
Garbling and Outsourcing
Private RAM Computation

Daniel Wichs
Northeastern University

Based on :
• Garbled RAM, Revisited [Gentry-Halevi-Lu-Ostrovsky-Raykova-W]

• Outsourcing Private RAM Computation [Gentry-Halevi-Raykova-W]

Problem Overview

• Weak client wants to leverage resources of a powerful
server to compute 𝑃(𝑥) without revealing 𝑥.

• Efficiency Requirements:
– Client does much less work than computing 𝑃(𝑥)

– Server does about as much work as computing 𝑃(𝑥)

Client Server

𝑥

𝑦 = 𝑃(𝑥)

• Private outsourcing is possible using Fully Homomorphic
Encryption (FHE). [RAD78,Gen09,…]

• But FHE works over circuits rather than RAM programs.

I’m very
efficient!

Circuits vs. RAM

• Private outsourcing is possible using Fully Homomorphic
Encryption (FHE). [RAD78,Gen09,…]

• But FHE works over circuits rather than RAM programs.

– RAM complexity 𝑇 ⇒ circuit or TM complexity 𝑇2

– For programs with initial “data in memory”, efficiency gap can be
exponential (e.g., Google search).

Circuits vs. RAM

Goals

• Client’s work: 𝑂(𝑥 + |𝑦|)

• Server’s work: 𝑂(RAM run-time of P).

• May allow client pre-processing of P.
– Client does one-time computation in O(RAM run-time of P).

– Later, outsource many executions of P. Amortized efficiency.

Client Server

𝑥

𝑦 = 𝑃(𝑥)

Goals

• Basic scenario: client wants to run independent
executions of 𝑃 on inputs 𝑥1, 𝑥2, 𝑥3, …

• Persistent Memory Data:
– Client initially outsources large private ‘memory data’ D.

– Program executions 𝑃𝐷(𝑥𝑖) can read/write to D.

– Generalizes oblivious RAM.

Client Server

𝑥

𝑦 = 𝑃(𝑥)

 𝐷

Goals

• Non-interactive solution: “reusable garbled RAM”.

Client Server

Garbled Computation

Garbled Circuits
[Yao82]

Garble circuit: 𝐶 → 𝐶
Garble input: 𝑥 → 𝑥

Given 𝐶, 𝑥 only reveals 𝐶(𝑥)
Secure on one input 𝑥.

Reusable Garbled Circuits
[GKPVZ 13a,b]

Can garble many inputs per circuit.

Efficiently outsource circuit comp.
Extension to TM.

Garbled RAM
[LO13, GHLORW14]

Garble RAM: 𝑃 → 𝑃
Garble input: 𝑥 → 𝑥

Size of 𝑃, run-time 𝑃(𝑥) is
O(RAM run-time 𝑃).

Reusable Garbled RAM
[GHRW14]

Can garble many inputs per program.

Efficiently outsource RAM comp.

Outsourcing via Garbling

• Client garbles program 𝑃 → 𝑃
– Pre-processing = 𝑂(run-time 𝑃)

• Client repeatedly garbles inputs 𝑥𝑖 → 𝑥𝑖 in time 𝑂(|𝑥𝑖|).

• Server evaluates 𝑃 on 𝑥𝑖 to get 𝑦𝑖.
– Evaluation time = 𝑂(run-time 𝑃)

Client Server

𝑦𝑖 = 𝑃(𝑥𝑖)

 𝐷
 𝑃

 𝑥𝑖

[data 𝐷 → 𝐷].

[using 𝐷]

• Output privacy: set 𝑦𝑖 = encryption of real output.
Server sends back 𝑦𝑖.

• Verifiability: 𝑦𝑖 includes (one-time) MAC of real output.

• Program Privacy:

– P is universal RAM, code is given as part of input.

– P has hard-coded encryption of code. x includes decryption key.

Client Server

𝑦𝑖 = 𝑃(𝑥𝑖)

 𝐷
 𝑃

 𝑥𝑖

𝑦𝑖

Outsourcing via Garbling

Garbled RAM

Garbled RAM
[LO13, GHLORW14]

PART I

Reusable Garbled RAM
[GHRW14]

PART II

• Overview of [LO13].

• Circularity issue, and fix.

Combine:
• Non-reusable garbled RAM.
• New type of reusable

garbled circuits.

• Constructions based on
obfuscation.

PART I

One-Time Garbled RAM

Garbled RAM Syntax

• GData 𝐷 → 𝐷, 𝑘𝑑𝑎𝑡𝑎 garble data

• GProg(𝑃, 𝑘𝑑𝑎𝑡𝑎) → 𝑃, 𝑘𝑝𝑟𝑜𝑔 garble program

• GInput(𝑥, 𝑘𝑝𝑟𝑜𝑔) → 𝑥 garble input

• Eva𝐥 𝑫(𝑃, 𝑥) → 𝑦 evaluate program

)

One-Time Garbled RAM

• Basic Security: Can simulate (𝑃, 𝑥) given 𝑦.

• Persistent data: Can reuse garbled data, but not
garbled programs.

Simulate (𝐷, (𝑃1, 𝑥1), 𝑃2, 𝑥2 , …)

Given 𝑦1, 𝑦2,…
– Note: changes to data persist, order matters.

One-Time Garbled RAM

• Unprotected memory access: may also reveal 𝐷,
and the access pattern of 𝑃𝐷(𝑥).

– Locations of memory accessed in each step.

– Values read and written to memory.

• Compiler: unprotected ⇒ full security:

– Use oblivious RAM [GO96,…] to access memory.

• read-only computation
• unprotected memory access

As a first step:

Overview of [Lu-Ostrovsky 13]

read bit

Memory
Data D=

CPU
Step 1

Read location: i

CPU
Step 2

𝐷[1] …

state

…
state

𝐷[2] 𝐷[3]

read bit

Memory
Data D=

CPU
Step 1

Read location: i

CPU
Step 2

𝐷[1] …

state

…
state

𝐷[2] 𝐷[3]

garbled circuit

garbled

garbled circuit

garbled

GProg:

GInp

read bitCPU
Step 1

Read location: i

CPU
Step 2state

…
stategarbled circuit

garbled

garbled circuit

garbled

GProg:

GInp

GData: 𝐹𝑘 1,𝐷[1] …𝐹𝑘 2,𝐷[2] 𝐹𝑘 3,𝐷[3]

𝐹𝑘(…) is a PRF

read bitCPU
Step 1

CPU
Step 2state

…
stategarbled circuit

garbled

garbled circuit

garbled

GProg:

GInp

GData: 𝐹𝑘 1,𝐷[1] …𝐹𝑘 2,𝐷[2] 𝐹𝑘 3,𝐷[3]

𝐹𝑘(…) is a PRF

PRF Key: kPRF Key: k

Read location: i

𝑐0 = 𝑬𝒏𝒄 (𝐹𝑘 𝑖, 0 , 𝑙𝑎𝑏𝑒𝑙0),
𝑐1 = 𝑬𝒏𝒄 (𝐹𝑘 𝑖, 1 , 𝑙𝑎𝑏𝑒𝑙1)

Let’s try to prove security…

Should rely on:
1. Security of garbled circuits
2. Security of PRF/Encryption.

Use security of 1st garbled circuit…

Read location: i

𝑐0 = 𝑬𝒏𝒄 (𝐹𝑘 𝑖, 0 , 𝑙𝑎𝑏𝑒𝑙0),
𝑐1 = 𝑬𝒏𝒄 (𝐹𝑘 𝑖, 1 , 𝑙𝑎𝑏𝑒𝑙1)

read bit
CPU

Step 1

PRF Key: k

CPU
Step 2

PRF Key: k

state

…
state

garbledgarbled

garbled circuit garbled circuit

Use security of 1st garbled circuit
only learn output

Read location: i

𝑐0 = 𝑬𝒏𝒄 (𝐹𝑘 𝑖, 0 , 𝑙𝑎𝑏𝑒𝑙0),
𝑐1 = 𝑬𝒏𝒄 (𝐹𝑘 𝑖, 1 , 𝑙𝑎𝑏𝑒𝑙1)

read bit

state

CPU
Step 2

PRF Key: k
…

labels for 𝑠𝑡𝑎𝑡𝑒

garbled circuit

Use security of 1st garbled circuit
only learn output

Read location: i

𝑙𝑎𝑏𝑒𝑙0
𝑐1 = 𝑬𝒏𝒄 (𝐹𝑘 𝑖, 1 , 𝑙𝑎𝑏𝑒𝑙1)

read bit

state

CPU
Step 2

PRF Key: k
…

labels for 𝑠𝑡𝑎𝑡𝑒

Assume D[i]=0

garbled circuit

Use security of 2nd garbled circuit

Use security of Encryption/PRF

don’t learn
𝑙𝑎𝑏𝑒𝑙1 for read bit

read bit
CPU

Step 2

PRF Key: k
…

state

Read location: i

labels for 𝑠𝑡𝑎𝑡𝑒

don’t learn
PRF key k

𝑙𝑎𝑏𝑒𝑙0
𝑐1 = 𝑬𝒏𝒄 (𝐹𝑘 𝑖, 1 , 𝑙𝑎𝑏𝑒𝑙1) garbled circuit

Circularity* Problem!

* May appear rectangular

So is it secure?

• Perhaps secure if instantiated with a “good”
encryption, PRF, circuit garbling.

– No proof.

– No “simple” circularity assumption on one primitive.

Can we fix it? Yes! [Gentry-Halevi-Raykova- Lu-Ostrovsky-W]

• Fix 1 :

– Using identity-based encryption (IBE).

– Polylogarithmic overhead

• Fix 2 :

– Only use one-way functions.

– Overhead 𝑛𝜀.

The Fix

• Public-key instead of symmetric-key encryption.

– Garbled circuits have hard-coded public key. No secrets.

– Semantic security of ciphertexts holds even given
public-key which is hard-coded in all garbled circuits.

• Caveat: need identity-based encryption (IBE)

– Original solution used “Sym-key IBE” = PRF + Sym-Enc.

Garbled
Memory

𝐹𝑘 1,𝐷[1] …

Read location: i

𝑐0 = 𝑬𝒏𝒄 (𝐹𝑘 𝑖, 0 , 𝑙𝑎𝑏𝑒𝑙0),
𝑐1 = 𝑬𝒏𝒄 (𝐹𝑘 𝑖, 1 , 𝑙𝑎𝑏𝑒𝑙1)

𝐹𝑘 2,𝐷[2] 𝐹𝑘 3,𝐷[3]

read bit
CPU

Step 2

PRF Key: k

state

CPU
Step 1

PRF Key: k

state

Secret keys for identities (𝑖, 𝐷 𝑖)

Encrypt to identities
(i,0) and (i,1)

Master SK

Garbled
Memory

𝑠𝑘(1,𝐷 1)
…

Read location: i

𝑐0 = 𝑬𝒏𝒄𝑀𝑃𝐾(𝑖, 0 , 𝑙𝑎𝑏𝑒𝑙0)
𝑐1 = 𝑬𝒏𝒄𝑀𝑃𝐾(𝑖, 1 , 𝑙𝑎𝑏𝑒𝑙1)

read bit
CPU

Step 2state

CPU
Step 1

MPK

state

𝑠𝑘(2,𝐷 2) 𝑠𝑘(3,𝐷 3)

MPK

Secret keys for identities (𝑖, 𝐷 𝑖)

Encrypt to identities
(i,0) and (i,1)

Master PK

• Theorem: Assuming IBE, get garbled RAM:
For any RAM program w. run-time T , data of size N

– Garbled memory-data is of size: 𝑂(𝑁).

– Garbled program size, creation/evaluation-time:

𝑂 𝑇 ⋅ 𝑝𝑜𝑙𝑦𝑙𝑜𝑔 𝑁 .

– Supports “persistent memory data”.

PART II

Reusable Garbled RAM

Security of Reusable Garbled RAM
(without persistent data)

Simulate 𝑃, 𝑥1, 𝑥2,…

given 𝑃, 𝑦1 = 𝑃(𝑥1), 𝑦2 = 𝑃(𝑥2)…

• Construction idea by combining:

– one-time garbled RAM (GProg1, GInp1, GEval1)

– reusable garbled circuits

𝑥, 𝑟

𝑪[𝑷] {

GProg1(𝑃; 𝑟) → 𝑃𝑜𝑛𝑒 , 𝑘
GInput1(𝑥, 𝑘) → 𝑥𝑜𝑛𝑒

}

 𝑃𝑜𝑛𝑒, 𝑥𝑜𝑛𝑒

• Size of 𝐶[𝑃] = (RAM run-time of 𝑃)
• |input| = O(|x|)
• |output| = (RAM run-time of 𝑃)

Reusable GProg: 𝑃𝑟𝑒𝑢𝑠𝑒

reusable circuit-garbling of 𝐶[𝑃]

Reusable GInput: 𝑥𝑖

garbled input for 𝐶[𝑃]

• Construction idea by combining:

– one-time garbled RAM (GProg1, GInp1, GEval1)

– reusable garbled circuits

𝑥, 𝑟

 𝑃𝑜𝑛𝑒, 𝑥𝑜𝑛𝑒

• Size of 𝐶[𝑃] = (RAM run-time of 𝑃)
• |input| = O(|x|)
• |output| = (RAM run-time of 𝑃)

Problem: In reusable garbled circuits of
[GKPVZ13], size of garbled input always
exceeds size of circuit output.

Unfortunately: This is inherent. Cannot
do better if want simulation security.

𝑪[𝑷] {

GProg1(𝑃; 𝑟) → 𝑃𝑜𝑛𝑒 , 𝑘
GInput1(𝑥, 𝑘) → 𝑥𝑜𝑛𝑒

}

• Solution idea: new/weaker security notion for garbled circuits.
– For circuit 𝐶 and independent distributions 𝑤𝑖 , {𝑤𝑖

′} s.t.
𝐶 𝑤𝑖 ≈ 𝐶 𝑤𝑖

′

we get
 𝑪, 𝑤1, 𝑤2, … , 𝑤𝑛 ≈ 𝑪, 𝑤′1, 𝑤′2, … , 𝑤′𝑛

• Follows from indistinguishability obfuscation, or functional
encryption for circuits.
– Can garble circuits with huge output, small garbled input.

• Stronger variant “correlated distributional ind.”: the
distributions are not necessarily independent.
– Follows from stronger notions of obfuscation.

Distributional Indistinguishability

• “Real-or-Dummy” program
𝑃+(flag, x, y) {

if flag=1 // real

output P(x)

else //dummy

output y

}

• User: garbles inputs
((flag=1, 𝑥, 𝑦 =⊥) , 𝑟)

• Simulator: garbles inputs

((flag=0,𝑥 =⊥, 𝑦), 𝑟)

 𝑃𝑜𝑛𝑒, 𝑥𝑜𝑛𝑒

𝑥, 𝑟

 𝑃𝑜𝑛𝑒, 𝑢𝑜𝑛𝑒

(u=(flag,𝑥, 𝑦), 𝑟)

𝑪[𝑷]𝑪[𝑷+]

 𝑃𝑜𝑛𝑒, 𝑥𝑜𝑛𝑒

𝑪[𝑷]

 𝑃𝑜𝑛𝑒, 𝑥𝑜𝑛𝑒

𝑪[𝑷+]

• Persistent memory: Use 1-time
garbled RAM to compute:
 𝐷, 𝑘𝑑𝑎𝑡𝑎 ← GData(D)

• Problem: inputs to 𝑪[𝑷+] have
a common secret 𝑘𝑑𝑎𝑡𝑎.

– Need “correlated
distributional ind.” security.

(… 𝑥,…)

 𝐷

(… 𝑥, 𝑘𝑑𝑎𝑡𝑎 …)

• Theorem: Get reusable garbled RAM where:
– Garble, evaluate program: O(RAM run-time P).
– Garble input = O(input + output size).

assuming “ind. obfuscation” + stat. sound NIZK.

• Theorem: Get reusable garbled RAM with persistent
memory where:
– Optional: garble data = O(data size)
– garble program = O(description size P)
– garble input = O(input + output size)
– evaluate = O(RAM run-time P)
assuming “strong differing-inputs obfuscation”.

Summary

• Outsource Private RAM computation via “reusable
garbled RAM”.

• One-Time Garbled RAM
– Avoid circularity issue in [LO13] via IBE
– Can also use OWFs at the cost of higher overhead
– Best of both worlds?

• Reusable Garbled RAM
– Construction from one-time RAM + reusable circuits.

• “[correlated] distributional indistinguishability”

– Instantiations using “obfuscation” assumptions.
– Weaker assumptions?

Don’t turn me into a circuit!

Thank You!

How to allow writes?

read bitCPU
Step 1

Read location i

CPU
Step 2state

…
state

Write location j, bit b

Predictably-Timed Writes:
Whenever read location i,
“know” its last-write-time u.

How to allow writes?

• Garbled memory = { 𝑠𝑘𝐼𝐷 : 𝐼𝐷 = (𝑗, 𝑖, 𝑏)}

– i = location.

– j = last-write time of location i.

– b = bit in location i written in step j.

• To read location i, need to know last-write time j.

– Encrypt labels to identities (𝑗, 𝑖, 0) and (𝑗, 𝑖, 1)

• To write location i, at time j

– Create secret key for 𝐼𝐷 = (𝑗, 𝑖, 𝑏).

– Need master secret key. Reintroduces circulairty!

How to allow writes?

• Idea: CPU step j can create secret key for any
ID = (j, *) but cannot decrypt for identities j’ ≠ j.

• Prevents circularity: Translation ciphertext created
by CPU step j maintain semantic security even
given secrets contained in CPU steps j+1,j+2,…

• Need “restricted MSK” for time-period j.

• Timed IBE (TIBE): restricted notion of HIBE.

• Timed IBE (TIBE): restricted notion of HIBE.

– Time-period key 𝑇𝑆𝐾𝑗 can be used to create a single

identity secret key for any identity ID = (j, *).

– Semantic security holds for all other j.

• Can construct TIBE from any IBE. (see paper)

𝑀𝑆𝐾

𝑇𝑆𝐾𝑗=1 𝑇𝑆𝐾𝑗=2 𝑇𝑆𝐾𝑗=3 …

𝑠𝑘(1,????) 𝑠𝑘(2,????) 𝑠𝑘(3,????)

……

read bit
CPU

Step 2state

CPU
Step 1

𝑀𝑃𝐾, 𝑇𝑆𝐾1

state

Garbled
Memory

𝑠𝑘(0,1,𝐷 1)
…𝑠𝑘(0,2,𝐷 2) 𝑠𝑘(0,3,𝐷 3)

 initially all keys have time j=0
 Invariant: always have 𝑠𝑘(𝑗,𝑖,𝑏) where

j=last-write-time(i), and b is latest bit.

𝑀𝑃𝐾, 𝑇𝑆𝐾2

Step j
has 𝑇𝑆𝐾𝑗

Read: i, (last-write time: u)

𝑐0 = 𝑬𝒏𝒄𝑀𝑃𝐾(𝑢, 𝑖, 0 , 𝑙𝑎𝑏𝑒𝑙0)
𝑐1 = 𝑬𝒏𝒄𝑀𝑃𝐾(𝑢, 𝑖, 1 , 𝑙𝑎𝑏𝑒𝑙1)

read bit
CPU

Step 2state

CPU
Step 1

𝑀𝑃𝐾, 𝑇𝑆𝐾1

state

Garbled
Memory

𝑠𝑘(0,1,𝐷 1)
…𝑠𝑘(0,2,𝐷 2) 𝑠𝑘(0,3,𝐷 3)

𝑀𝑃𝐾, 𝑇𝑆𝐾2

Write: i’, bit b

𝑠𝑘(𝑗=1,𝑖′,𝑏)

• u < cur step: semantic security for 𝑐𝑏 holds given future 𝑇𝑆𝐾𝑗

