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what Garbled Circuits CAN’T do



Motivating Example
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Option 1: 

Construct three different FHEs

Too much work…
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Option 2: 

Simulate computation via Boolean circuit 

But Boolean simulation may be 

• Expensive
cost may be much larger than log |F|

• Not Modular 
sensitive to the bit-representation of field elements

• Infeasible
if there’s no access to the bit-wise representation of 

field elements 
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Option 3: 

Arithmetic FHE ?

Ideally:
• Design general scheme with oracle to a field/ring F

• Can be later instantiated with any concrete field



Arithmetic Cryptography

Arithmetic Circuits

(Honest parties)

Arithmetic Input

x Fn

Field 

F

Random bits

Supports basic field operations

(,,, , One, Zero-Testing, Get-Random-F)

Expressive power: 

• Can solve linear equations

• Cannot sample a Gaussian over F

• Cannot get the i-th bit of x



Arithmetic Cryptography

Arithmetic Circuits

(Honest parties)

Arithmetic Input

x Fn

Field 

F

Random bits

Non-Arithmetic Adversary

Which primitives can be implemented in this model?



Previous Works

• Information-theoretic primitives 

– one-time pad, one-time MACs 

– Secret-sharing over fields [Sha79] rings [DF94,CF02]

– MPC over fields [BGW88,CCD88]

– Randomized encoding: fields [IK00], rings [CFIK03]



Previous Works

• So far, no computational primitives in this model

• Some results in weaker models

– Given (arbitrary) bit-representation of F’s elements:

secure 2-party computation [NP99, IPS09]

– Given a special encryption scheme over F

arithmetic garble circuits [AIK11]

– Given threshold Add-Hom-Enc over F: 

secure multiparty computation [FH96,CDN01,CDN03]



Our Results

Positive*

• Commitments

• Symmetric Encryption

• Public-key Encryption

• Arithmetic OT 

 Secure 2-PC (using [IPS])

*Assume pseudorandomness of

noisy random linear code over F

(generalization of LPN)

• Arithmetic model is non-trivial
– The model allows Computational Crypto



Our Results

Positive*

• Commitments

• Symmetric Encryption

• Public-key Encryption

• Arithmetic OT 

 Secure 2-PC (using [IPS])

Negative

• Additive-Homomorphic-Enc

• Arithmetic Garbled Circuit

• Secure computation with 

“low” online complexity

• Separation: Arithmetic model  Boolean model

• Intuition: Easier to “analyze” arithmetic circuits
- E.g., can check if f=g (polynomial identity testing)

- Algorithms for AC’s  Attacks on Arithmetic Crypto



What does this mean?

Example 1: 

Explains the limitations of LPN-based primitives

as LPN-based constructions typically arithmetize 

(e.g., hard to base FHE on LPN see also [Br13]) 

Arithmetization Barrier: If your construction 

“arithmetize” then face the lower-bounds



What does this mean?

Example 2: 

Explains why the gadget needed for [AIK11] does not 

have an arithmetic implementation

Also explains the communication complexity of 

[CFIK00, IPS09]

Arithmetization Barrier: If your construction 

“arithmetize” then face the lower-bounds



What does this mean?

Example 3: 

Most information-theoretic MPC’s arithmetize so they 

cannot achieve low online complexity

Arithmetization Barrier: If your construction 

“arithmetize” then face the lower-bounds



Proving Lower Bounds



Private Simultaneous Messages [FKN]

Bob

y

Alice

x

Receiver

shared randomness r

Offline

B(y;r) A(x;r) C(r)

g(x,y)

Privacy: Receiver learns g(x,y) and nothing else.

Goal: Minimize the communication of Alice and Bob.



Private Simultaneous Messages [FKN]

Boolean case: Alice’s communication ind. of Bob’s input and g’s complexity.

• |A(x)|=|x|*security-parameter or even |x|+security-parameter [AIKW13]

Bob

y

Alice

x

Receiver

shared randomness r

Offline

B(y;r) A(x;r) C(r)

g(x,y)

Thm: in the Arithmetic case |A(x)||y|

• We will later show that |A(x)| grows with g’s complexity 

• Both claims generalize to standard MPC setting



Lower Bound for Affine Functions

Bob

y,zFn

Alice

xF

Receiver

shared randomness r

Offline

B(y,z;r) A(x;r) C(r)

g(x,y)=xy+z

Goal: Assuming |A(x;r)|<n, the Receiver learns information about y.

• The receiver will output y* such that y*y.

Simplification: For now we disallow division gates and zero-testing

• So all parties are polynomials over F



Observations

Fix r,y,z, C(r). 

Consider Alice’s polynomial and the Receiver's polynomial. 

Bob

y,zFn

Alice

xF

Receiver

shared randomness r

Offline

B(y,z;r) A(x;r) C(r)

g(x,y)=xy+z



Observations

Alice:FFn-1

Rec:Fn-1Fn

a=A(x)

Fix a sufficiently large F such that |F|>>exp(circuit-depth)

The formal (univariate) polynomials are equivalent (since the field is large)

xF

gy,z:FFn

xF

xy+z





Observations

Alice:FFn-1

Rec:Fn-1Fn

a=A(x)

xF

gy,z:FFn

xF

xy+z

x x

The formal derivatives are also equivalent



Observations

Alice:FFn-1

Rec:Fn-1Fn

a=A(x)

xF

x

The formal derivatives are also equivalent

y 



Observations

x Alice:FFn-1a Rec:Fn-1Fnn-1

xF



By the chain rule xP(Q(x))=QP(Q(x))*xQ(x)

y 

Alice:FFn-1

xF



Key Observation

x Alice:FFn-1a Rec:Fn-1Fnn-1

xF

y 

a0=A(x0)Fn-1

Alice:FFn-1

xF

v0Fn-1M0Fnn-1

• The attacker (Rec) doesn’t have Alice’s polynomial. 

• But has a point a0=A(x0) for some x0!

• There must exist a vector v0 such that M0*v0=y

• So ycolumn_Span(M0)



Key Observation

x Alice:FFn-1a Rec:Fn-1Fnn-1

xF

y 

a0=A(x0)Fn-1

Alice:FFn-1

xF

v0Fn-1M0Fnn-1

Attack:

• Compute (nn-1) matrix M0

• Bob’s input y must be spanned by this matrix

• Find a vector y*span(M0) which is not held by Bob.

Violates privacy



Coping with Is-Zero gates

Alice:FFn-1

Rec:Fn-1Fn

Problem: If there are Is-Zero gates then the computation of Alice and 

Receiver is not a polynomial

Sol: Eliminate zero gates 

xF

gy,z:FFn

xF

xy+z

=



Coping with Is-Zero gates
Consider a single Is-Zero gate.

Case 1: P is the zero polynomial 

 can eliminate the gate

xF

Zero?

P(x)

gy,z:FFn

xF

xy+z

=

Yes



Coping with Is-Zero gates
Consider a single Is-Zero gate.

Case 2: P is non-zero polynomial of degree< exp(depth) << |F| 

 For almost all points P(x)0

 Eliminate the gate and get an approximation of g

xF

Zero?

P(x)

gy,z:FFn

xF

xy+z

=

No
For almost all points



Coping with Is-Zero gates
Consider a single Is-Zero gate.

Case 2: P is non-zero polynomial of degree< circuit-size << |F| 

 For almost all points P(x)0

 Eliminate the gate and get an approximation of g

Handle many Is-Zero gates iteratively

Attack easily generalizes to Division gates 

xF

Zero?

P(x)

gy,z:FFn

xF

xy+z

=

No
For almost all points

Low degree polynomial Low degree polynomial

For all points



Extension I: Shortening Bob’s Input 
We showed: in the Arithmetic case |A(x)||y|

What if both x and y are short?

Alice

x

Bob

y

Receiver

shared randomness r

Offline

A(x;r) B(y;r) C(r)

g(x,y)



Extension I: Shortening Bob’s Input 
Thm: Assume the existence of a (standard) pseudorandom generator. 

Then,  c>0 there exists a function g such that:

• Alice and Bob inputs are of length n

• Alice’s communication > nc

Alice

x

Bob

y

Receiver

shared randomness r

Offline

A(x;r) B(y;r) C(r)

g(x,y)

Proof Idea: Let g(x,seed)=x*Y+Z where (Y,Z)=PRG’(seed)

Low communication  can break the PRG

Open: Improve to a single-output function



Extension II: Multiple Players  

Thm: Assume the existence of a (standard) PRG. 

Then,  polynomial m() there exists a function g:FnFm s.t.

each player has to send m field elements, total communication: m*n.

x1F x2F

Receiver

shared randomness r

Offline

A1(x1;r) A2(x2;r) C(r)

g(x1,…,xn)

Each player holds a single input [IK97]

Equivalent to Decomposable Randomized Encoding 

(aka Projective Garbling Scheme [BHR])

xnF
…

An(xn;r)



Impossibility of Homomorphic Encryption

Thm [DGW09]: Let g:FnFm be an arithmetic circuit.

The entropy of the distribution g(Un) can be approximated.

xFn

Arithmetic 

Circuit

yFm

In the binary setting this is hard 

• complete for Statistical Zero Knowledge [GV99]



Impossibility of Homomorphic Encryption

• Assumption: Enc supports scalar multiplication

aEnc(b) Enc(a*b)

• Given a challenge c {Enc(0),Enc(1)}  define:

gc:x xc

• If c=Enc(1) gc(Un)=E(Un) has high entropy

• If c=Enc(0) gc(Un)=E(0) has low entropy

 Can break the encryption!

The argument can be extended to other primitives



A word about 

Positive Results



Arithmetic Public-Key 

based on Alekhnnovich
Public-key: (A,b)

Private-key: low-weight vector e ColSpan(A,b)

Encrypt(x): rKer(A,b), e’Weight(n)

output c=r+e’+x1

Decryption: <c,e>/|e|

=(<r,e> +<e’,e>+<x 1,e>)/|e|= whp  x

A bm=2n

n

RLC assumption(m,):

(A,b) is pseudorandom

n-noisy codewordRandom Code



Arithmetic Public-Key 

based on Alekhnnovich
Public-key: (A,b)

Private-key: low-weight vector e ColSpan(A,b)

Observation: The scheme has a “lossy mode”

If b is replaced with a random vector decryption is 

computationally infeasible

 (1:2)-Arithmetic OT

RLC Oblivious Linear Function Evaluation [NP,IPS]

A bm=2n

n

RLC assumption(m,):

(A,b) is pseudorandom

n-noisy codewordRandom Code



Conclusion

• New (stronger) notion of Arithmetic Cryptography

– Captures classical information-theoretic results

• Feasibility results for computational crypto

• Non-trivial lower-bounds

– Communication complexity of MPC

– Different technique to rule out Homomorphic 

Encryption



Future Works: Negative

Hope: Establish stronger lower-bounds on 

efficient information-theoretic cryptography

– Several old (and hard) open problem

Arithmetic setting is a new promising starting point

• Easier for lower-bounds

• Meaningful as it captures natural IT-MPC



Future Works: Positive

Construct more primitives in the Arithmetic model

• Hash functions, Signatures, PRFs?

Understand the Random Linear Code assumption

A bm

n

RLC assumption(m,):

(A,b) is pseudorandom

-noisy codewordRandom Code



Future Works: Positive

Construct more primitives in the Arithmetic model

• Hash functions, Signatures, PRFs?

Understand the Random Linear Code assumption

• Harder or easier than LWE?

A bm

n

-noisy codewordRandom Code

b



Gaussian noise of width 


