| galois |

(Some)

Practical Optimizations
for Secret Sharing MPC :

Dave Archer, Tom DuBuisson, John Launchbury, Eric Mertens

Galois, Inc.

© Galois, Inc. 2014

Context: Linear Secret Sharing

X = (X1 + X2 + X3) mod 2"

© Galois, Inc. 2014

Each x; is locally random
Together, globally meaningful

Linear, so interpolation simplifies to
addition for recovering values

HBC adversary (for now)

Secure channels

Gain security within HBC by:

= Different architectures

= Different administrators

= Different locations

Or implement more robust model

LSS Addition (or XOR)

(X1 + X2 + xg3) mod 2"

X =
— on
Xty y = (y1 + Y2 + y3) mod

X+Yy = (X1 + y1) mod 2"
+ (X1 + y1) mod 2"
+ (X1 + y1) mod 2"

X2 + Y2 X3 + VY3

© Galois, Inc. 2014

© Galois, Inc. 2014

Multiplication (or AND)

X2Y1 X3Y2
+ X2y2 + X3Y3
+ X1Y2 X2,Y2 + XoV3

New entropy during re-share operations prevents A, B, C from learning secrets

© Galois, Inc. 2014

Promising or Practical

B AES-128 @ 3ms per block — 10° too slow

® Corollary of Felten: adding security not compelling 3
= No “killer apps” publicly identified (yet)

® Our hypothesis: practical applications with compelling benefit
B Streaming-rate, on-demand cloud privacy
B Protecting intellectual property AND privacy in e-mail

© Galois, Inc. 2014

Sharemonad MPC Machine

'{ SAT-based |
| { circuit optmizer 3

| Statistics
| package |

© Galois, Inc. 2014

Sharemonad eDSL

= Ad
= AS

Secret-sharing computation language

Embedded in Haskell for strong FP benefits, or...

NoC Instruction set architecture

naremonad program IS

B (Generated from a code representation
= An AST

nterpreted as a circuit by a target back-end

Optimize where”? Program level AND circuit level

© Galois, Inc. 2014

Sharemonad Primitives

Data types

® constant value, including unit and
Z€ero

= GF 2 (bits)

= GF 2% (integers)
®m |ists of the above types

© Galois, Inc. 2014

Math-like operations on shares

= multiplication

® addition, subtraction

" negation

= division

Operations on public values

= arithmetic mul by public value

" right bit shift by public value

" table lookup in public table

Conversions

B bit-representation <—> numeric representation
B ist of bits and <—> numeric representation
Cross-product of bit-wise representation

Comparisons (eq/It/lteq/gt/gteq/zero/neg)

On-demand, streaming cloud privacy
Secure VolP

VoIP coordinator §
(modified uMurmur) §

MPC proxy
virtual machines

© Galois, Inc. 2014

2-Voice Example

16-bit fixed- . y 16-bit fixed-
F = son(y)(1 1 v_1)y -1 1
soint (PCM) (y) = sgn(y)(1/pm)((1+)) <y< soint (PCM)

PCM2uLAW | ——» uULAW2PCM B uLAW2PCM <+——— | PCM2uLAW

8-bit logarithmic \ / 8-bit logarithmic

(ULAW) (ULAW)
representation Add and clip representation
uULAW2PCM |« PCM2uLAW » | uLAW2PCM

© Galois, Inc. 2014

First Attempt: Algorithmic

Local Global

. ulawbyte = ~ulawbyte;

sign = (ulawbyte & 0x80); B uLAWZ2PCM

short tempsign = sign | sign >> 1; \

tempsign |= tempsign >> 2;

| tempsign |= tempsign >> 4; | Add and C|ip
| ; tempsign = tempsign | tempsign << 8; | | l
PCM2uLAW

1440 samples per packet
4 virtual voice processors
12 seconds (!) vs. 90ms goal

short adder = tempsign & 0x0001; C
- Similar,

mantissa = ulawbyte & OxOF; & but invers eﬁ/,,_/"”’
¥ exponent = ulawbyte & 0x70; | _

>

. exponent = exponent >> 4,
t § short expPlus3 = exponent + 3;

short tempMantissa = mantissa << expPlus3;

N A T AR N

P — e —

sample = exp_lutfexponent]; // oblivious table lookup §
sample = sample + tempMantissa;

sample = sample A tempsign;

fa-ﬂ_" S L e 1 e s

sample = sample + adder;

g ! i i S T e P

o e i e T i T et 2 L. e 2 i . 8 T et A . o e s, e PGS S R

© Galois, Inc. 2014

Insight and Second Attempt

Insight: narrow inputs, narrow output
Insight: table can be public without leaking

16-bit /8‘b|t 8-bit \ 16-bit
Compress Compress

64k X 8b
public lookup table

Decompress Decompress

16-bit 3-pit 16-bit

© Galois, Inc. 2014

Two Parts to Table Lookups

© Galois, Inc. 2014

Index Construction Data Access

Demultiplex

Approach:
Public table shared by all proxies
Each lookup must access entire table
Invariant: 3 shares add to correct intermediate result

Data Access

B Demuxed index d is shared, table t is public

® n-1index bits have even parity across shares

o ® 1 index bit has odd parity

d = 0000000010000000

da=1011001011101011

ds = 0011010011001101

dc = 1000011010100110

® |nner product
= Whole table structure is traversed locally
= All table rows except valid one will cancel
d — dA A dB " dc
implies
o) inner d t inner da t
Vo

A 1inner dy t
A 1nner de t

iInner product

© Galois, Inc. 2014

Index Construction

o64kb

Divide and conquer:

demux(xs ++ yS) = ' :

demux xs # demux ys 2560 Bits shared = O(2"?)
demux (1001) = 0000 0000 0100 0000 Index size 2"

demux(10) # demux(01)

0010 0100 logz(n) comms
demux(1) # demux(0O) demux(0) # demux(1)

01 10 10 01
demux(1) demux(0) demux(0) demux(1) this step is free...why?

© Galois, Inc. 2014

Index Construction Bandwidth

Index size: 216
Nn=16

logz(n) communication rounds: 4

O(2™2) total bits communicated per server:
2560 + 256
160 + 10
4+ 4
2+ 2
(actual number: 700b)

/00b x 3 servers = 2kb
2kb x 1440 samples x 1/256msec x 4 voice streams processed = 485Mb/s, Oh My!

© Galois, Inc. 2014

INnsight and 3rd Attemt

Table is currently 64k entries
Insight: Instead of 64kb index, re-construct table
as 256 rows of 256 entries

B Restructure table to 256x256
from 64k x 1

® Share unexpanded final
expressions (16b)

® 2-dimensional final lookup
against table

B Cost: 2x as many XORs to
compute 2 inner products

© Galois, Inc. 2014

Index Bandwidth Again

O(2™2) total bits communicated per server:
160 + 16
4 +4
2+ 2
~ 32b per server

32b x 3 servers = 100b
100b x 1440 samples x 1/25msec x 4 voice streams processed = 2.3 Mb/s

© Galois, Inc. 2014

VoIP Outcome

= 4 voice “accumulators” at 16kB/s sampling rate
. 25ms of processing per incoming 1440-sample block
= ©5ms left in for network delay to and from clients

= Amazon ECS VMs for MPC, Apple iPhones for clients

© Galois, Inc. 2014

Intellectual Property AND Privacy:
eMail border guard

Secure regular
expression
matching

© Galois, Inc. 2014

B Assume

" Regular expression is public
= Emall string is private (randomly shared)

= Have to compute over all states
® Non-deterministic finite automaton

B Sequence of “matched” flags form a private
(randomly shared) vector

iV x X xJ x IV IV,

© Galois, Inc. 2014

Regular Expression Computation

RE = (X;y)*;x Input = “X”
Next char =y’
= Assume | O
" Regular expression is public ’ o
= Emall string is private (randomly shared) / \
® Have to compute over all states % v X O
/
= Non-deterministic finite automaton l
B Sequence of “matched” flags form a private
(randomly shared) vector ; \)
" Each new input character causes the match / \ >,
state-vector to be updated X Q y @

. Q00000

© Galois, Inc. 2014

Circuit Optimization

Goal 1: EIi communications (ANDs)

| SAT-based |

= Replace AND with XOR {_Circuit optmizer
if (a | b) then (a & b) ===> ~(a’b)

= Redundant multiplicands
if (a => b) then (a & b) ===> a

= Associativity and commutativity

(a & (b & a)) === (a & b)
B Fgctorization
(a & b) &~ (a & ¢c) ===> a & (b"c)
out
= |dempotence Befqrg optlmlzatlons After qptlmlzatlons
L Multiplications: 3 Multiplications: 1
(a & a) ===> a Additions: 0 Additions: 1
(a ~ a) ===> false State Variables: 4 State Variables: 1
Communications: 3 Communications: 1

B Constant value

(x=="a') & (x=="b') ===> false

© Galois, Inc. 2014

terate the Regexp Computation

Goal 2: Expand and re-optimize
Possible analogy: loop unrolling

C1 C2

Stateo

© Galois, Inc. 2014

. . Compose Simplify

|

Schedule

e l

Pack

© Galois, Inc. 2014

Effect of Circuit Reduction

= Compile multiple (1, 2, 4, 8,...) state steps (corpus characters)
as a single circuit

= QOrganize into communication layers; pack bits into words

unoptimized optimized
input ands xors state comms ands xors state comms
1 203 0 358 10 149 15 119 4

2 38 0 358 12 277 27 117 5
4 756 0 358 14 493 53 117 6
8 1492 0 358 19 949 104 117 O
16 2964 0 358 33 1,950 212 117 17 Diminishing

Returns

.* (((TOP|) SECRET) | TS|S) -- (ROCKYBEACH | STINGRAY) . *

.*(((TOP|) SECRET) |TS|S) --SI--NO (CON|CONTRACTOR|FOREIGN) . *

.* (((TOP|) SECRET) |TS|S|R|RESTRICTED) -- (AO|DO|MO|SO|TO) --LIMDIS. *
.*ac*cb.*

© Galois, Inc. 2014

28

—
in[105):Bool t
p— -

L ——

in[96):Bool

[——

1 in[$5):Bool i . in[100):Bool
e -— . e ——
;‘éi’-ig_r:%"-ﬁ~'-ﬁ-'-ﬁ!ﬁ~. v > =
(SISISISISISIOIOIOIOS>
—_— e e——— —— - — - -‘L=,

e ——— . —————— —— ——— S ——

S ——.—
e — . ——————— e —

———
A
S—

NOT J*

© Galois, Inc. 2014 @ AND

|

Email Border Guard Outcome

" 1-page e-mall
= (Classification-marking regexp filter
= ~15s to accept/reject

" Private cloud VMs for MPC, Linux laptops for clients

© Galois, Inc. 2014

Resource Scheduling

Scheduling of communications
500

375

250

125

© Galois, Inc. 2014

Conclusions, Future Work

B Optimizations can bring interesting apps to practice
B Communication is often the bottleneck (for LSS at least)

B But...in many settings, traditional crypto protocols are cheaper and faster

B Futures
B Additional instructions for our MPC machine
" Automation for
B Determination of diminishing returns for circuit optimization
B Decisions on LUT replacement of instruction sequences
B Scheduling of communications among share servers
B Stronger than HBC adversaries

© Galois, Inc. 2014

Thank you!

© Galois, Inc. 2014

