On the Performance of Private Set Intersection

Benny Pinkas, Bar-Ilan University
Thomas Schneider, TU Darmstadt Michael Zohner, TU Darmstadt

Private Set Intersection (PSI)

Input:
Output:
$X=x_{1} \ldots x_{n}$
$X \cap Y$ only
$Y=y_{1} \ldots y_{n}$
Server
nothing

Other variants exist (e.g., both parties learn output; client learns size of intersection; compute some other function of the intersection, etc.)

Applications

- PSI is a very natural problem
- Matching
- Testing human genomes [BBC+11]
- Proximity testing [NTL+11]
- Relationship path discovery in social networks [MPGP09]
- Intersection of suspect lists
- Botnet detection [NMH+10]
- Cheater detection in online games [BHLB11]

This talk

- Survey the major results
- Suggest optimizations based on new observations
- Present a new scheme
- Compare the performance of all schemes
- On the same platform
- Using the best optimizations that we have

A naïve PSI protocol

- A naïve solution:
- Have A and B agree on a "cryptographic hash function" H()
- B sends to $A: H\left(y_{1}\right), \ldots, H\left(y_{n}\right)$
- A compares to $\mathrm{H}\left(\mathrm{x}_{1}\right), \ldots, \mathrm{H}\left(\mathrm{x}_{\mathrm{n}}\right)$ and finds the intersection
- Does not protect B's privacy if inputs do not have considerable entropy

Preliminaries

- We set the security parameter to 128 bits
- Namely, use symmetric and public key systems against which the best brute force attack takes 2^{128} operations.

Preliminaries

- We only consider semi-honest (passive) adversaries
- In crypto we consider two types of adversaries:
- Semi-honest (aka honest-but-curious) adversaries follow the protocol but try to learn more than they should
- Malicious adversaries can behave arbitrarily
- Why discuss only semi-honest?
- There are PSI protocols secure against malicious adversaries
- These protocols are much less efficient
- None of them was implemented [FNP04, JL09, HN10, CKT10, FHNP13].
- We use OT extension...

;) PSI secure against malicious adversaries [FHNP]

$\underline{P_{1}\left(X, m_{2}\right)}$		$\underline{P_{2}\left(Y=\left\{y_{\alpha}\right\}_{\alpha \in\left\{1 \ldots m_{2}\right\}}, m_{1}\right)}$		
$\begin{array}{r} 1^{k} \\ \left(p k, s k_{1}\right) \end{array}$	$\pi_{\text {KEY }}$	$\begin{aligned} & \longleftarrow 1^{k} \\ & \longrightarrow\left(p k, s k_{2}\right) \end{aligned}$		
	$E_{p k}\left(Q_{1}(\cdot)\right) \ldots E_{p k}\left(Q_{B}(\cdot)\right)$			
$Q_{1}(\cdot) \ldots Q_{B}(\cdot) \longrightarrow$	$\pi_{\text {PoLY }}$	$\begin{aligned} & \longleftrightarrow E_{p k}\left(Q_{1}(\cdot)\right) \ldots E_{p k}\left(Q_{B}(\cdot)\right) \\ & \longrightarrow 0 / 1 \end{aligned}$		
Verify $s k=s k_{1}+s k_{2}$	$s k_{2}$			
	$\begin{gathered} e_{j}^{\alpha}=E_{p k}\left(r_{j} \cdot q_{j}+s_{1-j}^{\alpha} ; \hat{r}_{j}\right), \\ t_{\alpha}=\tilde{r}_{j} \oplus y_{\alpha} \end{gathered}$	$\begin{aligned} & \text { For all } \alpha \in\left\{1 \ldots m_{2}\right\}, j \in\{0,1\}: \\ & \quad s_{0}^{\alpha}, s_{\alpha}^{\alpha} \leftarrow_{R} \mathbb{M}, \\ & \mathcal{H}\left(s_{j}^{\alpha}\right) \rightarrow r_{j}\left\\|\tilde{r}_{j}\right\\| \hat{r}_{j} \\ & q_{j} \stackrel{\text { def }}{=} Q_{h_{j}\left(y_{\alpha}\right)}\left(y_{\alpha}\right) \end{aligned}$		

For all $\alpha \in\left\{1 \ldots m_{2}\right\}, j \in\{0,1\}$:
$s_{j}^{\prime}=D_{s k}\left(\tilde{e}_{\alpha}\right)$,
$\mathcal{H}\left(s_{j}^{\prime}\right) \rightarrow r_{j}^{\prime}\left\|\tilde{r}_{j}^{\prime}\right\| \hat{r}_{j}^{\prime}$
Check if $\exists x \in X \quad j \in\{0,1\}$ s.t. :
$t_{j}^{\alpha}=\tilde{r}_{j} \oplus x$, and
$\tilde{e}_{0}^{\alpha}, e_{1}^{\alpha}$, consistent with
$r_{1}^{\prime}, r_{2}^{\prime}, s_{0}^{\prime}, s_{1}^{\prime}, \hat{r}_{0}^{\prime}, \hat{r}_{1}^{\prime}$.

Preliminaries - the random oracle model

- In the random oracle model (ROM) a specific function is modeled (in the analysis) as a random function
- This analysis is very problematic
- In the theory of crypto proofs in this model are considered as a heuristic
- We describe protocols that are based on the ROM
- There are PSI protocols in the standard model [FNPO4], but they are less efficient.
- We use OT extension
- Can be based on a non-ROM assumption
- But a variant in the ROM is even more efficient

Public-key based Protocols

PSI based on Diffie-Hellman

- The Decisional Diffie-Hellman assumption
- Agree on a group G, with a generator g.
- The assumption: for random a, b, c cannot distinguish ($g^{a}, g^{b}, g^{a b}$) from (g^{a}, g^{b}, g^{c})
- (This is a very established assumption in modern crypto)

PSI based on Diffie-Hellman

- The protocol [M86, HFH99, AES03]:

Compares the two lists
(H is modeled as a random oracle. Security based on DDH) Implementation: very simple; can be based on ellipticcurve crypto; minimal communication.

What else could we want?

PSI based on Blind RSA [CT10]

- There is also a PSI protocol based on an RSA variant
- The performance should be similar to that of DH based protocols, but
\circ One party does all the hard work \Rightarrow no advantage in the two parties working in parallel
- Cannot be based on elliptic curve crypto

PSI based on Oblivious Polynomial

Evaluation [FNP04] (short version)

- (Advantage: proof in the standard model)
- Implemented based on additively homomorphic encryption (Paillier, El Gamal).
- Alice generates the polynomial
$P(x)=\left(x-x_{1}\right)\left(x-x_{2}\right) \cdots\left(x-x_{n}\right)=a_{n} x^{n}+\cdots+a_{1} x+a_{0}$
- Alice sends homomorphic encryptions
$E\left(a_{0}\right), E\left(a_{1}\right), \ldots, E\left(a_{n}\right)$
- $\forall y_{i}$ Bob uses these to evaluate and send $E\left(P\left(y_{i}\right) \cdot r_{i}+y_{i}\right)$
- Implementation: $\mathrm{O}\left(\mathrm{n}^{2}\right)$ exps. Can be reduced to O(nloglogn) using hashing. Too inefficient.

Generic Protocols

A circuit based protocol

- There are generic protocols for implementing any functionality expressed as a Binary circuit。GMW, Yao,...
- A naïve circuit uses n^{2} comparisons of words
- Can we do better?

A circuit based protocol [HEK12]

- A circuit that has three steps
- Sort: merge two sorted lists using a bitonic merging network [Bat68]. Uses nlog(2n) comparisons.

A circuit based protocol [HEK12]

- A circuit that has three steps
- Sort: merge two sorted lists using a bitonic merging network [Bat68]. Uses $n \log (2 n)$ comparisons.
- Compare: compare adjacent items. Uses $2 n$ equality checks.
- Shuffle: Randomly shuffle results using a Waxman permutation network [W68], using ~nlog(n) swappings.
- Overall uses $L \cdot(3 n \log n+4 n)$ AND gates. (L is input length)
- (2/3 of the AND gates are for multiplexers)

Protocols for Secure Computation are based on Oblivious Transfer (OT)

Server

Input:
b
X_{0}, X_{1}

Output:
X_{b} nothing
(PSI implies OT)

Side step: OT extension

There are different OT protocols based on public-key crypto

- [NP01] allows ~1000 OTs per second
[IR89] proved that there is no black-box reduction of OT to one-way functions

OT was believed to be as (in)efficient as public-key crypto

OT extension

- OT extension runs a small number of "real" OTs, and then uses symmetric-key cryptography to compute from them many OTs [Beaver96,IKNPO3]

OT extension

- Setting:
- Bob holds m pairs of /-bit messages $\left(x_{i, 0}, x_{i, 1}\right)$
- Alice holds an m-bit string r and wants to obtain the value $x_{i, r i}$ in the i-th OT
- They perform k "real" OTs on random seeds with reverse roles ($k=128$ is a symmetric security parameter)
- Alice generates a random $m \times k$ bit matrix \mathbf{T} and masks her choices r, using the seeds of the "real" OTs
- The matrix is transposed to be used for the "real" OTs

Improving OT extension [ALSZ13]

- A lot of time is spent on bit Matrix transpose - improve by using cache efficient alg
- Use parallelization
- Random OT: the two values of the sender are chosen at random
- Cuts communication in half
- Suitable for the GMW protocol and for our protocols!
- Now the bottleneck is essentially the communication

Per OT:
1 \# PRG evaluations

2 \# H evaluations 1

Time distribution for 10M OTs (in 21sec):

Improving the circuit based PSI of [HEK12]

- GMW uses two OTs per gate; Yao uses four symmetric encryptions.
- Yao was considered much more efficient.
- OT extension makes GMW faster than Yao.
- We noted that $2 / 3$ of the ANDs are for multiplexers
- A single bit chooses between two 32 bit inputs
- For the GMW protocol, this means that instead of using 64 single-bit OTs, can use two OTs with inputs that are 32 bit long.
- Can also base GMW on random-OT.

Garbled Bloom Filter [DCW13]

How a Bloom Filter Works

$$
\begin{array}{|l|l|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline
\end{array}
$$

- A bit array with all zeroes initially
- k hash functions

How a Bloom Filter Works

Insertion

- Hash the element using the hash functions, get k indices in the bit array
- Set the bits to 1

How a Bloom Filter Works

Lookup

- Hash the element using the hash functions
- If all corresponding bits are 1 , conclude that the element is in the set

Bloom Filter Analysis

- For a false positive probability of ε, use
- $\mathrm{k}=1 / \log \varepsilon$ hash functions
- m=1.44 kn bits in the filter
- Must set k to be the symmetric security parameter ($k=128$ or 80).
- The resulting filter is longggg... (184-n)

Short story

- Use a Bloom filter where each entry is a random string
- If X is in the filter, then the XOR of the entries corresponding to X is equal to X.
- The parties run an OT per Bloom filter entry (many OTs)
(Long story) Garbled Bloom Filter [DCW13]
- Bob has items x_{1}, \ldots, x_{n}.
- Uses a Bloom filter where each entry i is a string $G[i]$, s.t. the xor of the entries to which x is mapped is x.
$\circ \oplus_{\mathrm{j}=1 \ldots \mathrm{k}} \mathrm{G}\left[\mathrm{h}_{\mathrm{j}}(\mathrm{x})\right]=\mathrm{x}$.
- Insertion:
- Find an index t such that $G\left[h_{t}(x)\right]$ is unoccupied.
- (The failure probability is equal to the false positive prob ε)
- Fill all other G[h(x)] entries.
- Set $G\left[h_{t}(x)\right]$ so that the xor of all entries is x.

(Long story) The protocol [DCW13]

- Alice generates a regular Bloom filter A[1...k].
- Bob generates a garbled Bloom filter G[1...k] (using the same hash functions)
- For each entry i in the filter, run an OT
- Alice is the receiver, with input $A[i]$
- Bob is the sender with inputs ($0, \mathrm{G}[\mathrm{i}]$)
- Alice checks if x is in the intersection by checking if
$\oplus_{\mathrm{j}=1 \ldots \mathrm{k}} \mathrm{G}\left[\mathrm{h}_{\mathrm{j}}(\mathrm{x})\right]=\mathrm{x}$.
- Alice cannot check this for values not in her input, since the probability of learning all relevant values of G[] is ε.

Our optimizations

- A complete redesign that can be implemented using random OT extension.
- The protocol
- Uses much less communication
- Becomes completely parallelizable (the original protocol required inserting items one by one)

Performance

Optimization	Party	\# bits sent	\# calls to H
[DCW13]	Alice	$2 m k$	m
	Bob	$2 m \lambda$	$2 m$
[DCW13] + random OT extension of [ALSZ13]	Alice	$m k$	$m / 2$
	Bob	$m \lambda$	m
Random Bloom Filter PSI Parallelizable	Alice	$m k$	$m / 2$
	Bob	$n \lambda$	$m / 2$
Bloom filter length: $m=1.44 \cdot 128 \cdot n$			

PSI based on OT (a new protocol)

- We first design simple protocols based on OT
- Use OT extension and hashing based constructions to the max

First step: Private equality test

- Private equality test
- Input: Alice has x, Bob has y. Each is s bits long.
- Output: is $x=y$?

Private equality test

- Alice input: 001 Bob input: 011

Private equality test

- Alice input: 001 Bob input: 011.
- Random OTs

Alice

Bob

$$
\begin{array}{|l|l|}
\hline \mathrm{R}_{0,0} & \mathrm{R}_{0,1} \\
\hline \mathrm{R}_{1,0} & \mathrm{R}_{1,1} \\
\hline \mathrm{R}_{2,0} & \mathrm{R}_{2,1}
\end{array}
$$

Private equality test

- Alice input: 001 Bob input: 011
- Random OTs

Alice

Bob

$R_{0,0}$	$R_{0,1}$
$R_{1,0}$	$R_{1,1}$
$R_{2,0}$	$R_{2,1}$

'Bob sends $\mathrm{R} 0,0 \oplus \mathrm{R} 1,1 \oplus \mathrm{R} 2,1$
'Alice computes $\mathrm{Ro}, 0 \oplus \mathrm{R} 1,0 \oplus \mathrm{R} 2,1$, and compares

Private set inclusion

- Input: Alice has x, Bob has y_{1}, \ldots, y_{n}
- Output: is x in $\left\{y_{1}, \ldots, y_{n}\right\}$?
- Run n Private Equality Tests in parallel.
- Alice's OT choices for all $\mathrm{y}_{1}, \ldots, \mathrm{y}_{\mathrm{n}}$ are the same
- Run only s random OTs of seeds.
- Use a pseudo-random generator to generate from each seed n strings of length λ bits ©
- Send λn bits from Bob to Alice

Private set intersection

- Input: Alice has $\left\{x_{1}, \ldots, x_{n}\right\}$, Bob has y_{1}, \ldots, y_{n}
- Output: Intersection of $\left\{x_{1}, \ldots, x_{n}\right\}$ and $\left\{y_{1}, \ldots, y_{n}\right\}$
- Run n Private Set Inclusion protocols
- Total communication is $\underline{n}^{2} \lambda$ bits
- Communication can be further reduced via hashing

Hashing

- Suppose each party uses a random hash function H() , (known to both) to hash its n items to n bins.
- Then obviously if Alice and Bob have the same item, both of them map it to the same bin.
- Each bin is expected to have O(1) items
- The items mapped to the bin can be compared using private equality tests, with $O(\lambda)$ communication.
- Overall only $\mathrm{O}(\mathrm{n} \lambda)$ communication.
- The problem
- Some bins have more items
- Must hide how many items were mapped to each bin

Hashing

- Solution
- Pad each bin with dummy items
- so that all bins are of the size of the most populated bin
- Mapping n items to n bins
- The expected size of a bin is $O(1)$
- The maximum size of a bin is whp O(logn)
- Communication increases by O(logn) to be O(n入logn) $):$

Hashing

- Mapping n items to about $\mathrm{n} / \operatorname{lnn}$ bins
- The expected size of a bin is $\approx O(\ln n)$
- The maximum size of a bin is (whp) the same
- This is ideal, since we cannot hope to pay less than the expected cost
- Each bin has O(ln n) items. Each item can be represented by $\mathrm{O}(\ln \ln \mathrm{n})$ bits.
- The work per bin is $O(\ln n \cdot \ln \ln n)$
- Total work is $\mathrm{O}(\mathrm{n} / \operatorname{lnn} \cdot \ln \mathrm{n} \cdot \ln \ln \mathrm{n})=\mathrm{O}(\mathrm{n} \cdot \ln \ln \mathrm{n})$

Other hashing schemes

- Power of two hashing (balanced allocations)
- Cuckoo hashing

Only an asymptotic comparison was previously done

	Total \#OTs	OT comm.	Overall Comm. $(M B)$ for $\mathrm{n}=2^{18}$
No hashing	$n s$	$\mathrm{n}^{2} \lambda$	327,808
Simple hashing	3.7 ns	$\mathrm{n} \lambda$	475
Balanced hashing	$2.9 \mathrm{~ns} \ln \ln n$	$2 \mathrm{n} \lambda$	939
Cuckoo hashing	$(2(1+\varepsilon) \mathrm{n}+\operatorname{lnn}) \mathrm{s}$	$(2+\operatorname{lnn}) \mathrm{n} \lambda$	276

Experiments

- No previous "fair" comparison of all protocols
- We used two Intel Core2Quad desk-top PCs with 4 GB RAM, connected via Gigabit LAN
- Inputs are 32 bit long
- Statistical security parameter $\lambda=40$
- Symmetric security parameter 80 or 128
- Gigabit Ethernet

Results: run time (2^{18} items)

Protocol	80 -bit	128-bit	Asymptotic
DH FFC	99	1224	2 n PK
DH ECC	178	416	2 n PK
Blind RSA	125	1982	2 n PK
Circuit + GMW	807	1304	9ns logn sym
Optimized GMW	462	762	3ns logn sym
Garbled Bloom	72	154	2 kn sym
Optimized G. Bloom	34	68	$\mathrm{nk} / 2$ sym
OT + hashing	13	14	$\mathrm{~ns} / 4$ sym

Results: communication (2 2^{18} items)

Protocol	80 -bit	128-bit	Asymptotic
DH FFC	96	192	
DH ECC	15	26	
Blind RSA	67	132	
Circuit + GMW	14760	23400	
Optimized GMW	8856	14040	
Garbled Bloom	866	1393	
Optimized G. Bloom	290	740	
OT + hashing	54	78	

DH: run time (2^{18} items)

Protocol	80 -bit	128-bit	Asymptotic
DH FFC	99	1224	2 n PK
DH ECC	178	416	2 n PK
Blind RSA	125	1982	2 n PK
Circuit + GMW	807	1304	9ns logn sym
Optimized GMW	462	762	3ns logn sym
Garbled Bloom	72	154	2 kn sym
Optimized G. Bloom	34	68	$\mathrm{nk} / 2$ sym
OT + hashing	13	14	$\mathrm{~ns} / 4$ sym

Pretty good performance!
ECC slower for 80 bit due to quality of the implementation (MIRACL vs. GIMP)

DH : communication (2^{18} items)

Protocol	80 -bit	128-bit	Asymptotic
DH FFC	96	192	
DH ECC	15	26	
Blind RSA	67	132	
Circuit + GMW	14760	23400	
Optimized GMW	8856	14040	
Garbled Bloom	866	1393	
Optimized G. Bloom	290	740	
OT + hashing	54	78	

ECC has the best communication overhead of all protocols

Blind RSA: run time (2^{18} items)

Protocol	80 -bit	128-bit	Asymptotic
DH FFC	99	1224	2 n PK
DH ECC	178	416	2 n PK
Blind RSA	125	1982	2 n PK
Circuit + GMW	809	1306	9ns logn sym
Optimized GMW	465	764	3ns logn sym
Garbled Bloom	72	154	2 kn sym
Optimized G. Bloom	32	66	nk/2 sym
OT + hashing	36	46	ns/4 sym

For 80 bit security, faster than a circuit (but not than DH)
Asymmetric work load between the parties

DH: communication (2 2^{18} items)

Protocol	80 -bit	128-bit	Asymptotic
DH FFC	96	192	
DH ECC	15	26	
Blind RSA	67	132	
Circuit + GMW	9507	15072	
Optimized GMW	3790	5964	
Garbled Bloom	866	1393	
Optimized G. Bloom	290	740	
OT + hashing	176	276	

Circuit: run time (2^{18} items)

Protocol	80 -bit	128-bit	Asymptotic
DH FFC	99	1224	2 n PK
DH ECC	178	416	2 n PK
Blind RSA	125	1982	2 n PK
Circuit + GMW	807	1304	9ns logn sym
Optimized GMW	462	762	3ns logn sym
Garbled Bloom	72	154	2 kn sym
Optimized G. Bloom	34	68	$\mathrm{nk} / 2$ sym
OT + hashing	13	14	$\mathrm{~ns} / 4$ sym

The basic protocol is the most inefficient
Our optimizations saved more than 40% (over standard OT extension)
The result is comparable to PK based protocols
The advantage is the generality of a circuit based solution.

Circuit: communication (2^{18} items)

Protocol	80 -bit	128 -bit	Asymptotic
DH FFC	96	192	
DH ECC	15	26	
Blind RSA	67	132	
Circuit + GMW	14760	23400	
Optimized GMW	8856	14040	
Garbled Bloom	866	1393	
Optimized G. Bloom	290	740	
OT + hashing	54	78	

Highest communication overhead

Bloom + OT: run time (2^{18} items)

Protocol	80 -bit	128-bit	Asymptotic
DH FFC	99	1224	2 n PK
DH ECC	178	416	2 n PK
Blind RSA	125	1982	2 n PK
Circuit + GMW	807	1304	9ns logn sym
Optimized GMW	462	762	3ns logn sym
Garbled Bloom	72	154	2 kn sym
Optimized G. Bloom	34	68	$\mathrm{nk} / 2$ sym
OT + hashing	13	14	$\mathrm{~ns} / 4$ sym

The optimized Bloom protocol is 55\% faster than the basic Bloom protocol The new OT+hashing protocol even faster Overall, OT protocols are the fastest.

Bloom + OT: run time (2^{18} items)

Protocol	80 -bit	128-bit	Asymptotic
DH FFC	99	1224	2 n PK
DH ECC	178	416	2 n PK
Blind RSA	125	1982	2 n PK
Circuit + GMW	807	1304	9ns logn sym
Optimized GMW	462	762	3ns logn sym
Garbled Bloom	72	154	2 kn sym
Optimized G. Bloom	34	68	nk/2 sym
OT + hashing	13.5	13.8	$\mathrm{~ns} / 4$ sym

Our OT based protocol is unaffected by the security parameter (due to the use of symmetric crypto + communication efficiency)

Bloom + OT: communication (2^{18} items)

Protocol	80 -bit	128-bit	Asymptotic
DH FFC	96	192	
DH ECC	15	26	
Blind RSA	67	132	
Circuit + GMW	14760	23400	
Optimized GMW	8856	14040	
Garbled Bloom	866	1393	
Optimized G. Bloom	290	740	
OT + hashing	54	78	

The optimized Bloom protocol reduces communication by 45\%-70\%. OT protocol has the best communication, except for the ECC-DH protocol.

Using four threads (2^{18} items)

Protocol	Single thread 128-bit	Four threads	Speedup
DH FFC	1224	320	$\times 3.8$
DH ECC	416		
Blind RSA	1982		
Circuit + GMW	1364	401	$\times 1.9$
Optimized GMW	762		$\times 2.6$
Garbled Bloom	154	26	$\times 2.8$
Optimized Bloom	68	5	
OT + hashing	14		

DH and OT protocols benefit most from parallelization. Performance of circuit protocol depends more on communication.

Throughput: about a million items per 20 sec .

Communication effect on runtime (2^{16} items)

Protocol	Gigabit LAN (1000/0.2)	$\begin{aligned} & \hline 802.11 \mathrm{~g} \\ & (54 / 0.2) \end{aligned}$	Intracountry $(25 / 10)$	Intracountry $(10 / 50)$	$\begin{aligned} & \text { HDSPA } \\ & (3.6 / 500) \end{aligned}$
DH ECC	104	105	108	112	116
Optimized GMW	$1: 2.2$		$1: 2.5$		5311
Optimized Bloom	17	$: 2.2^{37}$	$71 \quad$	2.3^{165}	445
OT + hashing	3.8	$1.8{ }^{5}$	8.81	2.623	78

DH is unaffected by the communication channel OT+hashing is still the most efficient protocol.

Conclusions

- Set intersection can be efficiently applied to very large input sets
- Different settings require different protocols
- Communication
- Generality
- Input lengths

