Distributed Obfuscation and Non-Interactive Secure Multiparty Computation

Amos Beimel (BGU) Ariel Gabizon (Technion) Yuval Ishai (Technion) Eyal Kushilevitz (Technion) Sigurd T. Meldgaard (Aarhus) Anat Paskin-Cherniavsky (UCLA)

1

Example: 0-robust OR

Fix p > n. All arithmetic is over GF[p].

Input: P_i is given $x_i \in \{0,1\}$. Output: P_0 gets $\lor x_i$.

Preprocessing:

- Pick random $r \in_{\mathbb{R}} GF[p] \setminus \{0\}$ and random z_i 's such that $\Sigma z_i = 0$
- Each P_i is given r, z_i .

Protocol:

- 1. Each P_i sends $m_i = r \cdot x_i + z_i$ to P_0 .
- 2. P_0 computes $\Sigma m_i = r \cdot \Sigma x_i + \Sigma z_i = r \cdot \Sigma x_i$ which determines the OR.

0-robust but not 1-robust

Example: Fully-robust OR

```
Input: P_i is given x_i \in \{0,1\}.
Output: P_0 gets \lor x_i.
```

Preprocessing:

- Pick random vectors $r_{1,0}, r_{1,1}, \dots, r_{n,0}, r_{n,1} \in_{\mathbb{R}} (\mathbb{F}_2)^{2n}$ with no linear dependency except that $\Sigma r_{i,0} = 0$. - Each P_i is given $r_{i,0}, r_{i,1}$.

Protocol:

1. Each P_i sends $m_i = r_{i,xi}$ to P_0 . 2. P_0 outputs 0 iff messages are linearly dependent.

Fully-robust: by choice of randomness

Remarks and Extensions

Meaningful for a single *f*, or a class *F* (and *f* may be hidden).

Multi-output MPC: each player sends a message to each player. Obtained by *n* invocations of basic protocol.

Malicious adversary: define ideal model (to handle rushing); deal via standard methods (unconditional one-time MAC).

Correlated Randomness: useful setup; CRS and, e.g., [Bea95,BDOZ11,IKMOP13]

An Abstract Formulation

NIMPC for function *f* consists of:

- 1. joint probability distribution $(r_1,...,r_n) \in_{\mathbb{R}} R$
- 2. *n* encoding functions $m_i = \text{Enc}_i(x_i, r_i)$

Correctness: from $\{m_i\}_{i \in [n]}$ can efficiently recover $f(x_1, ..., x_n)$. T-robustness: $\{m_i\}_{i \notin T}, \{r_i\}_{i \in T}$ gives same information on $\{x_i\}_{i \notin T}$ as oracle access to $f_{\{xi : i \notin T\}}(\{x_i\}_{i \in T})$

Boolean case: just $m_{i,0}$, $m_{i,1}$ for all $i \in [n]$ (where $m_{i,b} = \text{Enc}_i(b,r_i)$).

Motivation

0-robustness ≡ Private Simultaneous Messages (PSM) model [FKN94]

Lots of work on reducing interaction, and eliminating "simultaneous interaction" in secure MPC [HLP11].

Our is completely non-interactive and uses general correlated randomness and gives IT-security.

Best-possible security for Non-Interactive secure computation

Relation with Obfuscation

Obfuscation: randomized mapping from a circuit/program $c \in C$ to some equivalent c' that hides c except I-O relation

NIMPC \Rightarrow Obfuscation:

Use fully robust NIMPC for the universal function for *C*.

 $U_{C}(c_{1},...,c_{m},x_{1},...,x_{n}) = c(x)$ Get pairs $(a_{1,0}, a_{1,1}),..., (a_{m,0}, a_{m,1})$ and $(b_{1,0}, b_{1,1}),..., (b_{n,0}, b_{n,1}).$ Output $a_{1,c1},...,a_{m,cm}$, and $(b_{1,0}, b_{1,1}),..., (b_{n,0}, b_{n,1}).$

Idea: functionality via correctness; hiding via T-robustness, where T = x-players.

Relation with Obfuscation (cont.)

Differences: NIMPC non-trivial also for single *f*, for learnable functions, and in information-theoretic setting.

Negative results for obfuscation \Rightarrow negative results for NIMPC. e.g., no efficient, fully-robust, IT-NIMPC for NC¹ unless PH collapses [GR07].

Relation with Multi-Input Functional Encryption

Functional Encryption (FE): E(x) such that for $f \in F$ can produce SK_f that allows deciphering f(x) but nothing else.

Multi-Input Functional Encryption (MIFE): like FE but *f* gets multiple ciphertexts.

MIFE stronger than NIMPC: reusable

Recent ind-obfuscation candidate [GGHRSW13] + MIFE from indobfuscation [GGGJKLSSZ14] \Rightarrow Computationally secure, fully robust NIMPC under strong assumptions.

In contrast allowing one-time use + correlated randomness meaningful in IT case.

Our Results

Fully robust protocol for all functions, w/communication poly in size of input domain.

Fully robust, efficient protocol for group products $f_G(x_1,...,x_n) = x_1 \cdot x_2 \cdot ... \cdot x_n$.

t-robust protocol for symmetric functions, w/communication $n^{O(t)}$.

Negative: known PSM and garbling protocols, not even 1-robust.

Full robustness: by choice of r_i 's.

Example: Group Product (possibly non-abelian G)

```
Input: P_i is given x_i \in G.
Output: P_0 gets \prod x_i.
```

Preprocessing:

- Pick random $r_1, ..., r_{n-1} \in_{\mathbb{R}} G$, and set $r_0 = r_n = 1$. - P_i is given, for each $g \in G$, the value $m_{i,g} = (r_{i-1})^{-1} \cdot g \cdot r_i$.

Protocol: 1 Each P sends r

1. Each P_i sends $m_{i,xi}$ to P_0 . 2. P_0 computes $\prod m_{i,xi} = \prod (r_{i-1})^{-1} \cdot x_i \cdot r_i = \prod x_i$.

Full robustness: proof in non-Abelian case is involved.

```
Fully-robust Protocol for all functions
Step 1: Fully robust NIMPC for
          H = \{h_a \mid h_a(x) = 1 \text{ iff } x = a\} \cup \{z(x) = 0 \text{ for all } x\}
(also hides h itself).
Input: P_i is given x_i \in \{0,1\}.
Output: P_0 gets h(x) (for h \in H).
Preprocessing:
– Pick random vectors r_{1,0}, r_{1,1}, \dots, r_{n,0}, r_{n,1} \in_{\mathbb{R}} (\mathbb{F}_2)^{2n}. If h=z then no
linear dependencies; if h=h_a no dependencies except that \Sigma r_{i,ai}=0.
-P_{i} is given r_{i,0}, r_{i,1}.
Protocol:
1. Each P_i sends m_i = r_{i,xi} to P_0.
2. P_0 outputs 1 iff messages are linearly dependent.
```

Note: if $\{x_i\}_{i \notin T}$ consistent with *a* then T learns a_T .

Fully-robust Protocol for all functions (Step 2)

Idea: for arbitrary $f: X^n \to \{0,1\}$, write $f = \sum_{a: f(a)=1} h_a$, and use above protocol for each h_a .

Problems:

- 1. Reveals number of 1's of *f*.
- 2. When f(x)=1 not supposed to learn *a* for which $h_a(x)=1$.

Solutions:

1. Let $h'_a = h_a$ if f(a) = 1 and $h'_a = z$ otherwise. Write $f = \sum_a h'_a$. 2. Randomly permute the order.

Symmetric Functions

 $f: \{0,1\}^n \rightarrow \{0,1\}$ is symmetric if $f(x_1,...,x_n) = h(\Sigma x_i)$.

We show *t*-robust protocol w/complexity $n^{O(t)}$. This talk: *t*=1.

High level view:

- 1. For $G=Z_{n+1}$ protocol for $f':G^n \rightarrow \{0,1\}$ s.t. $f'(x_1,...,x_n)=h(\Sigma x_i)$.
- 2. Same as 1, exact that input of a designated P_i forced to $\{0,1\}$.
- 3. Additively set For $j \in [n]$, computed and $f_1(x_2,...,x_n) = f(0,x_2,...,x_n)$ restricted to { Idea: $T = \{P_0, P_j\}$ $h_i(s), h_i(s+1),..., h$ Outputs randomly permuted and masked. Let P_1 choose the correct execution and un-mask the relevant output.

Details for Step 1

Starting point -- Branching-program based PSM of [IK97]: Let $M_{i,b}$ corresponds to edges of BP for *f* labeled by " x_i =b". Each P_i gets $m_{i,0}$ =L·M_{i,0}·R + Z_i, $m_{i,1}$ =L·M_{i,1}·R + Z_i, for random Z_i's s.t. ΣZ_i =0, and random non-singular L,R. P_0 gets messages $m_{i,xi}$, computes $\Sigma m_{i,xi}$ = L·M_x·R, where $M_x = \Sigma M_{i,xi}$, from which it learns rank (M_x) =f(x).

Details for Step 1 (cont.)

[IK97] not 1-robust:

T={ P_0, P_i } learn (information on) L,R from P_i 's messages $m_{i,0}$ =L·M_{i,0}·R + Z_i, $m_{i,1}$ =L·M_{i,1}·R + Z_i, by computing

 $m_{i,0}$ - $m_{i,1}$ =L·(M_{i,0}-M_{i,1})·R.

Using L,R, player P_0 recovers M_x from L·M_x·R, which gives all matrices {M_{i,xi}} (i.e., all inputs).

Details for Step 1 (cont.)

Idea: [IK97] on B'=randomization of B, via level-by-level shift. Connect node *a* at level *i* to $a+x_i+r_i$ (rather than $a+x_i$), with r_i 's random s.t. $\Sigma r_i=0$.

 \Rightarrow M_x gives a random path in B' that reveals only shifted truth table.

Summary

We introduce the notion of robust NIMPC, with various connections to other primitives.

We present NIMPC protocols for various classes of functions.

Open: more protocols, improved complexity,....

Thank you!