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 (t-out-of-n) Secret Sharing

secret:

shares: s1 s2 � sn

Privacy: any t shares give no information on s

Reconstructability: any t+1 shares uniquely determine s

s1 s2 � st ?

s1 s2 � st+1 s

s ! S



 Shamir’s Secret Sharing Scheme [Sha79]

secret:

shares:

s ! F

s1 = f(x1) � sn = f(xn)

Privacy and reconstructability follow from Lagrange interpolation

f(X) = s+a 1X+...+atX
t ! F[X]

Here and in general: 
 reconstructability requires correct shares

(xi " xj " 0 # i "j )



 Robust Secret Sharing

secret:

shares:

s

s1 s2 � sn

Privacy: any t shares give no information on s
s1 � st ?

ˆs1̂

Robust reconstructability: 
 the set of all n  shares determines s, even if t of them are faulty

� st+1 sst sn�

Note: 
assume dealer to be honest



 Application: Secure Data Storage

user

servers

�

data
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 Application: Secure Data Storage
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 (Im)possibility

t

easy tricky impossible

0 n/3 n/2 n

plain Shamir sharing 
plus RS decoding, 

no error probability
additional checking data needed,
positive error probability: 2$k

This talk: n = 2t+1, with unconditional security



 Known Schemes

Rabin & Ben-Or (1989):
Overhead in share size:     O(k·n·logn)   �
Computational complexity:   poly(k,n)      �  

Cramer, Damgård & F (2001), based on Cabello, Padró & Sáez (1999), 
generalized by Kurosawa & Suzuki (2009):

Overhead in share size:     O(k·logn+n)  �   (lower bound: !(k))
Computational complexity:   exp(n)         �

Cevallos, F, Ostrovsky & Rabani (2012): 
Overhead in share size:     O(k+n·logn)  �
Computational complexity:   poly(k,n)      �  



 Further Outline

Introduction

The (simple) case t < n/3

The Rabin & Ben-Or scheme

The CDF 2001 scheme

The CFOR 2012 scheme, and discussion of proof

Conclusion



snˆ

 The (Simple) Case n = 3t+1

s ! F

s1=f(x1)

f(X) = s+a 1X+...+atX
t ! F[X]

� �s2t+1 sn$t+1ˆst+1 st+2 �

t+1 correct shares 
-> determines f

r=t redundant 
correct shares e=t faulty shares

Reed-Solomon decoding: If e % r (satisfied here) then
f is uniquely determined from s1, . . . ,sn

f can be efficiently computed (Berlekamp-Welch)
ˆ
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 The Rabin & Ben-Or Scheme (n = 2t+1)
s ! F

s1=f(x1)

f(X) = s+a 1X+...+atX
t ! F[X]

� si sj�
"11

⋮ 
⋮
⋮

"1n

y11

⋮ 
⋮
⋮

y1n

"i1

⋮ 
⋮
"ij

⋮
"in

yi1

⋮ 
⋮
yij

⋮
yin

"j1

⋮ 
"ji

⋮
⋮
"jn

yj1

⋮ 
yji

⋮
⋮
yjn

"n1

⋮ 
⋮
⋮

"nn

yn1

⋮ 
⋮
⋮
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yij = MAC"ji(si) 

Sharing phase:

MAC security: for any si " si and yij : P[yij = MAC"ji(si)] % #.

Example: "ij = ($ij,%ij) ! F2 and yij = MAC"ji(si) = $ij ·si + %ij. 

For error probability # % 2$k : 
bit size |"ij|,|yij| & k

overhead per share (above Shamir share): !(k·n) 

ˆ ˆ ˆ ˆ
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 The Rabin & Ben-Or Scheme (n = 2t+1)
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Reconstruction phase:
1. For every share si : 

   accept si  iff it is consistent with keys of & t+1 players,
                    (meaning #{j | yij = MAC"ji(si)} & t+1 )

2.Reconstruct s using the accepted shares si .

s ! F
f(X) = s+a 1X+...+atX

t ! F[X]
Sharing phase:

yij = MAC"ji(si) 

s1=f(x1)
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 The Rabin & Ben-Or Scheme (n = 2t+1)
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Reconstruction phase:
1. For every share si : 

   accept si  iff it is consistent with keys of & t+1 players,
                    (meaning #{j | yij = MAC"ji(si)} & t+1 )

2.Reconstruct s using the accepted shares si .

s ! F
f(X) = s+a 1X+...+atX

t ! F[X]
Sharing phase:

yij = MAC"ji(si) 

s1=f(x1)

Analysis 
Correct share si  of honest player:
  will be consistent with all t+1 honest players
   => will be accepted
Incorrect share    of dishonest player:
  will be consistent with % t players (except with prob. (t+1)·# )
   => will be rejected

sî
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 The CDF 2001 Scheme 

� si

s ! FSharing phase:

s1 =  f(x1)

, r ! F and p = s·r ! F

rn�� rir1 =  g(x1)

pn�� pip1 = h(x1)

Reconstruction phase:
For every A ' {1,...,n} with |A| = t+1 :
  - reconstruct s!, r! and p! from (si)i !A , (ri)i !A and (pi)i !A  
  - if s!·r! = p! then output s! and halt

Note: Running time is exponential in n
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 The CDF 2001 Scheme 

� si

s ! FSharing phase:

s1 =  f(x1)

, r ! F and p = s·r ! F

rn�� rir1 =  g(x1)

pn�� pip1 = h(x1)

Reconstruction phase:
For every A ' {1,...,n} with |A| = t+1 :
  - reconstruct s!, r! and p! from (si)i !A , (ri)i !A and (pi)i !A  
  - if s!·r! = p! then output s! and halt

Note: Running time is exponential in n

Analysis 
For any A in the loop: 
 - if A contains only honest players then s!·r! = s·r = p = p!.
 - if A contains an incorrect share    so that s! " s , then

 P[s!·r! = p!] % 1/|F| .

Setting |F| & 2k+n gives error probability % 2-k . 

sî

Proof 
By linearity, adversary knows &s = s!$s , &r = r!$r and &p = p!$p .
Also, we may assume that he knows s . 
The equality s!·r! = p! implies that 
                         r = (&p $s·&r $&s·&r)/&s ,
i.e., it requires the adversary to correctly guess r . 
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 The CDF 2001 Scheme 

� si

s ! FSharing phase:

s1 =  f(x1)

, r ! K and p = AMD(r,s) ! K

rn�� rir1 =  g(x1)

pn�� pip1 = h(x1)

Generalization/Abstraction:
- algebraic manipulation detection (AMD) codes
- introduced by Cramer, Dodis, F, Padró & Wichs (2008)
- gives flexibility between F and K (and thus k)
- e.g.: F = degree-d extension of K (so that F ( Kd as K-VS’s), and

AMD(r,(s1,...,sd)) = s1·r + s2·r
2 +... + sd·r

d + rd+2
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 The CFOR 2012 Scheme
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s ! F
f(X) = s+a 1X+...+atX

t ! F[X]
Sharing phase:

yij = MAC"ji(si) 

s1=f(x1)

Use small tags and keys |"ij|,|yij| = Õ(k/n +1)  (instead of O(k))
Gives: overhead per share: n·Õ(k/n +1) = Õ(k +n)

Problem: 
MAC has weak security
incorrect shares may be consistent with some honest players
Rabin & Ben-Or reconstruction fails 
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 The CFOR 2012 Scheme
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s ! F
f(X) = s+a 1X+...+atX

t ! F[X]
Sharing phase:

yij = MAC"ji(si) 

s1=f(x1)

Use small tags and keys |"ij|,|yij| = Õ(k/n +1)  (instead of O(k))
Gives: overhead per share: n·Õ(k/n +1) = Õ(k +n)

Problem: 
MAC has weak security
incorrect shares may be consistent with some honest players
Rabin & Ben-Or reconstruction fails 

Need: better reconstruction procedure 



 s2 is consistent with % t honest players (as player 3 is dishonest)
    => s2 stems from dishonest player

Rabin & Ben-Or reconstruction: accepts s2 

Our new reconstruction: will rejects s2 

Example: Say that 
 {j | y1j = MAC"j1

(s1)} = {1,...,n} 
 {j | y2j = MAC"j2

(s2)} = {1,...,t+1} 
 {j | y3j = MAC"j3

(s3)} = {2,...,t+1} 
  ...

 Improving the Reconstruct Procedure

-> accept s1

-> accept s2

-> reject s3



 s2 is consistent with % t honest players (as player 3 is dishonest)
    => s2 stems from dishonest player

Rabin & Ben-Or reconstruction: accepts s2 

Our new reconstruction: will rejects s2 

Example: Say that 
 {j | y1j = MAC"j1

(s1)} = {1,...,n} 
 {j | y2j = MAC"j2

(s2)} = {1,...,t+1} 
 {j | y3j = MAC"j3

(s3)} = {2,...,t+1} 
  ...

 Improving the Reconstruct Procedure

-> accept s1

-> accept s2

-> reject s3

Rabin & Ben-Or reconstruction:
 Accept every share si that is consistent
 with t+1 players. 

Our new reconstruction:
 Accept every share si that is consistent 
 with t+1 players with accepted shares.

 Plus: Reed-Solomon decoding. 



(Init) Set Good := {1,...,n}

(Loop) For every i !Good :  
             if #{j  !Good | yij = MAC"ji(si)} % t then
          - set Good := Good ∖{i} 
          - redo (Loop)

(Dec)  Set s := Reed-Solomon({si }i !Good})

 The CFOR Reconstruction Procedure

Main Theorem. If MAC is #-secure then our scheme is '-robust with 

                       ' % e·((t+1)·#)(t+1)/2            (where e=exp(1)).  

Corollary. Using MAC with |"ij|,|yij| = O(k/n +logn) gives ' % 2$!(k) 
and overhead in share size O(k+n·logn) . 



 What Makes the Proof Tricky

In Rabin & Ben-Or: an incorrect share for every dishonest player

Here: some dishonest players may hand in correct shares

1. Optimal strategy for dishonest players is unclear

Such a passive dishonest player: 
stays in Good  
can support (i.e. vote for) bad shares

The more such passive dishonest players: 
the easier it gets for bad shares to survive  
the more bad shares have to survive to fool RS decoding
(# bad shares > # correct shares of dishonest players)

Optimal trade-off: unclear



 What Makes the Proof Tricky

Whether si gets accepted depends on whether sj gets accepted ...

2. Circular dependencies

ˆ ˆ

... and vice versa

Cannot analyze individual bad shares

If we try, we run into a circularity



 # i!Aʹ 

 The Proof
Notation: 

 A/P/H = active/passive cheaters, and honest players
where (wlog) |A|+|P| = t and |H| = t+1

 S = players that survive checking phase (clearly: P,H ) S)
Observations: 

Error probability upper bounded by ' = P[ |A * S| > |P| ]

 ' = 0 if |A| % |P|. Thus: may assume a :=|A| > t/2

Actual proof:
   P[ |A * S| > |P| ] = + P[ |A * S| = ℓ] 

ℓ=|P|+1

a

% + P[ ,Aʹ!(   )
A

ℓℓ

ℓ
% +  +  P[ # i!Aʹ  , ... # ... ]

( )A

ℓAʹ! ℓ
% +  +  - P[ , ... # ... ] % ... 

( )A

ℓAʹ! i!Aʹ

% +  (  )·
a

ℓ ((        )· #a$ℓ +1)t+1

a$ℓ+1

ℓ

ℓ
% ... % e·((t+1)·#)(t+1)/2   ■

P[...] % #

,Hʹ!                # j!Hʹ: yij = MAC!ji(si) ](          )H

a$ℓ+1
ˆˆ



 Summary

Newest one (CFOR 2012) has
small overhead O(k+n·logn) in share size, and 
efficient sharing and reconstruction procedures

Is simple and natural adaptation of Rabin & Ben-Or

Proof is non-standard and non-trivial

Open problems: 
Scheme with overhead ((k) (= proven lower bound)
Non-threshold access/adversary structure

THANK YOU

Three known robust secret sharing schemes for n = 2t+1


