Garbling and Outsourcing
Private RAM Computation

Daniel Wichs

Based on :
Garbled RAM, Revisited [Gentry-Halevi-Lu-Ostrovsky-Raykova-W]
Outsourcing Private RAM Computation [Gentry-Halevi-Raykova-W]



Problem Overview

D €D e

client Y = P(x) Server

* Weak client wants to leverage resources of a powerful
server to compute P(x) without revealing x.

* Efficiency Requirements:
— Client does much less work than computing P(x)
— Server does about as much work as computing P(x)



Circuits vs. RAM

* Private outsourcing is possible using Fully Homomorphic
Encryption (FHE). [RAD78,Gen09,...]

* But FHE works over circuits rather than RAM programs.

I’'m very
efficient!




Circuits vs. RAM

* Private outsourcing is possible using Fully Homomorphic
Encryption (FHE). [RAD78,Gen09,...]

* But FHE works over circuits rather than RAM programs.

— RAM complexity T = circuit or TM complexity T*

— For programs with initial “data in memory”, efficiency gap can be
exponential (e.g., Google search).



Goals

D D & &

Client Y= P(x) Server
 Client’'swork: O( |x| + [y])
e Server’s work: O(RAM run-time of P).

* May allow client pre-processing of P.
— Client does one-time computation in O(RAM run-time of P).
— Later, outsource many executions of P. Amortized efficiency.



Goals

y = P(x)

Client

* Basic scenario: client wants to run independent
executions of P on inputs x¢, x,, X3, ...

* Persistent Memory Data:
— Client initially outsources large private ‘memory data’ D.
— Program executions P” (x;) can read/write to D.
— Generalizes oblivious RAM.



Goals

Client Server

* Non-interactive solution: “reusable garbled RAM”.



Garbled Computation

Garbled Circuits Reusable Garbled Circuits
[Yao82] [GKPVZ 13a,b]
Garble circuit: ¢ - C Can garble many inputs per circuit.

Garble input: x — X
Efficiently outsource circuit comp.
Given C, ¥ only reveals C(x) Extension to TM.

Secure on one input x.

Garbled RAM Reusable Garbled RAM

[LO13, GHLORW14] [GHRW14]

Garble RAM: P — P Can garble many inputs per program.
X

Garble input: x -

. - . - Efficiently outsource RAM comp.
Size of P, run-time P(X) is

O(RAM run-time P).




Outsourcing via Garbling

20

i jzl
Client Server
yi = P(x;)
e Client garbles program P — P [ dataD — D ].

— Pre-processing = 0( run-time P)

* Client repeatedly garbles inputs x; = X; in time O(|x;|).

* Server evaluates P on %; togety;. [using D ]
— Evaluation time = O( run-time P)



Outsourcing via Garbling —

ar
Vi

Client Server

Vi = P(x;)

* Qutput privacy: set y; = encryption of real output.
Server sends back y;.

* Verifiability: v; includes (one-time) MAC of real output.

i €D & &

=

* Program Privacy:
— Pis universal RAM, code is given as part of input.
— P has hard-coded encryption of code. x includes decryption key.



Garbled RAM

Garbled RAM Reusable Garbled RAM
[LO13, GHLORW14] [GHRW14]
PART | PART ||
Combine:

* Overview of [LO13]. * Non-reusable garbled RAM.

. . . * New type of reusable
 Circularityissue, and fix. YP L
garbled circuits.
e Constructions based on
obfuscation.




PART |

One-Time Garbled RAM



Garbled RAM Syntax

GData(D) = D, k,,:q garble data

~

GProg(P ) = P, kyrog garble program
Glnput(x, kprog) = X garble input

Eval? (P, %) >y evaluate program



One-Time Garbled RAM

» Basic Security: Can simulate (P, ¥) given v.

e Persistent data: Can reuse garbled data, but not
garbled programs.

Simulate (5, (Pll 3~C1), (Pz, .7?2), )
Given Vi, V2 e

— Note: changes to data persist, order matters.




One-Time Garbled RAM

* Unprotected memory access: may also reveal D,
and the access pattern of P (x).

— Locations of memory accessed in each step.
— Values read and written to memory.

* Compiler: unprotected = full security:
— Use oblivious RAM [Gosgs,..] to access memory.



Overview of [Lu-Ostrovsky 13]

As a first step:

* read-only computation
 unprotected memory access



Memory

Data D=| D[1] = D[2] D[3]

Read location: i

CPU J read b|t= CPU

Step 1




Memory

Data D=| D[1] = D[2] D[3]
GProg:

Read location: i
Glnp CPU J read bit, CPU
sztte >tep 1 Step 2

garbled

garbled circuit

state

garbled

> garbled circuit




GData:

Read location: i

GProg:

Ginp CPU
¥ Step 1

state

garbled

garbled circuit

J read bit:

F.(...)isaPRF

state

garbled

CPU
Step 2

> garbled circuit




GData:

GProg:

Glnp
\ 4

state

garbled

Read location: i

co = Enc (F(i,0), labely),
c; = Enc (Fi(i,1), label;)

CPU
Step 1

garbled circuit

PRF Key: k

J read bit:

F.(...)isaPRF

state

garbled

CPU
Step 2

> garbled circuit

" PRF Key: k




Let’s try to prove security...

Should rely on:
1. Security of garbled circuits
2. Security of PRF/Encryption.



Use security of 15t garbled circuit...

Read location: i

Co = Enc (Fk(l, 0), labelo),
C4 = Enc (Fk(l, 1), labell)

CPU J read bit= CPU

state Step 1 Step 2
garbled circuit State; garbled circuit
e | PRF Key: k [———— |_PRF Key: k




Use security of 15t garbled circuit

only learn output

Read location: i

Co = Enc (Fk(l, O), labelo),
c; = Enc (F,(i,1), label,)

labels for state

read bit‘

state

—
>
>

CPU
Step 2

garbled circuit

PRF Key: k




Use security of 15t garbled circuit
only learn output

Assume D[i]=0

read bit
Read location: i ’ CPU
label, Step 2
_ state L
¢, = Enc (F,(i,1), labely) —| garbled circuit
labels for state — | PRF Key: k




Use security of 2"9 garbled circuit

don’t learn
label, for read bit

don’t learn
PRF key k

Use security of Encryption/PRF

Read location: i

label
¢, = Enc (F,(i,1), label,)

labels for state

read bitt

state

—»
—
—_—

CPU
Step 2

garbled circuit

PRF Key: k




—

Circularity® Problem!

—

* May appear rectangular



So is it secure?

* Perhaps secure if instantiated with a “good”
encryption, PRF, circuit garbling.
— No proof.
— No “simple” circularity assumption on one primitive.



Can we le |t? YGS' [Gentry-Halevi-Raykova- Lu-Ostrovsky-W]

»Fix 1 :

— Using identity-based encryption (IBE).
— Polylogarithmic overhead

* Fix 2 :
— Only use one-way functions.
— Overhead n®.



The Fix

* Public-key instead of symmetric-key encryption.

— Garbled circuits have hard-coded public key. No secrets.

— Semantic security of ciphertexts holds even given
public-key which is hard-coded in all garbled circuits.

e Caveat: need identity-based encryption (IBE)
— Original solution used “Sym-key IBE” = PRF + Sym-Enc.



Secret keys for identities (i, D|i])

Garbled
Memory Fe(L,D[1]) | F(2,D[2]) | F(3,D[3])

Encrypt to identities
(i,0) and (i,1)

Read location: i

Co = Enc (Fk(l, 0), labelo),
C4 = Enc (Fk(l, 1), labell)

CPU J read bit= CPU IJ

state Step 1 state Step 2

" PRF Key: k | /Master SK

PRF Key: k




Secret keys for identities (i, D|i])

Garbled I I I
Memory S (1;D[1]) S (Z,D[Z]) S (3;D[3])
Read location: i Encrypt to identities
Co = EnCMpK((i, O), labelo) (IIO) and (Ill)
¢1 = Encypg((i,1), labely)
CPU J read bit= CPU IJ
Step 1 Step 2
state state_ P
MPK MPK Master PK




* Theorem: Assuming IBE, get garbled RAM:
For any RAM program w. run-time T, data of size N
— Garbled memory-data is of size: O(N).
— Garbled program size, creation/evaluation-time:
O(T - polylog(N)).
— Supports “persistent memory data”.




PART I

Reusable Garbled RAM



Security of Reusable Garbled RAM
(without persistent data)

~

Simulate P, X{, X5,...
given P,y =P(xy), v, = P(x,)..



* Construction idea by combining:
— one-time garbled RAM  (GProgl, Glnp1, GEvall)
— reusable garbled circuits

~

ﬁone’ X ome Reusabt:le §Pr9tg: PET}LSQ -
reusable circuit-garbling o
_ u ircuit-garbling

C|P]{ Reusable GInput: %;

GProgl(P; ) — B, k garbled input for C[P]

Glnputl(x, k) = X,ne

} * Size of C|P]|=(RAM run-time of P)

ﬁ ¢ ||npUt|=O(|X|)

* |output| = (RAM run-time of P)
X, T




* Construction idea by combining:
— one-time garbled RAM  (GProgl, Glnp1, GEvall)
— reusable garbled circuits

Poner xone

i

ClP]{

GProgl(P;r) > P,.., k
Glnputl(x, k) = X,ne

}

-

X, T

Problem: In reusable garbled circuits of
[GKPVZ13], size of garbled input always
exceeds size of circuit output.

Unfortunately: This is inherent. Cannot
do better if want simulation security.

Size of C|P| = (RAM run-time of P)
[input| = O(]x])
loutput| = (RAM run-time of P)



Distributional Indistinguishability

Solution idea: new/weaker security notion for garbled circuits.
— For circuit C and independent distributions {w;}, {w;} s.t.
C(w;) = C(w;)
we get
|C, Wy, Wy, ..., 00| = |[C W', W5, ..., W]

Follows from indistinguishability obfuscation, or functional
encryption for circuits.

— Can garble circuits with huge output, small garbled input.

Stronger variant “correlated distributional ind.”: the
distributions are not necessarily independent.

— Follows from stronger notions of obfuscation.



Poner uone

e “Real-or-Dummy” program
P*(flag, x, y ) {

if flag=1 // real
output P(x)

else //dummy
output y

J

* User: garbles inputs
((flag=1, x,y =1), 1)

* Simulator: garbles inputs
( (flag=0,x =1,vy), 1)



* Persistent memory: Use 1-time
garbled RAM to compute:
D,k;i,+q < GData(D)

POTLB' xone

4}
C[P+] * Problem: inputsto C[P"] have
a common secret k¢,
— Need “correlated

— distributional ind.” security.

(... X, Kggeq - )




* Theorem: Get reusable garbled RAM where:
— Garble, evaluate program: O(RAM run-time P).
— Garble input = O( input + output size).
assuming “ind. obfuscation” + stat. sound NIZK.

* Theorem: Get reusable garbled RAM with persistent
memory where:
— Optional: garble data = O( data size)
— garble program = O( description size P )
— garble input = O( input + output size)
— evaluate = O( RAM run-time P)
assuming “strong differing-inputs obfuscation”.




Summary

e Qutsource Private RAM computation via “reusable
garbled RAM”.

e One-Time Garbled RAM

— Avoid circularity issue in [LO13] via IBE
— Can also use OWFs at the cost of higher overhead
— Best of both worlds?

e Reusable Garbled RAM

— Construction from one-time RAM + reusable circuits.
» “Icorrelated] distributional indistinguishability”

— Instantiations using “obfuscation” assumptions.
— Weaker assumptions?



Thank You!

Don’t turn me into a circuit!




How to allow writes?

Predictably-Timed Writes:

Whenever read location i,
“know” its last-write-time u.

Write location j, bit b
Read location i

CPU J read bit= CPU

1
state >tep state Step 2




How to allow writes?

* Garbled memory ={sk;p, :ID = (j,i,b)}
— I =location.

— j =last-write time of location i.

— b =bitin locationi written in step |.

* To read location i, need to know last-write time |.
— Encrypt labels to identities (j,i,0) and (j,i,1)

* To write location i, at time |
— Create secret key forID = (j,i,b).

— Need master secret key. Reintroduces circulairty!



How to allow writes?

* |dea: CPU step j can create secret key for any
ID =(j, *) but cannot decrypt for identities |’ # |.

* Prevents circularity: Translation ciphertext created
by CPU step j maintain semantic security even
given secrets contained in CPU steps j+1,j+2,...

* Need “restricted MSK” for time-period |j.



 Timed IBE (TIBE): restricted notion of HIBE.



 Timed IBE (TIBE): restricted notion of HIBE.

— Time-period key TSK; can be used to create a single
identity secret key for any identity ID = (j, *).

— Semantic security holds for all otherj.

e Can construct TIBE from any IBE. (see paper)

MSK

/N

TSKi—y TSK—, TSK;js

o

Sk(l,????) Sk(z,????) Sk(3,????)



Garbled
Memory

SK(0,1,0[1])

sk(0,2,0[2])

sk (0,3,0[3))

" jinitially all keys have time j=0
" Invariant: always have sk;; ,) where
j=last-write-time(i), and b is latest bit.

state

MPK, TSK,

CPU J

Step 1

read b|t= CPU
Step 2
state P
1 MPK, TSK,

]

Step |
has TSKj



Garbled

SKk,,p[1]) SK(0,2,0[2]) Sk(o,3,0[3])

Memory

* u<curstep: semantic security for ¢;, holds given future TSK;

Read: i, (last-write time: u) Write: i/, bitb

Co = EnCMpK((u, i, O), labelo)
¢; = Encypik((u,i,1), label;)

CPU J read bit= CPU IJ

state >tep 1 state Step 2

1 MPK, TSK,

Sk(j=1,i,,b)

MPK, TSK,




