Reconstructing a Shared Secret in the Presence of Faulty Shares

A Survey

Serge Fehr
CWI Amsterdam
WWW.CWi.nl/~fehr

(t-out-of-n) Secret Sharing

secret:

shares:
s_{1}
s_{2}
...
s_{n}

Privacy: any t shares give no information on s

$$
s_{1} \quad s_{2} \ldots s_{t} \quad \rightarrow \text { ? }
$$

(Reconstructability: any $t+1$ shares uniquely determine s

$$
s_{1} \quad s_{2} \quad \cdots \quad s_{t+1} \quad \Longrightarrow s
$$

Shamir's Secret Sharing Scheme [Sha79]

secret:
$s \in \mathbb{F} f(X)=s+a_{1} X+\ldots+a_{t} X^{t} \in \mathbb{F}[X]$
shares: $\quad s_{1}=f\left(x_{1}\right) \quad \ldots \quad s_{n}=f\left(x_{n}\right) \quad\left(x_{i} \neq x_{j} \neq 0 \forall i \neq j\right)$

* Privacy and reconstructability follow from Lagrange interpolation
* Here and in general:
reconstructability requires correct shares

Robust Secret Sharing

secret:
shares:

$s_{1} \quad s_{2}$

Note:
assume dealer to be honest
s_{n}

* Privacy: any t shares give no information on s

$$
\begin{array}{ccc}
s_{1} & \cdots & s_{t} \quad \longrightarrow ? ~
\end{array}
$$

* Robust reconstructability:
the set of all n shares determines s, even if t of them are faulty

$$
\begin{array}{cccccc}
\hat{s}_{1} & \cdots & \hat{s}_{t} & s_{t+1} & \cdots & s_{n}
\end{array} \quad \Longrightarrow s
$$

Application: Secure Data Storage

(Im)possibility

This talk: $n=2 t+1$, with unconditional security

Known Schemes

\& Rabin \& Ben-Or (1989):

- Overhead in share size: $O(k \cdot n \cdot \log n)$
- Computational complexity: poly(k, n)
\& Cramer, Damgård \& F (2001), based on Cabello, Padró \& Sáez (1999), generalized by Kurosawa \& Suzuki (2009):
- Overhead in share size: $O(k \cdot \log n+n)$ (). (lower bound: $\Omega(k)$)
- Computational complexity: $\exp (n)$
\& Cevallos, F, Ostrovsky \& Rabani (2012):
- Overhead in share size: $O(k+n \cdot \log n) \odot$
- Computational complexity: poly (k, n) ©

Further Outline

\& Introduction

\& The (simple) case $t<n / 3$

* The Rabin \& Ben-Or scheme
* The CDF 2001 scheme
© The CFOR 2012 scheme, and discussion of proof
* Conclusion

The (Simple) Case $n=3 t+1$

Reed-Solomon decoding: If $e \leq r$ (satisfied here) then

- f is uniquely determined from $s_{1}, \ldots, \hat{s}_{n}$
- f can be efficiently computed (Berlekamp-Welch)

The Rabin \& Ben-Or Scheme ($n=2 t+1$)

Sharing phase:

$$
s \in \mathbb{F}
$$

$$
f(X)=s+a_{1} X+\ldots+a_{t} X^{t} \in \mathbb{F}[X]
$$

$s_{1}=f\left(x_{1}\right)$
κ_{11} y_{11} \vdots \vdots \vdots \vdots \vdots \vdots $\kappa_{1 n}$ $y_{1 n}$

ఖ MAC security: for any $\hat{s}_{i} \neq s_{i}$ and $\hat{y}_{i j}: P\left[\hat{y}_{i j}=M A C_{\kappa_{j i}}\left(\hat{s_{i}}\right)\right] \leq \varepsilon$.
Example: $\kappa_{i j}=\left(\alpha_{i j}, \beta_{i j}\right) \in \mathbb{F}^{2}$ and $y_{i j}=M A C_{\kappa_{j i}}\left(s_{i}\right)=\alpha_{i j} \cdot s_{i}+\beta_{i j}$.

* For error probability $\varepsilon \leq 2^{-k}$:
- bit size $\left|\kappa_{i j}\right|,\left|y_{i j}\right| \geq k$
- overhead per share (above Shamir share): $\Omega(k \cdot n)$

The Rabin \& Ben-Or Scheme ($n=2 t+1$)

Sharing phase:

...

$$
f(X)=s+a_{1} X+\ldots+a_{t} X^{t} \in \mathbb{F}[X]
$$

$s_{1}=f\left(x_{1}\right)$

κ_{11}	y_{11}
\vdots	\vdots
\vdots	\vdots
\vdots	\vdots
$\kappa_{1 n}$	$y_{1 n}$

Reconstruction phase:

1. For every share s_{i} : accept s_{i} iff it is consistent with keys of $\geq t+1$ players,

$$
\text { (meaning } \#\left\{j \mid y_{i j}=M A C_{\kappa_{j i}}\left(s_{i}\right)\right\} \geq t+1 \text {) }
$$

2. Reconstruct s using the accepted shares s_{i}.

Analysis

Correct share si of honest player:
will be consistent with all $t+1$ honest players
=> will be accepted
Incorrect share \hat{s}_{i} of dishonest player:
will be consistent with $\leq t$ players (except with prob. $(t+1) \cdot \varepsilon$)
=> will be rejected

Reconstruction phase:

1. For every share s_{i} : accept s_{i} iff it is consistent with keys of $\geq t+1$ players,

$$
\text { (meaning } \#\left\{j \mid y_{i j}=M A C_{\kappa_{j i}}\left(s_{i}\right)\right\} \geq t+1 \text {) }
$$

2. Reconstruct s using the accepted shares s_{i}.

The CDF 2001 Scheme

Sharing phase:

$$
s \in \mathbb{F}, r \in \mathbb{F} \text { and } p=s \cdot r \in \mathbb{F}
$$

$s_{1}=f\left(x_{1}\right)$	\ldots	s_{i}	\ldots	s_{n}
$r_{1}=g\left(x_{1}\right)$	\ldots	r_{i}	\ldots	r_{n}
$p_{1}=h\left(x_{1}\right)$	\ldots	p_{i}	\ldots	p_{n}

Reconstruction phase:

For every $A \subset\{1, \ldots, n\}$ with $|A|=t+1$:

- reconstruct s^{\prime}, r^{\prime} and p^{\prime} from $\left(s_{i}\right)_{i \in A},\left(r_{i}\right)_{i \in A}$ and $\left(p_{i}\right)_{i \in A}$
- if $s^{\prime} \cdot r^{\prime}=p^{\prime}$ then output s^{\prime} and halt

Note: Running time is exponential in n

Analysis

For any A in the loop:

- if A contains only honest players then $s^{\prime} \cdot r^{\prime}=s \cdot r=p=p^{\prime}$.
- if A contains an incorrect share \hat{s}_{i} so that $s^{\prime} \neq s$, then

$$
P\left[s^{\prime} \cdot r^{\prime}=p^{\prime}\right] \leq 1 /|\mathbb{F}| .
$$

Setting $|\mathbb{F}| \geq 2^{k+n}$ gives error probability $\leq 2^{-k}$.

Proof

By linearity, adversary knows $\Delta s=s^{\prime}-s, \Delta r=r^{\prime}-r$ and $\Delta p=p^{\prime}-p$. Also, we may assume that he knows s.
The equality $s^{\prime} \cdot r^{\prime}=p^{\prime}$ implies that

$$
r=(\Delta p-s \cdot \Delta r-\Delta s \cdot \Delta r) / \Delta s,
$$

i.e., it requires the adversary to correctly guess r.

The CDF 2001 Scheme

Sharing phase:

$$
s \in \mathbb{F}, r \in \mathbb{K} \text { and } p=A M D(r, s) \in \mathbb{K}
$$

$s_{1}=f\left(x_{1}\right)$	\ldots	s_{i}	\ldots	s_{n}
$r_{1}=g\left(x_{1}\right)$	\ldots	r_{i}	\ldots	r_{n}
$p_{1}=h\left(x_{1}\right)$	\ldots	p_{i}	\ldots	p_{n}

Generalization/Abstraction:

- algebraic manipulation detection (AMD) codes
- introduced by Cramer, Dodis, F, Padró \& Wichs (2008)
- gives flexibility between \mathbb{F} and \mathbb{K} (and thus k)
- e.g.: $\mathbb{F}=$ degree- d extension of \mathbb{K} (so that $\mathbb{F} \cong \mathbb{K}^{d}$ as \mathbb{K}-VS's), and

$$
A M D\left(r,\left(s_{1}, \ldots, s_{d}\right)\right)=s_{1} \cdot r+s_{2} \cdot r^{2}+\ldots+s_{d} \cdot r^{d}+r^{d+2}
$$

Further Outline

```
# Introduction
* The (simple) case t <n/3
* The Rabin & Ben-Or scheme
% The CDF 2001 scheme
$ The CFOR 2012 scheme, and discussion of proof
* Conclusion
```


The CFOR 2012 Scheme

Sharing phase:
$s \in \mathbb{F}$
...

© Use small tags and keys $\left|\kappa_{i j}\right|,\left|y_{i j}\right|=\tilde{\mathrm{O}}(k / n+1$) (instead of $\mathrm{O}(k)$)
Gives: overhead per share: $n \cdot \tilde{O}(k / n+1)=\tilde{O}(k+n)$
\& Problem:

- MAC has weak security
- incorrect shares may be consistent with some honest players
- Rabin \& Ben-Or reconstruction fails

The CFOR 2012 Scheme

Sharing phase:

$s_{1}=f\left(x_{1}\right)$

κ_{11}	y_{11}
\vdots	\vdots
\vdots	\vdots
\vdots	\vdots
$\kappa_{1 n}$	$y_{1 n}$

\& Use small tags and keys $\left|\kappa_{i j}\right|,\left|y_{i j}\right|=\tilde{\mathrm{O}}(k / n+1$) (instead of $\mathrm{O}(k)$)
Gives: overhead per share: $n \cdot \tilde{O}(k / n+1)=\tilde{O}(k+n)$

* Problem
- MAC Need: better reconstruction procedure
- incorrect shares may be consistent with some honest players
- Rabin \& Ben-Or reconstruction fails

Improving the Reconstruct Procedure

* Example: Say that
- $\left\{j \mid y_{1 j}=M A C_{\kappa_{11}}\left(s_{1}\right)\right\}=\{1, \ldots, n\} \quad \rightarrow$ accept s_{1}
- $\left\{j \mid y_{2 j}=M A C_{\kappa_{j 2}}\left(s_{2}\right)\right\}=\{1, \ldots, t+1\} \quad \rightarrow$ accept s_{2}
- $\left\{j \mid y_{3 j}=M A C_{\kappa_{j 3}}(s 3)\right\}=\{2, \ldots, t+1\} \quad \rightarrow$ reject s_{3}
\& s_{2} is consistent with $\leq t$ honest players (as player 3 is dishonest) => s2 stems from dishonest player
\& Rabin \& Ben-Or reconstruction: accepts 52
* Our new reconstruction: will rejects s_{2}

Improving the Reconstruct Procedure

* Example: Say that

The CFOR Reconstruction Procedure

```
(Init) Set Good \(:=\{1, \ldots, n\}\)
(Loop) For every \(i \in\) Good:
                        if \(\#\left(j \in G o o d D y_{i j}=M A C_{\kappa_{j i}}\left(s_{i}\right)\right\} \leq t\) then
                                    - set Good:= Good \(\backslash\{i\rangle\)
                                    - redo (Loop)
(Dec) Set \(s:=\) Reed-Solomon \(\left.\left(\left\{s_{i}\right\}_{i \in G o o d}\right\}\right)\)
```

Main Theorem. If $M A C$ is ε-secure then our scheme is δ-robust with

$$
\left.\delta \leq e \cdot((t+1) \cdot \varepsilon)^{(t+1) / 2} \quad \quad \text { (where } e=\exp (1)\right)
$$

Corollary. Using MAC with $\left|\kappa_{i j}\right|,\left|y_{i j}\right|=O(k / n+\log n)$ gives $\delta \leq 2^{-\Omega(k)}$ and overhead in share size $O(k+n \cdot \log n)$.

What Makes the Proof Tricky

1. Optimal strategy for dishonest players is unclear

* In Rabin \& Ben-Or: an incorrect share for every dishonest player
\& Here: some dishonest players may hand in correct shares
* Such a passive dishonest player:
- stays in Good
- can support (i.e. vote for) bad shares
\& The more such passive dishonest players:
- the easier it gets for bad shares to survive
- the more bad shares have to survive to fool RS decoding (\# bad shares > \# correct shares of dishonest players)
* Optimal trade-off: unclear

What Makes the Proof Tricky

2. Circular dependencies

* Whether $\hat{s_{i}}$ gets accepted depends on whether $\hat{s_{j}}$ gets accepted ...
© ... and vice versa
- Cannot analyze individual bad shares
* If we try, we run into a circularity

The Proof

Notation:

- $\mathcal{A} / \mathcal{P} / \mathcal{H}=$ active/passive cheaters, and honest players where (wlog) $|\mathcal{A}|+|\mathcal{P}|=t$ and $|\mathcal{H}|=t+1$
- \mathcal{S} = players that survive checking phase (clearly: $\mathcal{P}, \mathcal{H} \subseteq \mathcal{S}$)

Observations:

- Error probability upper bounded by $\delta=P[|\mathcal{A} \cap \mathcal{S}|>|\mathcal{P}|]$
- $\delta=0$ if $|\mathcal{A}| \leq|\mathcal{P}|$. Thus: may assume $a:=|\mathcal{A}|>t / 2$

Actual proof:

$$
\begin{aligned}
& P[|\mathcal{A} \cap \mathcal{S}|>|\mathcal{P}|]=\sum_{\ell=1 \mid P+1}^{i} P[|\mathcal{A} \cap \mathcal{S}|=\ell] \\
& \leq \sum_{\ell} P\left[\exists \mathcal{A}^{\prime} \in\binom{\mathcal{A}}{\ell} \forall i \in \mathcal{A}^{\prime} \quad \exists \mathcal{H}^{\prime} \in\binom{\mathcal{H}}{a-\ell+1} \forall j \in \mathcal{H}^{\prime} \hat{\eta_{i j}=M A C_{\kappa_{j i}}\left(\hat{s_{i}}\right)}\right] \\
& \leq \sum_{\ell} \sum_{\mathcal{A}^{\prime} \in(\hat{\ell})} P\left[\forall i \in \mathcal{A}^{\prime} \exists \ldots \forall \ldots\right] \leq \sum_{\ell} \sum_{\mathcal{A}^{\prime} \in\left(\begin{array}{c}
(\ell) \\
\ell
\end{array} \prod_{i \in \mathcal{A}^{\prime}} P[\exists \ldots \forall \ldots] \leq \ldots\right.} \\
& \leq \sum_{\ell}\binom{a}{\ell} \cdot\left(\binom{t+1}{a-\ell+1} \cdot \varepsilon^{a-\ell+1}\right)^{\ell} \leq \ldots \leq e \cdot((t+1) \cdot \varepsilon)^{(t+1) / 2}
\end{aligned}
$$

Summary

* Three known robust secret sharing schemes for $n=2 t+1$

Newest one (CFOR 2012) has

- small overhead $O(k+n \cdot \log n)$ in share size, and
- efficient sharing and reconstruction procedures
\& Is simple and natural adaptation of Rabin \& Ben-Or
\& Proof is non-standard and non-trivial
* Open problems:
- Scheme with overhead $O(k)$ (= proven lower bound)
- Non-threshold access/adversary structure

