On the Performance of
Private Set Intersection

Benny Pinkas, Bar-llan University
Thomas Schneider, TU Darmstadt
Michael Zohner, TU Darmstadt

Private Set Intersection (PSI)

Server
Input: X =Xq oo X, Y=VY,..V¥,
Output: XY only nothing

Other variants exist (e.g., both parties learn output;
client learns size of intersection; compute some other
function of the intersection, etc.)

Applications

» PSlis a very natural problem
> Matching
* Testing human genomes [BBC+11]
* Proximity testing [NTL+11]
- Relationship path discovery in social networks [MPGPQ9]

° Intersection of suspect lists
- Botnet detection [NMH+10]
* Cheater detection in online games [BHLB11]

This talk

» Survey the major results
» Suggest optimizations based on new observations

» Present a new scheme

» Compare the performance of all schemes
° On the same platform
> Using the best optimizations that we have

A naive PSI protocol

» A naive solution:
> Have A and B agree on a “cryptographic hash function” H()

> B sends to A: H(y,),..., H(y,)
> A compares to H(x,),..., H(x,)) and finds the intersection

» Does not protect B’s privacy if inputs do not have
considerable entropy

Preliminaries

» We set the security parameter to 128 bits

> Namely, use symmetric and public key systems
against which the best brute force attack takes 2128
operations.

Preliminaries

» We only consider semi-honest (passive) adversaries

o

(o)

o

» Why discuss only semi-honest?
> There are PSI| protocols secure against malicious adversaries

> These protocols are much less efficient

> None of them was implemented [FNPO4, JLO9, HN10,
CKT10, FHNP13].

> We use OT extension...

PSI secure against malicious adversaries

[FHNP]

JiI_-I‘l (:{rni"z:'

1
(pk,sky) +—

TyKEY

Epe (Q1(-)) ... Epe (Qp(-)

P

1

Qu(-) ... Qul-) —

lpoOLY

Verify sk = skj + sko

(a

€] = Epi (1 4 - .‘.-:rf_j:_f"_j} \
lp =T @D Yo

Foralla e {1...ma},j e {0.1}:

53 — Dsk':'[-'f.t:'r
N ol (af

H{“"j) —¥ r_]'”]."j”rj

Checkif dz e X je {0,1}s.t. :
i =r; @z, and
€, e}, consistent with
T9sT5s S0 81,70 71 -

PQ{Y = {.U(.t}rxe{]...mz}*r”]:'

+ 1k
— (pk, ska)

— By (@1() - Fpe (Q(9)
—0/1

Foralla e {1...mq},7 € {0,1}:
S0, 87 R I‘b‘]l.__
H(sF) = 73l

def

i = C.}h}{yn |{yc::|

Preliminaries — the random oracle model

» We describe protocols that are based on the ROM

> There are PSI protocols in the standard model [FNP0O4], but
they are less efficient.

o We use OT extension
* Can be based on a non-ROM assumption
* But a variant in the ROM is even more efficient

Public-key based Protocols

PS| based on Diffie-Hellman

» The Decisional Diffie-Hellman assumption
> Agree on a group G, with a generator g.

> The assumption: for random a,b,c
cannot distinguish (g% g° g?) from (g% g°, g°)

PSI| based on Diffie-Hellman
» The protocol [M86, HFH99, AESO3]:

=
:13/‘ y1)°")yn
[(Hx)™ ., (H(x)) R in paraIIeIJ
< ((H(x,))%)B,..., ((H(x,))*)P
((H(y))P)%,..., ((H(y,))P)® in parallel

Compares the two lIsts

(H is modeled as a random oracle. Security based on DDH)

Implementation: very simple; can be based on elliptic-
curve crypto; minimal communication.

What else could we want?

PSI based on Blind RSA [CT10]

» There is also a PSI protocol based on an RSA variant

» The performance should be similar to that of DH
based protocols, but

° One party does all the hard work = no advantage in
the two parties working in parallel

> Cannot be based on elliptic curve crypto

PSI based on Oblivious Polynomial
Evaluation [FNPO4] (short version)

» (Advantage: proof in the standard model)

» Implemented based on additively homomorphic
encryption (Paillier, El Gamal).

» Alice generates the polynomial
P(x)=(x-x,)(x-x;)--(x-x,) = a x" + -+ a,x+a,

» Alice sends homomorphic encryptions
E(a,)E(a,),....E(a,)

» Py, Bob uses these to evaluate and send E(P(y,)r+y.)

» Implementation: O(n?) exps. Can be reduced to
O(nloglogn) using hashing. Too inefficient.

Generic Protocols

A circuit based protocol

» There are generic protocols for implementing any
functionality expressed as a Binary circuit
> GMW, Yao,...

» A naive circuit uses n? comparisons of words

» Can we do better?

A circuit based protocol [HEK12]

» A circuit that has three steps

> Sort: merge two sorted lists using a bitonic merging
network [Bat68]. Uses nlog(2n) comparisons.

Wires

0060 3 3 3 3 0
- 5 5 5 0 3
010 8 g 8 8

-) 9 0 5 3
— 10 _ w0 10 0 || o
101 12 -:'jj: 12 12 -:jj: 2 4] 10
o110 CHENEEREPE (E I S ERES 4] o
o1l 0 | ||| P 0 & 9 & 2[4l 4
oo —2 e » & » g LENT.Y -
L1 90 | 4]l 0| o 7 [I I -
010 6 Ayl 6 ‘ 18 3s 3
ot a0 i a0 o 0 23

L160 5 3s ‘ 95 60 40
- 73 EN 23 90 a0 i)
o 15 1% i) 95 90
- 0 0 |40) 95

A circuit based protocol [HEK12]

» A circuit that has three steps

Sort: merge two sorted lists using a bitonic merging
network [Bat68]. Uses nlog(2n) comparisons.

(0]

0]

Compare: compare adjacent items. Uses 2n equality checks.

0]

Shuffle: Randomly shuffle results using a Waxman
permutation network [W68], using ~nlog(n) swappings.

o

Overall uses L-(3nlogn + 4n) AND gates. (L is input length)
* (2/3 of the AND gates are for multiplexers)

Protocols for Secure Computation are
based on Oblivious Transfer (OT)

Server
Input: b X X1
Output: X, nothing

(PSI implies OT)

24

Side step: OT extension

» There are different OT protocols based on public-key

crypto
- [NPO1] allows ~1000 OTs per second

» [IR89] proved that there is no black-box reduction of
OT to one-way functions

» OT was believed to be as (in)efficient as public-key
crypto

OT extension

» OT extension runs a small number of “real” OTs, and
then uses symmetric-key cryptography to compute
from them many OTs [Beaver96,IKNP03]

m-bit

k-bit

kOTs | real” OTs

m OTs

OT extension

» Setting:
> Bob holds m pairs of I-bit messages (x;0, X;1)
> Alice holds an m-bit string r and wants to obtain the value
X r in the j-th OT

» They perform k “real” OTs on random seeds with
reverse roles (k=128 is a symmetric security parameter)

» Alice generates a random m x k bit matrix T and masks
her choices r, using the seeds of the “real” OTs

» The matrix is transposed to be used for the “real” OTs

Improving OT extension [ALSZ13]

» A lot of time is spent on bit
Matrix transpose — improve
by using cache efficient alg

» Use parallelization

» Random OT: the two values
of the sender are chosen at
random

o Cuts communication in half

o Suitable for the GMW protocol
and for our protocols!

> Now the bottleneck is
essentially the communication

& &

Per OT:

1 # PRG evaluations 2

2 # H evaluations 1

Time distribution for 10M OTs (in 21sec):

1%
"real" OTs

14% 10%
PRG (AES-CTR)

42% 83% Transpose

Hash (SHA-1)

Improving the circuit based PSI of [HEK12]

» GMW uses two OTs per gate; Yao uses four
symmetric encryptions.
> Yao was considered much more efficient.
> OT extension makes GMW faster than Yao.

» We noted that 2/3 of the ANDs are for multiplexers

> A single bit chooses between two 32 bit inputs

> For the GMW protocol, this means that instead of using 64
single-bit OTs, can use two OTs with inputs that are 32 bit
long.

> Can also base GMW on random-OT.

Garbled Bloom Filter [DCW13]

How a Bloom Filter Works

» A bit array with all zeroes initially
» k hash functions

31

How a Bloom Filter Works

Insertion

» Hash the element using the hash functions, get k
indices in the bit array

» Set the bitsto 1

32

How a Bloom Filter Works

Lookup

» Hash the element using the hash functions

» If all corresponding bits are 1, conclude that the
element is in the set

33

Bloom Filter Analysis

» For a false positive probability of g, use
> k=1/loge hash functions
> m=1.44 kn bits in the filter

» Must set k to be the symmetric security parameter
(k =128 or 80).

» The resulting filter is longggg... (184-n)

Short story

» Use a Bloom filter where each entry is a random string

» If Xisin the filter, then the XOR of the entries
corresponding to X is equal to X.

» The parties run an OT per Bloom filter entry (many OTs)

(Long story) Garbled Bloom Filter
[DCW13]

» Bob has items xg,...,X..

» Uses a Bloom filter where each entry i is a string GJi],
s.t. the xor of the entries to which x is mapped is x.
© ®j=1...k G[hJ(X)] = X.

» Insertion:
> Find an index t such that G[h,(x)] is unoccupied.
> (The failure probability is equal to the false positive prob €)
o Fill all other G[h(x)] entries.
> Set G[h,(x)] so that the xor of all entries is x.

(Long story) The protocol [DCW13]

» Alice generates a regular Bloom filter A[1...k].

» Bob generates a garbled Bloom filter G[1...k] (using the
same hash functions)

» For each entry i in the filter, run an OT
> Alice is the receiver, with input A[i]
> Bob is the sender with inputs (0,G[i])
» Alice checks if x is in the intersection by checking if
@j=1...k G[hJ(X)] = X.
> Alice cannot check this for values not in her input, since the
probability of learning all relevant values of G[] is .

Our optimizations

» A complete redesign that can be implemented using
random OT extension.

» The protocol
o Uses much less communication

> Becomes completely parallelizable (the original protocol
required inserting items one by one)

Performance

e o e

[DCW13] Alice
Bob 2mA 2m
[DCW13] + random Alice m k m/2
OT extension of
[ALSZ13] Bob m A m
Random Bloom Alice m k m/2
Filter |F:asr|allelizable BOb/' nA m/2
~ Bloom filter length:
n/2m = 1/368 m=1.44 -128 -n

PSI based on OT (a new protocol)

» We first design simple protocols based on OT

» Use OT extension and hashing based constructions
to the max

First step: Private equality test

» Private equality test
> Input: Alice has x, Bob has y. Each is s bits long.
° Qutput:is x=y?

Private equality test

» Alice input: 001 Bob input: 011

Private equality test

» Alice input: 001 Bob input: 011.
» Random OTs
Alice Bob

.

R
1,0 Rl,O R1,1

R
2,1 Rz,o Rz’1

Private equality test

» Alice input: 001 Bob input: 011
» Random OTs
Alice

.

Rl,O

R2,1

" Bob sends Roo@® R1,1@® Ra1
" Alice computes Ro,0® R1,0® R2,1, and compares

Private set inclusion

» Input: Alice has x, Bob hasy,,...,y,
» Output:is xin {y,,...,y,}?

» Run n Private Equality Tests in parallel.
o Alice’s OT choices for all y,,...,y,, are the same
° Run only s random OTs of seeds.

> Use a pseudo-random generator to generate from each seed
n strings of length A bits ©

> Send An bits from Bob to Alice

Private set intersection

» Input: Alice has {x,,...,x,.}, Bob has y,,...y,
» Output: Intersection of {x,,...,x,.} and {y,...,y,}

» Run n Private Set Inclusion protocols
» Total communication is n? A bits

» Communication can be further reduced via hashing

Hashing

» Suppose each party uses a random hash function
H(), (known to both) to hash its n items to n bins.

> Then obviously if Alice and Bob have the same item, both
of them map it to the same bin.

> Each bin is expected to have O(1) items

> The items mapped to the bin can be compared using
private equality tests, with O(A) communication.

> Overall only O(nA) communication.
» The problem
> Some bins have more items
> Must hide how many items were mapped to each bin

Hashing

» Solution

> Pad each bin with dummy items
> so that all bins are of the size of the most populated bin

» Mapping n items to n bins
> The expected size of a bin is O(1)
> The maximum size of a bin is whp O(logn)
> Communication increases by O(logn) to be O(nAlogn) ®

Hashing

» Mapping n items to about n / Inn bins
> The expected size of a binis ~ O(In n)
> The maximum size of a bin is (whp) the same

o This is ideal, since we cannot hope to pay less than the
expected cost

o

> Total work is O(n /Inn - In n- Inln n) = O(n - Inln n)

Other hashing schemes

» Power of two hashing (balanced allocations)
» Cuckoo hashing
Only an asymptotic comparison was previously done

Total #OTs OT comm. | Overall Comm.
(MB) for n=218

No hashing 327,808
Simple hashing 3.7ns nA 475
Balanced 2.9ns Inlnn 2nA 939
hashing

Cuckoo hashing (2(1+&)n+Inn)s (2+Inn)nA 276

Experiments

» No previous “fair” comparison of all protocols

» We used two Intel Core2Quad desk-top PCs with 4 GB

RAM, connected via Gigabit LAN

° Inputs are 32 bit long

o Statistical security parameter A=40

o Symmetric security parameter 80 or 128
> Gigabit Ethernet

Results: run time (218 items)

DH FFC 1224 2n PK

DH ECC 178 416 2n PK

Blind RSA 125 1982 2n PK
Circuit + GMW 807 1304 9ns logn sym
Optimized GMW 462 762 3ns logn sym
Garbled Bloom 72 154 2kn sym
Optimized G. Bloom 34 68 nk/2 sym

OT + hashing 13 14 ns/4 sym

Results: communication (218 items)

DH FFC

DH ECC 15 26
Blind RSA 67 132
Circuit + GMW 14760 23400
Optimized GMW 8856 14040
Garbled Bloom 866 1393
Optimized G. Bloom 290 740

OT + hashing 54 78

DH: run time (212 items)

DH FFC 1224 2n PK

DH ECC 178 416 2n PK

Blind RSA 125 1982 2n PK
Circuit + GMW 807 1304 9ns logn sym
Optimized GMW 462 762 3ns logn sym
Garbled Bloom 72 154 2kn sym
Optimized G. Bloom 34 68 nk/2 sym

OT + hashing 13 14 ns/4 sym

Pretty good performance!
ECC slower for 80 bit due to quality of the implementation (MIRACL vs. GIMP)

DH: communication (218 items)

DH FFC

DH ECC 15 26
Blind RSA 67 132
Circuit + GMW 14760 23400
Optimized GMW 8856 14040
Garbled Bloom 866 1393
Optimized G. Bloom 290 740
OT + hashing 54 78

ECC has the best communication overhead of all protocols

Blind RSA: run time (218 items)

DH FFC 1224 2n PK

DH ECC 178 416 2n PK

Blind RSA 125 1982 2n PK
Circuit + GMW 809 1306 9ns logn sym
Optimized GMW 465 764 3ns logn sym
Garbled Bloom 72 154 2kn sym
Optimized G. Bloom 32 66 nk/2 sym

OT + hashing 36 46 ns/4 sym

For 80 bit security, faster than a circuit (but not than DH)
Asymmetric work load between the parties

DH: communication (218 items)

DH FFC

DH ECC 15 26
Blind RSA 67 132
Circuit + GMW 9507 15072
Optimized GMW 3790 5964
Garbled Bloom 866 1393
Optimized G. Bloom 290 740

OT + hashing 176 276

Circuit: run time (212 items)

DH FFC 1224 2n PK

DH ECC 178 416 2n PK

Blind RSA 125 1982 2n PK
Circuit + GMW 807 1304 9ns logn sym
Optimized GMW 462 762 3ns logn sym
Garbled Bloom 72 154 2kn sym
Optimized G. Bloom 34 68 nk/2 sym

OT + hashing 13 14 ns/4 sym

The basic protocol is the most inefficient

Our optimizations saved more than 40% (over standard OT extension)
The result is comparable to PK based protocols

The advantage is the generality of a circuit based solution.

Circuit: communication (218 items)

DH FFC

DH ECC 15 26
Blind RSA 67 132
Circuit + GMW 14760 23400
Optimized GMW 8856 14040
Garbled Bloom 866 1393
Optimized G. Bloom 290 740
OT + hashing 54 78

Highest communication overhead

Bloom + OT: run time (218 items)

DH FFC 1224 2n PK

DH ECC 178 416 2n PK

Blind RSA 125 1982 2n PK
Circuit + GMW 807 1304 9ns logn sym
Optimized GMW 462 762 3ns logn sym
Garbled Bloom 72 154 2kn sym
Optimized G. Bloom 34 68 nk/2 sym

OT + hashing 13 14 ns/4 sym

The optimized Bloom protocol is 55% faster than the basic Bloom protocol
The new OT+hashing protocol even faster
Overall, OT protocols are the fastest.

Bloom + OT: run time (28 items)

DH FFC 1224 2n PK

DH ECC 178 416 2n PK

Blind RSA 125 1982 2n PK
Circuit + GMW 807 1304 9ns logn sym
Optimized GMW 462 762 3ns logn sym
Garbled Bloom 72 154 2kn sym
Optimized G. Bloom 34 68 nk/2 sym

OT + hashing 13.5 13.8 ns/4 sym

Our OT based protocol is unaffected by the security parameter
(due to the use of symmetric crypto + communication efficiency)

Bloom + OT: communication (212 items)

DH FFC

DH ECC 15 26
Blind RSA 67 132
Circuit + GMW 14760 23400
Optimized GMW 8856 14040
Garbled Bloom 866 1393
Optimized G. Bloom 290 740
OT + hashing 54 78

The optimized Bloom protocol reduces communication by 45%-70%.
OT protocol has the best communication, except for the ECC-DH protocol.

Using four threads (218 items)

DH FFC 1224 x 3.8
DH ECC 416

Blind RSA 1982

Circuit + GMW 1364

Optimized GMW 762 401 x 1.9
Garbled Bloom 154

Optimized Bloom 68 26 X 2.6
OT + hashing 14 5 x2.8

DH and OT protocols benefit most from parallelization. Performance of
circuit protocol depends more on communication.

Throughput: about a million items per 20 sec.

Communication effect on runtime (26 items)

Gigabit LAN 802.11g Intra- Intra- HDSPA
(1000/0.2) (54/0.2) | country | country | (3.6/500)
(25/10) (10/50)
DH ECC 104 105 108 112 116
Optimized 169 371 770 1936 5311
GMW 1:2.2 1:2.5
Optimized 17 37 71 165 445
Bloom 1:2.2 1:2.3
OT+. 3.8 Ty 5 88 1.5 23 78
hashing 1T

DH is unaffected by the communication channel
OT+hashing is still the most efficient protocol.

Conclusions

» Set intersection can be efficiently applied to very
large input sets

» Different settings require different protocols
o Communication
> Generality
° Input lengths

