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Problem Overview

• Weak client wants to leverage resources of a powerful 
server to compute 𝑃(𝑥) without revealing 𝑥.

• Efficiency Requirements:
– Client does much less work than computing 𝑃(𝑥)

– Server does about as much work as computing 𝑃(𝑥)

Client Server

𝑥

𝑦 = 𝑃(𝑥)



• Private outsourcing is possible using Fully Homomorphic
Encryption (FHE). [RAD78,Gen09,…] 

• But FHE works over circuits rather than RAM programs.

I’m very 
efficient!

Circuits vs. RAM



• Private outsourcing is possible using Fully Homomorphic
Encryption (FHE). [RAD78,Gen09,…] 

• But FHE works over circuits rather than RAM programs.

– RAM complexity 𝑇 ⇒ circuit or TM complexity  𝑇2

– For programs with initial “data in memory”, efficiency gap can be 
exponential (e.g., Google search).

Circuits vs. RAM



Goals

• Client’s work:   𝑂( 𝑥 + |𝑦|)

• Server’s work:  𝑂(RAM run-time of P).

• May allow client pre-processing of P.
– Client does one-time computation in O(RAM run-time of P). 

– Later, outsource many executions of P. Amortized efficiency.

Client Server

𝑥

𝑦 = 𝑃(𝑥)



Goals

• Basic scenario: client wants to run independent 
executions of 𝑃 on inputs 𝑥1, 𝑥2, 𝑥3, …

• Persistent Memory Data: 
– Client initially outsources large private ‘memory data’ D. 

– Program executions 𝑃𝐷(𝑥𝑖) can read/write to D.

– Generalizes oblivious RAM.

Client Server

𝑥

𝑦 = 𝑃(𝑥)

 𝐷



Goals

• Non-interactive solution:  “reusable garbled RAM”.

Client Server



Garbled Computation

Garbled Circuits
[Yao82]

Garble circuit:   𝐶 →  𝐶
Garble input:    𝑥 →  𝑥

Given  𝐶,  𝑥 only reveals 𝐶(𝑥)
Secure on one input 𝑥.

Reusable Garbled Circuits
[GKPVZ 13a,b]

Can garble many inputs per circuit.

Efficiently outsource circuit comp.
Extension to TM.

Garbled RAM
[LO13, GHLORW14]

Garble RAM:   𝑃 →  𝑃
Garble input:   𝑥 →  𝑥

Size of   𝑃, run-time  𝑃( 𝑥) is           
O(RAM run-time 𝑃). 

Reusable Garbled RAM
[GHRW14]

Can garble many inputs per program.

Efficiently outsource RAM comp.



Outsourcing via Garbling

• Client garbles program 𝑃 →  𝑃
– Pre-processing   = 𝑂( run-time 𝑃)

• Client repeatedly garbles inputs 𝑥𝑖 →  𝑥𝑖 in time 𝑂(|𝑥𝑖|).

• Server evaluates  𝑃 on  𝑥𝑖 to get 𝑦𝑖.
– Evaluation time  = 𝑂( run-time 𝑃)

Client Server

𝑦𝑖 = 𝑃(𝑥𝑖)

 𝐷
 𝑃

 𝑥𝑖

[  data 𝐷 →  𝐷 ]. 

[ using   𝐷 ] 



• Output privacy: set  𝑦𝑖 = encryption of real output.       
Server sends back 𝑦𝑖.

• Verifiability: 𝑦𝑖 includes (one-time) MAC of real output.

• Program Privacy:

– P is universal RAM, code is given as part of input.

– P has hard-coded encryption of code. x includes decryption key.

Client Server

𝑦𝑖 = 𝑃(𝑥𝑖)

 𝐷
 𝑃

 𝑥𝑖

𝑦𝑖

Outsourcing via Garbling



Garbled RAM

Garbled RAM
[LO13, GHLORW14]

PART I

Reusable Garbled RAM
[GHRW14]

PART II

• Overview of [LO13]. 

• Circularity issue, and fix.

Combine:
• Non-reusable garbled RAM.
• New type of reusable 

garbled circuits. 

• Constructions based on 
obfuscation.



PART I

One-Time  Garbled RAM



Garbled RAM Syntax

• GData 𝐷 →  𝐷, 𝑘𝑑𝑎𝑡𝑎 garble data

• GProg(𝑃, 𝑘𝑑𝑎𝑡𝑎) →  𝑃, 𝑘𝑝𝑟𝑜𝑔 garble program

• GInput(𝑥, 𝑘𝑝𝑟𝑜𝑔) →  𝑥 garble input

• Eva𝐥 𝑫(  𝑃,  𝑥) → 𝑦 evaluate program 

)



One-Time Garbled RAM

• Basic Security: Can simulate (  𝑃,  𝑥)  given 𝑦.

• Persistent data: Can reuse garbled data, but not 
garbled programs.  

Simulate   ( 𝐷, (  𝑃1,  𝑥1),  𝑃2,  𝑥2 , …)

Given         𝑦1, 𝑦2,…
– Note: changes to data persist, order matters. 



One-Time Garbled RAM

• Unprotected memory access:   may also reveal 𝐷, 
and the access pattern of 𝑃𝐷(𝑥).

– Locations of memory accessed in each step.

– Values read and written to memory. 

• Compiler: unprotected ⇒ full security:

– Use oblivious RAM [GO96,…]  to access memory. 



• read-only computation
• unprotected memory access

As a first step:

Overview of [Lu-Ostrovsky 13]



read bit

Memory
Data  D= 

CPU
Step 1

Read location: i

CPU
Step 2

𝐷[1] …

state

…
state

𝐷[2] 𝐷[3]



read bit

Memory
Data  D= 

CPU
Step 1

Read location: i

CPU
Step 2

𝐷[1] …

state

…
state

𝐷[2] 𝐷[3]

garbled circuit

garbled

garbled circuit

garbled

GProg:

GInp



read bitCPU
Step 1

Read location: i

CPU
Step 2state

…
stategarbled circuit

garbled

garbled circuit

garbled

GProg:

GInp

GData: 𝐹𝑘 1,𝐷[1] …𝐹𝑘 2,𝐷[2] 𝐹𝑘 3,𝐷[3]

𝐹𝑘(…) is a PRF



read bitCPU
Step 1

CPU
Step 2state

…
stategarbled circuit

garbled

garbled circuit

garbled

GProg:

GInp

GData: 𝐹𝑘 1,𝐷[1] …𝐹𝑘 2,𝐷[2] 𝐹𝑘 3,𝐷[3]

𝐹𝑘(…) is a PRF

PRF Key: kPRF Key: k

Read location: i

𝑐0 = 𝑬𝒏𝒄 (𝐹𝑘 𝑖, 0 , 𝑙𝑎𝑏𝑒𝑙0),  
𝑐1 = 𝑬𝒏𝒄 (𝐹𝑘 𝑖, 1 , 𝑙𝑎𝑏𝑒𝑙1)



Let’s try to prove security…

Should rely on:
1. Security of garbled circuits
2. Security of PRF/Encryption. 



Use security of 1st garbled circuit…

Read location: i

𝑐0 = 𝑬𝒏𝒄 (𝐹𝑘 𝑖, 0 , 𝑙𝑎𝑏𝑒𝑙0),  
𝑐1 = 𝑬𝒏𝒄 (𝐹𝑘 𝑖, 1 , 𝑙𝑎𝑏𝑒𝑙1)

read bit
CPU

Step 1

PRF Key: k

CPU
Step 2

PRF Key: k

state

…
state

garbledgarbled

garbled circuit garbled circuit



Use security of 1st garbled circuit
only learn output

Read location: i

𝑐0 = 𝑬𝒏𝒄 (𝐹𝑘 𝑖, 0 , 𝑙𝑎𝑏𝑒𝑙0),  
𝑐1 = 𝑬𝒏𝒄 (𝐹𝑘 𝑖, 1 , 𝑙𝑎𝑏𝑒𝑙1)

read bit

state

CPU
Step 2

PRF Key: k
…

labels for 𝑠𝑡𝑎𝑡𝑒

garbled circuit



Use security of 1st garbled circuit
only learn output

Read location: i

𝑙𝑎𝑏𝑒𝑙0
𝑐1 = 𝑬𝒏𝒄 (𝐹𝑘 𝑖, 1 , 𝑙𝑎𝑏𝑒𝑙1)

read bit

state

CPU
Step 2

PRF Key: k
…

labels for 𝑠𝑡𝑎𝑡𝑒

Assume D[i]=0

garbled circuit



Use security of 2nd garbled circuit

Use security of Encryption/PRF

don’t learn
𝑙𝑎𝑏𝑒𝑙1 for read bit

read bit
CPU

Step 2

PRF Key: k
…

state

Read location: i

labels for 𝑠𝑡𝑎𝑡𝑒

don’t learn
PRF key k

𝑙𝑎𝑏𝑒𝑙0
𝑐1 = 𝑬𝒏𝒄 (𝐹𝑘 𝑖, 1 , 𝑙𝑎𝑏𝑒𝑙1) garbled circuit



Circularity* Problem!

* May appear rectangular



So is it secure?

• Perhaps secure if instantiated with a “good” 
encryption, PRF, circuit garbling. 

– No proof. 

– No “simple” circularity assumption on one primitive.



Can we fix it? Yes! [Gentry-Halevi-Raykova- Lu-Ostrovsky-W]

• Fix 1  : 

– Using identity-based encryption (IBE).  

– Polylogarithmic overhead

• Fix 2  : 

– Only use one-way functions.

– Overhead 𝑛𝜀.  



The Fix

• Public-key instead of symmetric-key encryption.

– Garbled circuits have hard-coded public key. No secrets.

– Semantic security of ciphertexts holds even given 
public-key which is hard-coded in all garbled circuits.

• Caveat: need identity-based encryption (IBE)

– Original solution used “Sym-key IBE” = PRF + Sym-Enc. 



Garbled 
Memory

𝐹𝑘 1,𝐷[1] …

Read location: i

𝑐0 = 𝑬𝒏𝒄 (𝐹𝑘 𝑖, 0 , 𝑙𝑎𝑏𝑒𝑙0),  
𝑐1 = 𝑬𝒏𝒄 (𝐹𝑘 𝑖, 1 , 𝑙𝑎𝑏𝑒𝑙1)

𝐹𝑘 2,𝐷[2] 𝐹𝑘 3,𝐷[3]

read bit
CPU

Step 2

PRF Key: k

state

CPU
Step 1

PRF Key: k

state

Secret keys  for identities (𝑖, 𝐷 𝑖 )

Encrypt to identities
(i,0) and (i,1)

Master SK



Garbled 
Memory

𝑠𝑘(1,𝐷 1 )
…

Read location: i

𝑐0 = 𝑬𝒏𝒄𝑀𝑃𝐾( 𝑖, 0 , 𝑙𝑎𝑏𝑒𝑙0)
𝑐1 = 𝑬𝒏𝒄𝑀𝑃𝐾( 𝑖, 1 , 𝑙𝑎𝑏𝑒𝑙1)

read bit
CPU

Step 2state

CPU
Step 1

MPK

state

𝑠𝑘(2,𝐷 2 ) 𝑠𝑘(3,𝐷 3 )

MPK

Secret keys  for identities (𝑖, 𝐷 𝑖 )

Encrypt to identities
(i,0) and (i,1)

Master PK



• Theorem: Assuming IBE, get garbled RAM:              
For any RAM program w. run-time T , data of size N

– Garbled memory-data is of size: 𝑂(𝑁).

– Garbled program  size, creation/evaluation-time: 

𝑂 𝑇 ⋅ 𝑝𝑜𝑙𝑦𝑙𝑜𝑔 𝑁 .

– Supports “persistent memory data”.



PART II

Reusable Garbled RAM



Security of Reusable Garbled RAM
(without persistent data)

Simulate   𝑃,  𝑥1,  𝑥2,…  

given       𝑃, 𝑦1 = 𝑃(𝑥1), 𝑦2 = 𝑃(𝑥2)…



• Construction idea by combining:

– one-time garbled RAM       (GProg1, GInp1, GEval1)    

– reusable garbled circuits

𝑥, 𝑟

𝑪[𝑷] {

GProg1(𝑃; 𝑟) →  𝑃𝑜𝑛𝑒 , 𝑘
GInput1(𝑥, 𝑘) →  𝑥𝑜𝑛𝑒

}

 𝑃𝑜𝑛𝑒,  𝑥𝑜𝑛𝑒

• Size of 𝐶[𝑃] = (RAM run-time of 𝑃)
• |input| = O(|x|)
• |output| = (RAM run-time of 𝑃)

Reusable GProg:    𝑃𝑟𝑒𝑢𝑠𝑒

reusable circuit-garbling of 𝐶[𝑃]

Reusable GInput:   𝑥𝑖

garbled input for  𝐶[𝑃]



• Construction idea by combining:

– one-time garbled RAM       (GProg1, GInp1, GEval1)    

– reusable garbled circuits

𝑥, 𝑟

 𝑃𝑜𝑛𝑒,  𝑥𝑜𝑛𝑒

• Size of 𝐶[𝑃] = (RAM run-time of 𝑃)
• |input| = O(|x|)
• |output| = (RAM run-time of 𝑃)

Problem:  In reusable garbled circuits of 
[GKPVZ13], size of garbled input always 
exceeds size of circuit output.

Unfortunately: This is inherent. Cannot 
do better if want simulation security. 

𝑪[𝑷] {

GProg1(𝑃; 𝑟) →  𝑃𝑜𝑛𝑒 , 𝑘
GInput1(𝑥, 𝑘) →  𝑥𝑜𝑛𝑒

}



• Solution idea: new/weaker security notion for garbled circuits. 
– For circuit 𝐶 and independent distributions 𝑤𝑖 , {𝑤𝑖

′} s.t.
𝐶 𝑤𝑖 ≈ 𝐶 𝑤𝑖

′

we get
 𝑪,  𝑤1,  𝑤2, … ,  𝑤𝑛 ≈  𝑪,  𝑤′1,  𝑤′2, … ,  𝑤′𝑛

• Follows from indistinguishability obfuscation, or functional 
encryption for circuits.
– Can garble circuits with huge output, small garbled input. 

• Stronger variant “correlated distributional ind.”: the 
distributions are not necessarily independent.
– Follows from stronger notions of obfuscation. 

Distributional Indistinguishability



• “Real-or-Dummy” program 
𝑃+( flag, x, y ) {

if flag=1    // real

output P(x)

else          //dummy

output  y

}

• User: garbles inputs           
( (flag=1, 𝑥, 𝑦 =⊥) , 𝑟)

• Simulator: garbles inputs

( (flag=0,𝑥 =⊥, 𝑦), 𝑟)

 𝑃𝑜𝑛𝑒,  𝑥𝑜𝑛𝑒

𝑥, 𝑟

 𝑃𝑜𝑛𝑒,  𝑢𝑜𝑛𝑒

(u=(flag,𝑥, 𝑦), 𝑟)

𝑪[𝑷]𝑪[𝑷+]



 𝑃𝑜𝑛𝑒,  𝑥𝑜𝑛𝑒

𝑪[𝑷]

 𝑃𝑜𝑛𝑒,  𝑥𝑜𝑛𝑒

𝑪[𝑷+]

• Persistent memory: Use 1-time 
garbled RAM to compute: 
 𝐷, 𝑘𝑑𝑎𝑡𝑎 ← GData(D)

• Problem: inputs to 𝑪[𝑷+] have 
a common secret 𝑘𝑑𝑎𝑡𝑎.

– Need “correlated 
distributional ind.” security.

(… 𝑥,… )

 𝐷

(… 𝑥, 𝑘𝑑𝑎𝑡𝑎 … )



• Theorem: Get reusable garbled RAM where:
– Garble, evaluate program:  O(RAM run-time P).
– Garble input = O( input + output size). 

assuming “ind. obfuscation” + stat. sound NIZK.

• Theorem: Get reusable garbled RAM with persistent 
memory where:
– Optional: garble data =  O( data size) 
– garble program = O( description size P )
– garble input =  O( input + output size)
– evaluate  = O( RAM run-time P)
assuming  “strong differing-inputs obfuscation”.



Summary

• Outsource Private RAM computation via “reusable 
garbled RAM”. 

• One-Time Garbled RAM
– Avoid circularity issue in [LO13] via IBE  
– Can also use OWFs at the cost of higher overhead
– Best of both worlds? 

• Reusable Garbled RAM
– Construction from one-time RAM + reusable circuits.

• “[correlated] distributional indistinguishability”

– Instantiations using “obfuscation” assumptions. 
– Weaker assumptions?



Don’t turn me into a circuit!

Thank You!



How to allow writes?

read bitCPU
Step 1

Read location i

CPU
Step 2state

…
state

Write location j, bit b

Predictably-Timed Writes:
Whenever read location i,
“know” its last-write-time u.



How to allow writes?

• Garbled memory = { 𝑠𝑘𝐼𝐷 : 𝐼𝐷 = (𝑗, 𝑖, 𝑏)}

– i = location.

– j = last-write time of location i.

– b = bit in location i written in step j. 

• To read location i, need to know last-write time j.

– Encrypt  labels to  identities  (𝑗, 𝑖, 0) and (𝑗, 𝑖, 1)

• To write location i, at time j

– Create secret key  for 𝐼𝐷 = (𝑗, 𝑖, 𝑏).

– Need master secret key. Reintroduces circulairty! 



How to allow writes?

• Idea: CPU step j can create secret key for any         
ID = (j, *)   but cannot decrypt for identities j’ ≠ j.

• Prevents circularity: Translation ciphertext created 
by CPU step j maintain semantic security even 
given secrets contained in CPU steps j+1,j+2,…

• Need “restricted MSK” for time-period j. 



• Timed IBE (TIBE): restricted notion of HIBE. 



• Timed IBE (TIBE): restricted notion of HIBE. 

– Time-period key  𝑇𝑆𝐾𝑗 can be used to create a single

identity secret key for any identity ID = (j, *). 

– Semantic security holds for all other j.

• Can construct TIBE from any IBE.  (see paper)

𝑀𝑆𝐾

𝑇𝑆𝐾𝑗=1 𝑇𝑆𝐾𝑗=2 𝑇𝑆𝐾𝑗=3 …

𝑠𝑘(1,????) 𝑠𝑘(2,????) 𝑠𝑘(3,????)

……



read bit
CPU

Step 2state

CPU
Step 1

𝑀𝑃𝐾, 𝑇𝑆𝐾1

state

Garbled 
Memory

𝑠𝑘(0,1,𝐷 1 )
…𝑠𝑘(0,2,𝐷 2 ) 𝑠𝑘(0,3,𝐷 3 )

 initially all keys have time j=0
 Invariant: always have 𝑠𝑘(𝑗,𝑖,𝑏) where 

j=last-write-time(i),  and b is latest bit.

𝑀𝑃𝐾, 𝑇𝑆𝐾2

Step j
has 𝑇𝑆𝐾𝑗



Read: i,  (last-write time: u)

𝑐0 = 𝑬𝒏𝒄𝑀𝑃𝐾( 𝑢, 𝑖, 0 , 𝑙𝑎𝑏𝑒𝑙0)
𝑐1 = 𝑬𝒏𝒄𝑀𝑃𝐾( 𝑢, 𝑖, 1 , 𝑙𝑎𝑏𝑒𝑙1)

read bit
CPU

Step 2state

CPU
Step 1

𝑀𝑃𝐾, 𝑇𝑆𝐾1

state

Garbled 
Memory

𝑠𝑘(0,1,𝐷 1 )
…𝑠𝑘(0,2,𝐷 2 ) 𝑠𝑘(0,3,𝐷 3 )

𝑀𝑃𝐾, 𝑇𝑆𝐾2

Write: i’,  bit b

𝑠𝑘(𝑗=1,𝑖′,𝑏)

• u < cur step:  semantic security for 𝑐𝑏 holds given future 𝑇𝑆𝐾𝑗


