
© Galois, Inc. 2014

(Some) 
Practical Optimizations
for Secret Sharing MPC

Dave Archer, Tom DuBuisson, John Launchbury, Eric Mertens
Galois, Inc.

1

© Galois, Inc. 2014

Context: Linear Secret Sharing 2

x1

x2 x3

x = (x1 + x2 + x3) mod 2n

■ Each xi is locally random
■ Together, globally meaningful
■ Linear, so interpolation simplifies to

addition for recovering values
!

■ HBC adversary (for now)
■ Secure channels
■ Gain security within HBC by:
■ Different architectures
■ Different administrators
■ Different locations

■ Or implement more robust model

A

CB

© Galois, Inc. 2014

LSS Addition (or XOR) 3

x1 + y1

x2 + y2 x3 + y3

x + y

A

CB

x = (x1 + x2 + x3) mod 2n

y = (y1 + y2 + y3) mod 2n

x+y = (x1 + y1) mod 2n
 + (x1 + y1) mod 2n
 + (x1 + y1) mod 2n

© Galois, Inc. 2014

LSS Multiplication (or AND) 4

C

x1, y1

x2, y2 x3, y3

x * y
* y y y

x x x x

x x x x

x x x x
A

CB

© Galois, Inc. 2014

Multiplication (or AND) 5

 x2y1
+ x2y2
+ x1y2

x * y
 x1y3
+ x1y1
+ x3y1

 x3y2
+ x3y3
+ x2y3

* y y y

x x x x

x x x x

x x x x
x1,y1 x3,y3

x2,y2

A

CB

New entropy during re-share operations prevents A, B, C from learning secrets

© Galois, Inc. 2014

Promising or Practical?

■ AES-128 @ 3ms per block — 105 too slow

■ Corollary of Felten: adding security not compelling

■ No “killer apps” publicly identified (yet)

■ Our hypothesis: practical applications with compelling benefit
■ Streaming-rate, on-demand cloud privacy
■ Protecting intellectual property AND privacy in e-mail

6

© Galois, Inc. 2014

Sharemonad MPC Machine 7

Sharemonad DSL

Haskell

Pure 2-party 3-party FHE SAT-based
circuit optmizer

Statistics 
package

© Galois, Inc. 2014

Sharemonad eDSL

■ Secret-sharing computation language

■ Embedded in Haskell for strong FP benefits, or…

■ Ad hoc instruction set architecture

■ A Sharemonad program is
■ Generated from a code representation
■ An AST
■ Interpreted as a circuit by a target back-end

■ Optimize where? Program level AND circuit level

8

© Galois, Inc. 2014

Sharemonad Primitives

■ Data types
■ constant value, including unit and

zero
■ GF 2 (bits)
■ GF 232 (integers)
■ Lists of the above types

9

■ Math-like operations on shares

■ multiplication

■ addition, subtraction

■ negation

■ division

■ Operations on public values

■ arithmetic mul by public value

■ right bit shift by public value

■ table lookup in public table

■ Conversions

■ bit-representation <—> numeric representation

■ list of bits and <—> numeric representation

■ Cross-product of bit-wise representation

■ Comparisons (eq/lt/lteq/gt/gteq/zero/neg)

© Galois, Inc. 2014

On-demand, streaming cloud privacy
Secure VoIP 10

Encrypted

Encr
ypted

Encrypted

16kHz audio: 1440 uLAW 8-bit samples every 90 ms

VoIP coordinator  
(modified uMurmur)

MPC proxy 
virtual machines

Amazon ECS

© Galois, Inc. 2014

2-Voice Example
11

PCM2uLAW
8-bit logarithmic

(uLAW)
representation

uLAW2PCM PCM2uLAWuLAW2PCM

Add and clip

PCM2uLAW

16-bit fixed-
point (PCM)

uLAW2PCM uLAW2PCM

16-bit fixed-
point (PCM)

8-bit logarithmic 
(uLAW)

representation

© Galois, Inc. 2014

First Attempt: Algorithmic

 ulawbyte = ~ulawbyte;

 sign = (ulawbyte & 0x80);

 short tempsign = sign | sign >> 1;

 tempsign |= tempsign >> 2;

 tempsign |= tempsign >> 4;

 tempsign = tempsign | tempsign << 8;

 short adder = tempsign & 0x0001;

 mantissa = ulawbyte & 0x0F;

 exponent = ulawbyte & 0x70;

 exponent = exponent >> 4;

 short expPlus3 = exponent + 3;

 short tempMantissa = mantissa << expPlus3;

 sample = exp_lut[exponent]; // oblivious table lookup

 sample = sample + tempMantissa;

 sample = sample ^ tempsign;

 sample = sample + adder;

12

uLAW2PCM

Add and clip

PCM2uLAW

Local Global

1440 samples per packet
4 virtual voice processors

12 seconds (!) vs. 90ms goal

Similar, 
but inverse

© Galois, Inc. 2014

Insight and Second Attempt 13

Compress Compress
16-bit

Decompress Decompress

16-bit

16-bit 16-bit

64k X 8b
public lookup table

8-bit

8-bit 8-bit

Insight: narrow inputs, narrow output
Insight: table can be public without leaking

© Galois, Inc. 2014

Two Parts to Table Lookups 14

Public
Table

Contents
!

64k
x 8

8b

8b

64k
x 1

De
m

ult
ip

lex

Index Construction Data Access

Approach:
Public table shared by all proxies

Each lookup must access entire table
Invariant: 3 shares add to correct intermediate result

© Galois, Inc. 2014

Data Access

■ Demuxed index d is shared, table t is public

■ n-1 index bits have even parity across shares
■ 1 index bit has odd parity

!
!
!
!
!

■ Inner product
■ Whole table structure is traversed locally
■ All table rows except valid one will cancel

15

6
5
5
3
6
!
x
!
1

65536
 x 8

6
5
5
3
6
!
x
!
1

65536
x 8

d = dA ^ dB ^ dC
implies

inner d t = inner dA t
 ^ inner dB t
 ^ inner dC tinner product

6
5
5
3
6
!
x
!
1

65536
x 8

d = 0000000010000000
dA = 1011001011101011
dB = 0011010011001101
dC = 1000011010100110

© Galois, Inc. 2014

Index Construction 16

Divide and conquer:
demux(xs ++ ys) =
demux xs # demux ys

demux(10) # demux(01)

demux(1) # demux(0) demux(0) # demux(1)

01 10 10 01

demux (1001) =

0010 0100

0000 0000 0100 0000

.
64kb

.
256b

.
Index size 2n

log2(n) comms

demux(1) demux(0) demux(0) demux(1)

Bits shared = O(2n/2)

this step is free…why?

© Galois, Inc. 2014

Index Construction Bandwidth 17

Index size: 216

log2(n) communication rounds: 4

n = 16

O(2n/2) total bits communicated per server:
256 + 256
16 + 16
4 + 4
2 + 2

(actual number: 700b)
700b x 3 servers = 2kb

2kb x 1440 samples x 1/25msec x 4 voice streams processed = 485Mb/s, Oh My!

© Galois, Inc. 2014

Insight and 3rd Attempt

!

■ Restructure table to 256x256
from 64k x 1

■ Share unexpanded final
expressions (16b)

■ 2-dimensional final lookup
against table
■ Cost: 2x as many XORs to

compute 2 inner products

18

Demux

1 x 8 1 x 8

2
5
6
!
x
!
1

256 x 256 x W

256 x 1

Demux

Table is currently 64k entries
Insight: Instead of 64kb index, re-construct table 

as 256 rows of 256 entries

© Galois, Inc. 2014

Index Bandwidth Again 19

O(2n/2) total bits communicated per server:
16 + 16
4 + 4
2 + 2

~ 32b per server

32b x 3 servers = 100b
100b x 1440 samples x 1/25msec x 4 voice streams processed = 2.3 Mb/s

© Galois, Inc. 2014

VoIP Outcome

■ 4 voice “accumulators” at 16kB/s sampling rate

■ 25ms of processing per incoming 1440-sample block

■ 65ms left in for network delay to and from clients

■ Amazon ECS VMs for MPC, Apple iPhones for clients

20

© Galois, Inc. 2014

Intellectual Property AND Privacy:
eMail border guard 21

EncryptedMail
server

Encryp
ted

Secure regular
expression
matching

© Galois, Inc. 2014

Regular Expression Computation

■ Assume
■ Regular expression is public
■ Email string is private (randomly shared)

■ Have to compute over all states
■ Non-deterministic finite automaton

■ Sequence of “matched” flags form a private
(randomly shared) vector

22

;

x

;

x y

*

Input = “x”RE = (x;y)*;x

■ .

© Galois, Inc. 2014

Regular Expression Computation

■ Assume
■ Regular expression is public
■ Email string is private (randomly shared)

■ Have to compute over all states
■ Non-deterministic finite automaton

■ Sequence of “matched” flags form a private
(randomly shared) vector

23

;

x

;

x y

*

Input = “x”RE = (x;y)*;x

■ Each new input character causes the match
state-vector to be updated

■ .

Next char = ‘y’

■ .

© Galois, Inc. 2014

Circuit Optimization

■ Replace AND with XOR
if (a | b) then (a & b) ===> ~(a^b)

■ Redundant multiplicands
if (a => b) then (a & b) ===> a

■ Associativity and commutativity
(a & (b & a)) ===> (a & b)

■ Factorization
(a & b) ^ (a & c) ===> a & (b^c)

■ Idempotence
(a & a) ===> a
(a ^ a) ===> false

■ Constant value
(x=='a') & (x=='b') ===> false

24

NOT

out[0]

AND

out[1] out[2] NOT

FALSE

out[3] NOT

in[2]:Bool

NOT

spark:Bool

NOT

in[5]:Char

∈ a

AND

NOT

AND

AND

out[0]

in[0]:Bool

XOR

spark:Boolin[5]:Char

∈ a

Before optimizations!
Multiplications: 3!
Additions: 0!
State Variables: 4!
Communications: 3  

After optimizations!
Multiplications: 1!
Additions: 1!
State Variables: 1!
Communications: 1

Goal 1: Eliminate communications (ANDs)
SAT-based

circuit optmizer

© Galois, Inc. 2014

Iterate the Regexp Computation 25

c1

st
at

e 0

st
at

e 1

√

c2

st
at

e 2

√

Goal 2: Expand and re-optimize
Possible analogy: loop unrolling

© Galois, Inc. 2014

Simplify the Larger Description 26

c1

st
at

e 0

√

c2

st
at

e 2

√

SimplifyCompose

Schedule

Pack

© Galois, Inc. 2014

Effect of Circuit Reduction

■ Compile multiple (1, 2, 4, 8,...) state steps (corpus characters)  
as a single circuit

■ Organize into communication layers; pack bits into words

27

unoptimized optimized
input ands xors state comms ands xors state comms

1 203 0 358 10 149 15 119 4
2 388 0 358 12 277 27 117 5
4 756 0 358 14 493 53 117 6
8 1492 0 358 19 949 104 117 9

16 2964 0 358 33 1,950 212 117 17

.*(((TOP|)SECRET)|TS|S)--(ROCKYBEACH|STINGRAY).*

.*(((TOP|)SECRET)|TS|S)--SI--NO(CON|CONTRACTOR|FOREIGN).*

.*(((TOP|)SECRET)|TS|S|R|RESTRICTED)--(AO|DO|MO|SO|TO)--LIMDIS.*

.*ac*cb.*

Diminishing
Returns

© Galois, Inc. 2014

Grouping 28

© Galois, Inc. 2014

Email Border Guard Outcome

■ 1-page e-mail

■ Classification-marking regexp filter

■ ~15s to accept/reject

■ Private cloud VMs for MPC, Linux laptops for clients

29

© Galois, Inc. 2014

Resource Scheduling 30

© Galois, Inc. 2014

Conclusions, Future Work

■ Optimizations can bring interesting apps to practice
■ Communication is often the bottleneck (for LSS at least)
■ But…in many settings, traditional crypto protocols are cheaper and faster

!
■ Futures
■ Additional instructions for our MPC machine
■ Automation for
■ Determination of diminishing returns for circuit optimization
■ Decisions on LUT replacement of instruction sequences
■ Scheduling of communications among share servers

■ Stronger than HBC adversaries

31

© Galois, Inc. 2014

Thank you!

32

