
Benny Pinkas, Bar-Ilan University

Thomas Schneider, TU Darmstadt

Michael Zohner, TU Darmstadt

2

 Client Server

 Input: X = x1 … xn Y = y1 … yn

 Output: X Y only nothing

Other variants exist (e.g., both parties learn output;
client learns size of intersection; compute some other
function of the intersection, etc.)

 PSI is a very natural problem

◦ Matching

 Testing human genomes [BBC+11]

 Proximity testing [NTL+11]

 Relationship path discovery in social networks [MPGP09]

◦ Intersection of suspect lists

 Botnet detection [NMH+10]

 Cheater detection in online games [BHLB11]

 Survey the major results

 Suggest optimizations based on new observations

 Present a new scheme

 Compare the performance of all schemes
◦ On the same platform

◦ Using the best optimizations that we have

 A naïve solution:
◦ Have A and B agree on a “cryptographic hash function” H()

◦ B sends to A: H(y1),…, H(yn)

◦ A compares to H(x1),…, H(xn) and finds the intersection

 Does not protect B’s privacy if inputs do not have
considerable entropy

 We set the security parameter to 128 bits

◦ Namely, use symmetric and public key systems
against which the best brute force attack takes 2128

operations.

 We only consider semi-honest (passive) adversaries
◦ In crypto we consider two types of adversaries:

◦ Semi-honest (aka honest-but-curious) adversaries follow
the protocol but try to learn more than they should

◦ Malicious adversaries can behave arbitrarily

 Why discuss only semi-honest?
◦ There are PSI protocols secure against malicious adversaries

◦ These protocols are much less efficient

◦ None of them was implemented [FNP04, JL09, HN10,
CKT10, FHNP13].

◦ We use OT extension…

 In the random oracle model (ROM) a specific function
is modeled (in the analysis) as a random function
◦ This analysis is very problematic

◦ In the theory of crypto proofs in this model are considered as
a heuristic

 We describe protocols that are based on the ROM
◦ There are PSI protocols in the standard model [FNP04], but

they are less efficient.

◦ We use OT extension

 Can be based on a non-ROM assumption

 But a variant in the ROM is even more efficient

 The Decisional Diffie-Hellman assumption
◦ Agree on a group G, with a generator g.

◦ The assumption: for random a,b,c
cannot distinguish (ga, gb, gab) from (ga, gb, gc)

◦ (This is a very established assumption in modern
crypto)

 The protocol [M86, HFH99, AES03]:

(H is modeled as a random oracle. Security based on DDH)

Implementation: very simple; can be based on elliptic-
curve crypto; minimal communication.

x1,…,xn

y1,…,yn

(H(x1)),…, (H(xn))
(H(y1)),…, (H(yn))

((H(x1))),…, ((H(xn)))
((H(y1))),…, ((H(yn)))

Compares the two lists

in parallel

in parallel

What else could we want?

 There is also a PSI protocol based on an RSA variant

 The performance should be similar to that of DH
based protocols, but

◦ One party does all the hard work no advantage in
the two parties working in parallel

◦ Cannot be based on elliptic curve crypto

 (Advantage: proof in the standard model)

 Implemented based on additively homomorphic
encryption (Paillier, El Gamal).

 Alice generates the polynomial
P(x)=(x-x1)(x-x2)(x-xn) = anxn + + a1x + a0

 Alice sends homomorphic encryptions
E(a0),E(a1),…,E(an)

 yi Bob uses these to evaluate and send E(P(yi)ri+yi)

 Implementation: O(n2) exps. Can be reduced to
O(nloglogn) using hashing. Too inefficient.

 There are generic protocols for implementing any
functionality expressed as a Binary circuit
◦ GMW, Yao,…

 A naïve circuit uses n2 comparisons of words

 Can we do better?

 A circuit that has three steps
◦ Sort: merge two sorted lists using a bitonic merging

network [Bat68]. Uses nlog(2n) comparisons.

 A circuit that has three steps
◦ Sort: merge two sorted lists using a bitonic merging

network [Bat68]. Uses nlog(2n) comparisons.

◦ Compare: compare adjacent items. Uses 2n equality checks.

◦ Shuffle: Randomly shuffle results using a Waxman
permutation network [W68], using nlog(n) swappings.

◦ Overall uses L(3nlogn + 4n) AND gates. (L is input length)

 (2/3 of the AND gates are for multiplexers)

24

 Client Server

 Input: b X0,X1

 Output: Xb nothing

(PSI implies OT)

 There are different OT protocols based on public-key
crypto

◦ - [NP01] allows ~1000 OTs per second

 [IR89] proved that there is no black-box reduction of

OT to one-way functions

 OT was believed to be as (in)efficient as public-key
crypto

 OT extension runs a small number of “real” OTs, and
then uses symmetric-key cryptography to compute
from them many OTs [Beaver96,IKNP03]

[Beaver96] “real” OTs

[IKNP03]

m-bit

k-bit

k OTs

m OTs

 Setting:
◦ Bob holds m pairs of l-bit messages (xi,0 , xi,1)
◦ Alice holds an m-bit string r and wants to obtain the value

xi,ri in the i-th OT

 They perform k “real” OTs on random seeds with
reverse roles (k=128 is a symmetric security parameter)

 Alice generates a random m x k bit matrix T and masks
her choices r, using the seeds of the “real” OTs

 The matrix is transposed to be used for the “real” OTs

 A lot of time is spent on bit
Matrix transpose – improve
by using cache efficient alg

 Use parallelization

 Random OT: the two values
of the sender are chosen at
random
◦ Cuts communication in half

◦ Suitable for the GMW protocol
and for our protocols!

◦ Now the bottleneck is
essentially the communication

Per OT:

PRG evaluations

H evaluations

1

2

2

1

Time distribution for 10M OTs (in 21sec):

"real" OTs

PRG (AES-CTR)

Transpose

Hash (SHA-1)

1%

10% 14%

33%
42%

 GMW uses two OTs per gate; Yao uses four
symmetric encryptions.
◦ Yao was considered much more efficient.

◦ OT extension makes GMW faster than Yao.

 We noted that 2/3 of the ANDs are for multiplexers
◦ A single bit chooses between two 32 bit inputs

◦ For the GMW protocol, this means that instead of using 64
single-bit OTs, can use two OTs with inputs that are 32 bit
long.

◦ Can also base GMW on random-OT.

 A bit array with all zeroes initially

 k hash functions

31

... 1 2 k 3

0 0 0 0 0 0 0 0 0 0 0 0 0 0

 Hash the element using the hash functions, get k
indices in the bit array

 Set the bits to 1

32

... 1 2 k 3

0 0 0 0 0 0 0 0 0 0 0 0 0 0

Insertion

x

0 0 1 0 0 0 0 0 1 1 0 0 0 1

 Hash the element using the hash functions

 If all corresponding bits are 1, conclude that the
element is in the set

33

... 1 2 k 3

0 0 1 0 0 1 0 0 1 1 1 0 0 1

Lookup

x

0 0 1 0 0 1 0 0 1 1 1 0 0 1

 For a false positive probability of ε, use
◦ k=1/logε hash functions

◦ m=1.44 kn bits in the filter

 Must set k to be the symmetric security parameter
(k =128 or 80).

 The resulting filter is longggg… (184n)

 Use a Bloom filter where each entry is a random string

 If X is in the filter, then the XOR of the entries
corresponding to X is equal to X.

 The parties run an OT per Bloom filter entry (many OTs)

 Bob has items x1,…,xn.

 Uses a Bloom filter where each entry i is a string G[i],
s.t. the xor of the entries to which x is mapped is x.
◦ j=1…k G[hj(x)] = x.

 Insertion:
◦ Find an index t such that G[ht(x)] is unoccupied.

◦ (The failure probability is equal to the false positive prob ε)

◦ Fill all other G[h(x)] entries.

◦ Set G[ht(x)] so that the xor of all entries is x.

 Alice generates a regular Bloom filter A[1…k].

 Bob generates a garbled Bloom filter G[1…k] (using the
same hash functions)

 For each entry i in the filter, run an OT
◦ Alice is the receiver, with input A[i]

◦ Bob is the sender with inputs (0,G[i])

 Alice checks if x is in the intersection by checking if
j=1…k G[hj(x)] = x.

◦ Alice cannot check this for values not in her input, since the
probability of learning all relevant values of G[] is ε.

 A complete redesign that can be implemented using
random OT extension.

 The protocol
◦ Uses much less communication

◦ Becomes completely parallelizable (the original protocol
required inserting items one by one)

Optimization Party # bits sent # calls to H

[DCW13] Alice 2mk m

Bob 2mλ 2m

[DCW13] + random
OT extension of
[ALSZ13]

Alice m k m/2

Bob m λ m

Random Bloom
Filter PSI

Alice m k m/2

Bob n λ m/2 Parallelizable

Bloom filter length:
m=1.44 128 n

n/2m = 1/368

 We first design simple protocols based on OT

 Use OT extension and hashing based constructions
to the max

 Private equality test
◦ Input: Alice has x, Bob has y. Each is s bits long.

◦ Output: is x=y?

 Alice input: 001 Bob input: 011

 Alice input: 001 Bob input: 011.

 Random OTs

 Alice Bob

R0,0 R0,1

R1,0 R1,1

R2,0 R2,1

R0,0

R1,0

R2,1

 Alice input: 001 Bob input: 011

 Random OTs

 Alice Bob

 Bob sends R0,0 R1,1 R2,1

 Alice computes R0,0 R1,0 R2,1, and compares

R0,0 R0,1

R1,0 R1,1

R2,0 R2,1

R0,0

R1,0

R2,1

 Input: Alice has x, Bob has y1,…,yn

 Output: is x in {y1,…,yn} ?

 Run n Private Equality Tests in parallel.
◦ Alice’s OT choices for all y1,…,yn are the same

◦ Run only s random OTs of seeds.

◦ Use a pseudo-random generator to generate from each seed
n strings of length λ bits

◦ Send λn bits from Bob to Alice

 Input: Alice has {x1,…,xn}, Bob has y1,…,yn

 Output: Intersection of {x1,…,xn} and {y1,…,yn}

 Run n Private Set Inclusion protocols

 Total communication is n2 λ bits

 Communication can be further reduced via hashing

 Suppose each party uses a random hash function
H(), (known to both) to hash its n items to n bins.
◦ Then obviously if Alice and Bob have the same item, both

of them map it to the same bin.

◦ Each bin is expected to have O(1) items

◦ The items mapped to the bin can be compared using
private equality tests, with O(λ) communication.

◦ Overall only O(nλ) communication.

 The problem
◦ Some bins have more items

◦ Must hide how many items were mapped to each bin

 Solution
◦ Pad each bin with dummy items

◦ so that all bins are of the size of the most populated bin

 Mapping n items to n bins
◦ The expected size of a bin is O(1)

◦ The maximum size of a bin is whp O(logn)

◦ Communication increases by O(logn) to be O(nλlogn)

 Mapping n items to about n / lnn bins

◦ The expected size of a bin is O(ln n)

◦ The maximum size of a bin is (whp) the same

◦ This is ideal, since we cannot hope to pay less than the
expected cost

◦ Each bin has O(ln n) items. Each item can be represented by
O(lnln n) bits.

◦ The work per bin is O(ln n lnln n)

◦ Total work is O(n / lnn ln n lnln n) = O(n lnln n)

 Power of two hashing (balanced allocations)

 Cuckoo hashing

Only an asymptotic comparison was previously done

Total #OTs OT comm. Overall Comm.
(MB) for n=218

No hashing ns n2λ 327,808

Simple hashing 3.7ns nλ 475

Balanced
hashing

2.9ns lnlnn 2nλ 939

Cuckoo hashing (2(1+ε)n+lnn)s (2+lnn)nλ 276

 No previous “fair” comparison of all protocols

 We used two Intel Core2Quad desk-top PCs with 4 GB
RAM, connected via Gigabit LAN
◦ Inputs are 32 bit long

◦ Statistical security parameter λ=40

◦ Symmetric security parameter 80 or 128

◦ Gigabit Ethernet

Protocol 80-bit 128-bit Asymptotic

DH FFC 99 1224 2n PK

DH ECC 178 416 2n PK

Blind RSA 125 1982 2n PK

Circuit + GMW 807 1304 9ns logn sym

Optimized GMW 462 762 3ns logn sym

Garbled Bloom 72 154 2kn sym

Optimized G. Bloom 34 68 nk/2 sym

OT + hashing 13 14 ns/4 sym

Protocol 80-bit 128-bit Asymptotic

DH FFC 96 192

DH ECC 15 26

Blind RSA 67 132

Circuit + GMW 14760 23400

Optimized GMW 8856 14040

Garbled Bloom 866 1393

Optimized G. Bloom 290 740

OT + hashing 54 78

Protocol 80-bit 128-bit Asymptotic

DH FFC 99 1224 2n PK

DH ECC 178 416 2n PK

Blind RSA 125 1982 2n PK

Circuit + GMW 807 1304 9ns logn sym

Optimized GMW 462 762 3ns logn sym

Garbled Bloom 72 154 2kn sym

Optimized G. Bloom 34 68 nk/2 sym

OT + hashing 13 14 ns/4 sym

Pretty good performance!
ECC slower for 80 bit due to quality of the implementation (MIRACL vs. GIMP)

Protocol 80-bit 128-bit Asymptotic

DH FFC 96 192

DH ECC 15 26

Blind RSA 67 132

Circuit + GMW 14760 23400

Optimized GMW 8856 14040

Garbled Bloom 866 1393

Optimized G. Bloom 290 740

OT + hashing 54 78

ECC has the best communication overhead of all protocols

Protocol 80-bit 128-bit Asymptotic

DH FFC 99 1224 2n PK

DH ECC 178 416 2n PK

Blind RSA 125 1982 2n PK

Circuit + GMW 809 1306 9ns logn sym

Optimized GMW 465 764 3ns logn sym

Garbled Bloom 72 154 2kn sym

Optimized G. Bloom 32 66 nk/2 sym

OT + hashing 36 46 ns/4 sym

For 80 bit security, faster than a circuit (but not than DH)
Asymmetric work load between the parties

Protocol 80-bit 128-bit Asymptotic

DH FFC 96 192

DH ECC 15 26

Blind RSA 67 132

Circuit + GMW 9507 15072

Optimized GMW 3790 5964

Garbled Bloom 866 1393

Optimized G. Bloom 290 740

OT + hashing 176 276

Protocol 80-bit 128-bit Asymptotic

DH FFC 99 1224 2n PK

DH ECC 178 416 2n PK

Blind RSA 125 1982 2n PK

Circuit + GMW 807 1304 9ns logn sym

Optimized GMW 462 762 3ns logn sym

Garbled Bloom 72 154 2kn sym

Optimized G. Bloom 34 68 nk/2 sym

OT + hashing 13 14 ns/4 sym

The basic protocol is the most inefficient
Our optimizations saved more than 40% (over standard OT extension)
The result is comparable to PK based protocols
The advantage is the generality of a circuit based solution.

Protocol 80-bit 128-bit Asymptotic

DH FFC 96 192

DH ECC 15 26

Blind RSA 67 132

Circuit + GMW 14760 23400

Optimized GMW 8856 14040

Garbled Bloom 866 1393

Optimized G. Bloom 290 740

OT + hashing 54 78

Highest communication overhead

Protocol 80-bit 128-bit Asymptotic

DH FFC 99 1224 2n PK

DH ECC 178 416 2n PK

Blind RSA 125 1982 2n PK

Circuit + GMW 807 1304 9ns logn sym

Optimized GMW 462 762 3ns logn sym

Garbled Bloom 72 154 2kn sym

Optimized G. Bloom 34 68 nk/2 sym

OT + hashing 13 14 ns/4 sym

The optimized Bloom protocol is 55% faster than the basic Bloom protocol
The new OT+hashing protocol even faster
Overall, OT protocols are the fastest.

Protocol 80-bit 128-bit Asymptotic

DH FFC 99 1224 2n PK

DH ECC 178 416 2n PK

Blind RSA 125 1982 2n PK

Circuit + GMW 807 1304 9ns logn sym

Optimized GMW 462 762 3ns logn sym

Garbled Bloom 72 154 2kn sym

Optimized G. Bloom 34 68 nk/2 sym

OT + hashing 13.5 13.8 ns/4 sym

Our OT based protocol is unaffected by the security parameter
(due to the use of symmetric crypto + communication efficiency)

Protocol 80-bit 128-bit Asymptotic

DH FFC 96 192

DH ECC 15 26

Blind RSA 67 132

Circuit + GMW 14760 23400

Optimized GMW 8856 14040

Garbled Bloom 866 1393

Optimized G. Bloom 290 740

OT + hashing 54 78

The optimized Bloom protocol reduces communication by 45%-70%.
OT protocol has the best communication, except for the ECC-DH protocol.

Protocol Single thread 128-bit Four threads Speedup

DH FFC 1224 320 x 3.8

DH ECC 416

Blind RSA 1982

Circuit + GMW 1364

Optimized GMW 762 401 x 1.9

Garbled Bloom 154

Optimized Bloom 68 26 x 2.6

OT + hashing 14 5 x 2.8

DH and OT protocols benefit most from parallelization. Performance of
circuit protocol depends more on communication.

Throughput: about a million items per 20 sec.

Protocol Gigabit LAN
(1000/0.2)

802.11g
(54/0.2)

Intra-
country
(25/10)

Intra-
country
(10/50)

HDSPA
(3.6/500)

DH ECC 104 105 108 112 116

Optimized
GMW

169 371 770 1936 5311

Optimized
Bloom

17 37 71 165 445

OT +
hashing

3.8 5 8.8 23 78

DH is unaffected by the communication channel
OT+hashing is still the most efficient protocol.

1 : 2.2

1 : 2.2

1 : 1.8

1 : 2.5

1 : 2.3

1 : 2.6

 Set intersection can be efficiently applied to very
large input sets

 Different settings require different protocols
◦ Communication

◦ Generality

◦ Input lengths

