
Reconstructing a Shared Secret
in the Presence of Faulty Shares

A Survey

Serge Fehr
CWI Amsterdam

www.cwi.nl/~fehr

http://www.cwi.nl/~fehr
http://www.cwi.nl/~fehr

 (t-out-of-n) Secret Sharing

secret:

shares: s1 s2 � sn

Privacy: any t shares give no information on s

Reconstructability: any t+1 shares uniquely determine s

s1 s2 � st ?

s1 s2 � st+1 s

s ! S

 Shamir’s Secret Sharing Scheme [Sha79]

secret:

shares:

s ! F

s1 = f(x1) � sn = f(xn)

Privacy and reconstructability follow from Lagrange interpolation

f(X) = s+a 1X+...+atX
t ! F[X]

Here and in general:
 reconstructability requires correct shares

(xi " xj " 0 # i "j)

 Robust Secret Sharing

secret:

shares:

s

s1 s2 � sn

Privacy: any t shares give no information on s
s1 � st ?

ˆs1̂

Robust reconstructability:
 the set of all n shares determines s, even if t of them are faulty

� st+1 sst sn�

Note:
assume dealer to be honest

 Application: Secure Data Storage

user

servers

�

data

 Application: Secure Data Storage

user

servers

s1 s2

�

snsn-1

 Application: Secure Data Storage

user

servers

s1 s2

�

snsn-1

= ?

 Application: Secure Data Storage

user

servers

�

snsn-1

= ?

s1̂ s2̂

 (Im)possibility

t

easy tricky impossible

0 n/3 n/2 n

plain Shamir sharing
plus RS decoding,

no error probability
additional checking data needed,
positive error probability: 2$k

This talk: n = 2t+1, with unconditional security

 Known Schemes

Rabin & Ben-Or (1989):
Overhead in share size: O(k·n·logn) �
Computational complexity: poly(k,n) �

Cramer, Damgård & F (2001), based on Cabello, Padró & Sáez (1999),
generalized by Kurosawa & Suzuki (2009):

Overhead in share size: O(k·logn+n) � (lower bound: !(k))
Computational complexity: exp(n) �

Cevallos, F, Ostrovsky & Rabani (2012):
Overhead in share size: O(k+n·logn) �
Computational complexity: poly(k,n) �

 Further Outline

Introduction

The (simple) case t < n/3

The Rabin & Ben-Or scheme

The CDF 2001 scheme

The CFOR 2012 scheme, and discussion of proof

Conclusion

snˆ

 The (Simple) Case n = 3t+1

s ! F

s1=f(x1)

f(X) = s+a 1X+...+atX
t ! F[X]

� �s2t+1 sn$t+1ˆst+1 st+2 �

t+1 correct shares
-> determines f

r=t redundant
correct shares e=t faulty shares

Reed-Solomon decoding: If e % r (satisfied here) then
f is uniquely determined from s1, . . . ,sn

f can be efficiently computed (Berlekamp-Welch)
ˆ

sn�

 The Rabin & Ben-Or Scheme (n = 2t+1)
s ! F

s1=f(x1)

f(X) = s+a 1X+...+atX
t ! F[X]

� si sj�
"11

⋮
⋮
⋮

"1n

y11

⋮
⋮
⋮

y1n

"i1

⋮
⋮
"ij

⋮
"in

yi1

⋮
⋮
yij

⋮
yin

"j1

⋮
"ji

⋮
⋮
"jn

yj1

⋮
yji

⋮
⋮
yjn

"n1

⋮
⋮
⋮

"nn

yn1

⋮
⋮
⋮

ynn

yij = MAC"ji(si)

Sharing phase:

MAC security: for any si " si and yij : P[yij = MAC"ji(si)] % #.

Example: "ij = ($ij,%ij) ! F2 and yij = MAC"ji(si) = $ij ·si + %ij.

For error probability # % 2$k :
bit size |"ij|,|yij| & k

overhead per share (above Shamir share): !(k·n)

ˆ ˆ ˆ ˆ

sn�

 The Rabin & Ben-Or Scheme (n = 2t+1)

� si sj�
"11

⋮
⋮
⋮

"1n

y11

⋮
⋮
⋮

y1n

"i1

⋮
⋮
"ij

⋮
"in

yi1

⋮
⋮
yij

⋮
yin

"j1

⋮
"ji

⋮
⋮
"jn

yj1

⋮
yji

⋮
⋮
yjn

"n1

⋮
⋮
⋮

"nn

yn1

⋮
⋮
⋮

ynn

Reconstruction phase:
1. For every share si :

 accept si iff it is consistent with keys of & t+1 players,
 (meaning #{j | yij = MAC"ji(si)} & t+1)

2.Reconstruct s using the accepted shares si .

s ! F
f(X) = s+a 1X+...+atX

t ! F[X]
Sharing phase:

yij = MAC"ji(si)

s1=f(x1)

sn�

 The Rabin & Ben-Or Scheme (n = 2t+1)

� si sj�
"11

⋮
⋮
⋮

"1n

y11

⋮
⋮
⋮

y1n

"i1

⋮
⋮
"ij

⋮
"in

yi1

⋮
⋮
yij

⋮
yin

"j1

⋮
"ji

⋮
⋮
"jn

yj1

⋮
yji

⋮
⋮
yjn

"n1

⋮
⋮
⋮

"nn

yn1

⋮
⋮
⋮

ynn

Reconstruction phase:
1. For every share si :

 accept si iff it is consistent with keys of & t+1 players,
 (meaning #{j | yij = MAC"ji(si)} & t+1)

2.Reconstruct s using the accepted shares si .

s ! F
f(X) = s+a 1X+...+atX

t ! F[X]
Sharing phase:

yij = MAC"ji(si)

s1=f(x1)

Analysis
Correct share si of honest player:
 will be consistent with all t+1 honest players
 => will be accepted
Incorrect share of dishonest player:
 will be consistent with % t players (except with prob. (t+1)·#)
 => will be rejected

sî

sn�

 The CDF 2001 Scheme

� si

s ! FSharing phase:

s1 = f(x1)

, r ! F and p = s·r ! F

rn�� rir1 = g(x1)

pn�� pip1 = h(x1)

Reconstruction phase:
For every A ' {1,...,n} with |A| = t+1 :
 - reconstruct s!, r! and p! from (si)i !A , (ri)i !A and (pi)i !A
 - if s!·r! = p! then output s! and halt

Note: Running time is exponential in n

sn�

 The CDF 2001 Scheme

� si

s ! FSharing phase:

s1 = f(x1)

, r ! F and p = s·r ! F

rn�� rir1 = g(x1)

pn�� pip1 = h(x1)

Reconstruction phase:
For every A ' {1,...,n} with |A| = t+1 :
 - reconstruct s!, r! and p! from (si)i !A , (ri)i !A and (pi)i !A
 - if s!·r! = p! then output s! and halt

Note: Running time is exponential in n

Analysis
For any A in the loop:
 - if A contains only honest players then s!·r! = s·r = p = p!.
 - if A contains an incorrect share so that s! " s , then

 P[s!·r! = p!] % 1/|F| .

Setting |F| & 2k+n gives error probability % 2-k .

sî

Proof
By linearity, adversary knows &s = s!$s , &r = r!$r and &p = p!$p .
Also, we may assume that he knows s .
The equality s!·r! = p! implies that
 r = (&p $s·&r $&s·&r)/&s ,
i.e., it requires the adversary to correctly guess r .

sn�

 The CDF 2001 Scheme

� si

s ! FSharing phase:

s1 = f(x1)

, r ! K and p = AMD(r,s) ! K

rn�� rir1 = g(x1)

pn�� pip1 = h(x1)

Generalization/Abstraction:
- algebraic manipulation detection (AMD) codes
- introduced by Cramer, Dodis, F, Padró & Wichs (2008)
- gives flexibility between F and K (and thus k)
- e.g.: F = degree-d extension of K (so that F (Kd as K-VS’s), and

AMD(r,(s1,...,sd)) = s1·r + s2·r
2 +... + sd·r

d + rd+2

 Further Outline

Introduction

The (simple) case t < n/3

The Rabin & Ben-Or scheme

The CDF 2001 scheme

The CFOR 2012 scheme, and discussion of proof

Conclusion

sn�

 The CFOR 2012 Scheme

� si sj�
"11

⋮
⋮
⋮

"1n

y11

⋮
⋮
⋮

y1n

"i1

⋮
⋮
"ij

⋮
"in

yi1

⋮
⋮
yij

⋮
yin

"j1

⋮
"ji

⋮
⋮
"jn

yj1

⋮
yji

⋮
⋮
yjn

"n1

⋮
⋮
⋮

"nn

yn1

⋮
⋮
⋮

ynn

s ! F
f(X) = s+a 1X+...+atX

t ! F[X]
Sharing phase:

yij = MAC"ji(si)

s1=f(x1)

Use small tags and keys |"ij|,|yij| = Õ(k/n +1) (instead of O(k))
Gives: overhead per share: n·Õ(k/n +1) = Õ(k +n)

Problem:
MAC has weak security
incorrect shares may be consistent with some honest players
Rabin & Ben-Or reconstruction fails

sn�

 The CFOR 2012 Scheme

� si sj�
"11

⋮
⋮
⋮

"1n

y11

⋮
⋮
⋮

y1n

"i1

⋮
⋮
"ij

⋮
"in

yi1

⋮
⋮
yij

⋮
yin

"j1

⋮
"ji

⋮
⋮
"jn

yj1

⋮
yji

⋮
⋮
yjn

"n1

⋮
⋮
⋮

"nn

yn1

⋮
⋮
⋮

ynn

s ! F
f(X) = s+a 1X+...+atX

t ! F[X]
Sharing phase:

yij = MAC"ji(si)

s1=f(x1)

Use small tags and keys |"ij|,|yij| = Õ(k/n +1) (instead of O(k))
Gives: overhead per share: n·Õ(k/n +1) = Õ(k +n)

Problem:
MAC has weak security
incorrect shares may be consistent with some honest players
Rabin & Ben-Or reconstruction fails

Need: better reconstruction procedure

 s2 is consistent with % t honest players (as player 3 is dishonest)
 => s2 stems from dishonest player

Rabin & Ben-Or reconstruction: accepts s2

Our new reconstruction: will rejects s2

Example: Say that
 {j | y1j = MAC"j1

(s1)} = {1,...,n}
 {j | y2j = MAC"j2

(s2)} = {1,...,t+1}
 {j | y3j = MAC"j3

(s3)} = {2,...,t+1}
 ...

 Improving the Reconstruct Procedure

-> accept s1

-> accept s2

-> reject s3

 s2 is consistent with % t honest players (as player 3 is dishonest)
 => s2 stems from dishonest player

Rabin & Ben-Or reconstruction: accepts s2

Our new reconstruction: will rejects s2

Example: Say that
 {j | y1j = MAC"j1

(s1)} = {1,...,n}
 {j | y2j = MAC"j2

(s2)} = {1,...,t+1}
 {j | y3j = MAC"j3

(s3)} = {2,...,t+1}
 ...

 Improving the Reconstruct Procedure

-> accept s1

-> accept s2

-> reject s3

Rabin & Ben-Or reconstruction:
 Accept every share si that is consistent
 with t+1 players.

Our new reconstruction:
 Accept every share si that is consistent
 with t+1 players with accepted shares.

 Plus: Reed-Solomon decoding.

(Init) Set Good := {1,...,n}

(Loop) For every i !Good :
 if #{j !Good | yij = MAC"ji(si)} % t then
 - set Good := Good ∖{i}
 - redo (Loop)

(Dec) Set s := Reed-Solomon({si }i !Good})

 The CFOR Reconstruction Procedure

Main Theorem. If MAC is #-secure then our scheme is '-robust with

 ' % e·((t+1)·#)(t+1)/2 (where e=exp(1)).

Corollary. Using MAC with |"ij|,|yij| = O(k/n +logn) gives ' % 2$!(k)
and overhead in share size O(k+n·logn) .

 What Makes the Proof Tricky

In Rabin & Ben-Or: an incorrect share for every dishonest player

Here: some dishonest players may hand in correct shares

1. Optimal strategy for dishonest players is unclear

Such a passive dishonest player:
stays in Good
can support (i.e. vote for) bad shares

The more such passive dishonest players:
the easier it gets for bad shares to survive
the more bad shares have to survive to fool RS decoding
(# bad shares > # correct shares of dishonest players)

Optimal trade-off: unclear

 What Makes the Proof Tricky

Whether si gets accepted depends on whether sj gets accepted ...

2. Circular dependencies

ˆ ˆ

... and vice versa

Cannot analyze individual bad shares

If we try, we run into a circularity

 # i!Aʹ

 The Proof
Notation:

 A/P/H = active/passive cheaters, and honest players
where (wlog) |A|+|P| = t and |H| = t+1

 S = players that survive checking phase (clearly: P,H) S)
Observations:

Error probability upper bounded by ' = P[|A * S| > |P|]

 ' = 0 if |A| % |P|. Thus: may assume a :=|A| > t/2

Actual proof:
 P[|A * S| > |P|] = + P[|A * S| = ℓ]

ℓ=|P|+1

a

% + P[,Aʹ!()
A

ℓℓ

ℓ
% + + P[# i!Aʹ , ... # ...]

()A

ℓAʹ! ℓ
% + + - P[, ... # ...] % ...

()A

ℓAʹ! i!Aʹ

% + ()·
a

ℓ (()· #a$ℓ +1)t+1

a$ℓ+1

ℓ

ℓ
% ... % e·((t+1)·#)(t+1)/2 ■

P[...] % #

,Hʹ! # j!Hʹ: yij = MAC!ji(si)]()H

a$ℓ+1
ˆˆ

 Summary

Newest one (CFOR 2012) has
small overhead O(k+n·logn) in share size, and
efficient sharing and reconstruction procedures

Is simple and natural adaptation of Rabin & Ben-Or

Proof is non-standard and non-trivial

Open problems:
Scheme with overhead ((k) (= proven lower bound)
Non-threshold access/adversary structure

THANK YOU

Three known robust secret sharing schemes for n = 2t+1

