK11]
 - Given threshold Add-Hom-Enc over F: secure multiparty computation [FH96,CDN01,CDN03]

Our Results

Positive*

- Commitments
- Symmetric Encryption
- Public-key Encryption
- Arithmetic OT
- \Rightarrow Secure 2-PC (using [IPS])
- Arithmetic model is non-trivial

 The model allows Computational Crypto

*Assume pseudorandomness of noisy random linear code over **F** (generalization of LPN)

Our Results

Positive*

- Commitments
- Symmetric Encryption
- Public-key Encryption
- Arithmetic OT

 \Rightarrow Secure 2-PC (using [IPS])

Negative

- Additive-Homomorphic-Enc
- Arithmetic Garbled Circuit
- Secure computation with "low" online complexity

- Separation: Arithmetic model ≠ Boolean model
- Intuition: Easier to "analyze" arithmetic circuits
 - E.g., can check if f=g (polynomial identity testing)
 - Algorithms for AC's \Rightarrow Attacks on Arithmetic Crypto

What does this mean?

Arithmetization Barrier: If your construction "arithmetize" then face the lower-bounds

Example 1:

Explains the limitations of LPN-based primitives as LPN-based constructions typically arithmetize (e.g., hard to base FHE on LPN see also [Br13])

What does this mean?

Arithmetization Barrier: If your construction "arithmetize" then face the lower-bounds

Example 2:

Explains why the gadget needed for [AIK11] does not have an arithmetic implementation

Also explains the communication complexity of [CFIK00, IPS09]

What does this mean?

Arithmetization Barrier: If your construction "arithmetize" then face the lower-bounds

Example 3:

Most information-theoretic MPC's arithmetize so they cannot achieve low online complexity

Proving Lower Bounds

Private Simultaneous Messages [FKN]

Privacy: Receiver learns g(x,y) and nothing else. **Goal**: Minimize the communication of Alice and Bob.

Private Simultaneous Messages [FKN]

Boolean case: Alice's communication ind. of Bob's input and g's complexity.

• $|A(x)| = |x|^*$ security-parameter or even $|x|^+$ security-parameter [AIKW13]

Thm: in the **Arithmetic case** $|A(x)| \ge |y|$

- We will later show that |A(x)| grows with g's complexity
- Both claims generalize to standard MPC setting

Lower Bound for Affine Functions

Goal: Assuming |A(x;r)| < n, the Receiver learns information about **y**.

• The receiver will output \mathbf{y}^* such that $\mathbf{y}^* \neq \mathbf{y}$.

Simplification: For now we disallow division gates and zero-testing

• So all parties are polynomials over F

Fix r,y,z, C(r). Consider Alice's polynomial and the Receiver's polynomial.

Fix a sufficiently large F such that |F|>>exp(circuit-depth) The formal (univariate) polynomials are equivalent (since the field is large)

The formal derivatives are also equivalent

The formal derivatives are also equivalent

У

By the chain rule $\partial_x P(Q(x)) = \partial_Q P(Q(x)) * \partial_x Q(x)$

Key Observation

- The attacker (Rec) doesn't have Alice's polynomial.
- But has a point $a_0 = A(x_0)$ for some $x_0!$
- There must exist a vector v₀ such that M₀*v₀=y
- So $y \in column_Span(M_0)$

Key Observation

Attack:

- Compute (n×n-1) matrix M₀
- Bob's input **y** must be spanned by this matrix
- Find a vector $\mathbf{y}^* \notin \operatorname{span}(M_0)$ which is not held by Bob.

 \Rightarrow Violates privacy

Problem: If there are **Is-Zero** gates then the computation of Alice and Receiver is not a polynomial Sol: Eliminate zero gates

Consider a single Is-Zero gate.

Case 1: P is the zero polynomial

 \Rightarrow can eliminate the gate

Consider a single Is-Zero gate.

Case 2: P is non-zero polynomial of degree< exp(depth) << |F|

- \Rightarrow For almost all points P(x) \neq 0
- \Rightarrow Eliminate the gate and get an approximation of g

Consider a single Is-Zero gate.

Case 2: P is non-zero polynomial of degree< circuit-size << |F|

- \Rightarrow For almost all points P(x) \neq 0
- \Rightarrow Eliminate the gate and get an approximation of g

Handle many **Is-Zero** gates iteratively Attack easily generalizes to **Division** gates

Extension I: Shortening Bob's Input

We showed: in the **Arithmetic case** $|A(x)| \ge |y|$ What if both **x** and **y** are short?

Extension I: Shortening Bob's Input

Thm: Assume the existence of a (standard) pseudorandom generator. Then, $\forall c>0$ there exists a function **g** such that:

- Alice and Bob inputs are of length n
- Alice's communication > n^c

Proof Idea:Let $g(x,seed)=x^*Y+Z$ where (Y,Z)=PRG'(seed)Low communication \Rightarrow can break the PRG**Open:**Improve to a single-output function

Extension II: Multiple Players

Each player holds a single input [IK97] Equivalent to Decomposable Randomized Encoding (aka Projective Garbling Scheme [BHR])

Thm: Assume the existence of a (standard) PRG. Then, \forall polynomial **m()** there exists a function **g**:**F**ⁿ \rightarrow **F**^m s.t. each player has to send **m** field elements, total communication: **m*n**.

Impossibility of Homomorphic Encryption

Thm [DGW09]: Let $g: \mathbf{F}^n \to \mathbf{F}^m$ be an arithmetic circuit. The entropy of the distribution $g(U_n)$ can be approximated

In the binary setting this is hard

complete for Statistical Zero Knowledge [GV99]

Impossibility of Homomorphic Encryption

- Assumption: Enc supports scalar multiplication
 a⊗Enc(b) = Enc(**a***b)
- Given a challenge $c \in \{Enc(0), Enc(1)\}$ define: $g_c: x \rightarrow x \otimes c$
- If $c=Enc(1) \Rightarrow g_c(U_n)=E(U_n)$ has high entropy
- If $c=Enc(0) \Rightarrow g_c(U_n)=E(0)$ has low entropy
- \Rightarrow Can break the encryption!

The argument can be extended to other primitives

A word about Positive Results

Arithmetic Public-Key based on Alekhnnovich **Public-key:** (A,b) **Private-key:** low-weight vector e ∈ColSpan(A,b) **Encrypt(x)**: $\mathbf{r} \leftarrow \text{Ker}(A,b), \mathbf{e'} \leftarrow \text{Weight}(\sqrt{n})$ output c=r+e'+x·1 **Decryption:** <c,e>/|e| $=(<r,e>+<e',e>+<x\cdot 1,e>)/|e|=_{whp} x$

RLC assumption(m,ε): (A,b) is pseudorandom

Arithmetic Public-Key based on Alekhnnovich

Public-key: (A,b)

Private-key: low-weight vector e ∈ColSpan(A,b)

Observation: The scheme has a "lossy mode"

If b is replaced with a random vector decryption is computationally infeasible

 \Rightarrow (1:2)-Arithmetic OT

 \Rightarrow_{RLC} Oblivious Linear Function Evaluation [NP,IPS]

RLC assumption(m,ε): (A,b) is pseudorandom

Conclusion

- New (stronger) notion of Arithmetic Cryptography
 Captures classical information-theoretic results
- Feasibility results for computational crypto
- Non-trivial lower-bounds
 - Communication complexity of MPC
 - Different technique to rule out Homomorphic Encryption

Future Works: Negative

Hope: Establish stronger lower-bounds on efficient information-theoretic cryptography

- Several old (and hard) open problem

Arithmetic setting is a new promising starting point

- Easier for lower-bounds
- Meaningful as it captures natural IT-MPC

Future Works: Positive

Construct more primitives in the Arithmetic model

• Hash functions, Signatures, PRFs?

Understand the Random Linear Code assumption

RLC assumption(m,ε): (A,b) is pseudorandom

Future Works: Positive

Construct more primitives in the Arithmetic model

• Hash functions, Signatures, PRFs?

Understand the Random Linear Code assumption

• Harder or easier than LWE?

