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Outsourcing Computation 

Email, web-search, navigation, social networking… 

𝑥 𝑓 

𝑓(𝑥) 

𝑥 

What if 𝑥 is private? 

Search query, location, business 
information, medical information… 



Outsourcing Computation – Privately 

WANTED 
 

Homomorphic Evaluation function: 
 

𝐸𝑣𝑎𝑙:  𝑓, 𝐸𝑛𝑐 𝑥  → 𝐸𝑛𝑐(𝑓 𝑥 ) 

𝑥 𝑓 

𝑦 

𝐸𝑛𝑐(𝑥) 

𝐷𝑒𝑐 𝑦 =  𝑓(𝑥) 

Learns nothing on 𝑥. 



Fully Homomorphic Encryption (FHE) 

𝑥 𝑓 

𝑦 = 𝐸𝑣𝑎𝑙𝑒𝑣𝑘(𝑓, 𝐸𝑛𝑐 𝑥 ) 

𝐷𝑒𝑐𝑠𝑘 𝑦 =  𝑓(𝑥) 

𝑠𝑘 , 𝑝𝑘 𝑒𝑣𝑘 

Correctness: 

𝐸𝑛𝑐(𝑥) ≅ 𝐸𝑛𝑐(0) 
Input privacy: 

• NAND. 
• (+,×) over ℤ2 (= binary 𝑋𝑂𝑅, 𝐴𝑁𝐷 ) 

𝐸𝑛𝑐𝑝𝑘(𝑥) 

Fully Homomorphic = Correctness for any efficient 𝑓 
 

                       = Correctness for universal set 

Compactness: Dec complexity 
independent of 𝑓. 



Some Applications 
In the cloud: 
 

• Private outsourcing of computation. 
 

• Near-optimal private outsourcing of storage (single-server PIR). [G09,BV11b] 
 

• Verifiable outsourcing (delegation). [GGP11,CKV11,KKR13] 
 

• Private machine learning in the cloud. [GLN12,HW13] 
 

Secure multiparty computation: 
 

• Low-communication multiparty computation. [AJLTVW12,LTV12] 
 

• More efficient MPC. [BDOZ11,DPSZ12,DKLPSS12] 
 

Primitives: 
 
 

• Succinct argument systems. [GLR11,DFH11,BCCT11,BC12,BCCT12,BCGT13,…] 
 

• General functional encryption. [GKPVZ12] 
 

• Indistinguishability obfuscation for all circuits. [GGHRSW13] 



Making Crypto History 

30 years of hardly scratching 
the surface: 
 

• Only-addition [RSA78, R79, GM82, 

G84, P99, R05]. 
• Addition + 1 multiplication 

[BGN05, GHV10]. 
• Other variants [SYY99, IP07, 

MGH10]. 

… is it even possible? 



Constructing Homomorphic Encryption [G09] 

Basic Idea:   Find scheme s.t.    𝑐 ≈ 𝑚 

ciphertext message 

secret algebraic equivalence 

Add/multiply ciphertexts  ⇒  Add/multiply messages  

e.g. (mod p) for secret p 

For now: Any non-trivial homomorphism 

+ 2𝑒 

small (even) noise 

Noise grows with homomorphic evaluation – 
must not grow “too much”! 

In this example [DGHV10]:   𝑒𝑚𝑢𝑙𝑡 ≈ 𝑒𝑖𝑛𝑝𝑢𝑡
2

 



Noise in Homomorphic Evaluation 

𝑒 𝑜𝑢𝑡𝑝𝑢𝑡 ≤ 𝐸2𝑑
 

𝑒 𝑖𝑛𝑝𝑢𝑡 ≤ 𝐸 𝑒 𝑖𝑛𝑝𝑢𝑡 

𝑒 𝑜𝑢𝑡𝑝𝑢𝑡 

Noise grows during homomorphic evaluation 

Depth 𝑑 

𝑒 𝑖+1 ≤ 𝑒 𝑖
2 

…
 

Benchmark: 𝐸 = 𝑁, 𝑑 = log𝑁 

𝑒 𝑜𝑢𝑡𝑝𝑢𝑡

𝑒 𝑖𝑛𝑝𝑢𝑡

= 𝑁𝑁 



FHE Challenges 

Security. 

Simplicity. 

Efficiency. 
• Size of keys/ciphertexts. 
• Time overhead for Eval. 
• Computational model. 

• Assumptions. 
• Security notions. 



Second Generation FHE [BV11b] 

Basic Idea:   Find scheme s.t.    𝑐 ⋅ 𝑠 ≈ 𝑚 +2𝑒 

ciphertext message 

secret key 

Different (⋅) ⇔ different assumption: 
 

•  Vector IP ⇒ Learning with Errors (LWE) / Lattice 

•  Vector of polynomials ⇒ Ring LWE / Ideal lattice [BV11a] 

•  Polynomials over a ring ⇒ NTRU / Ideal lattice [LTV12] 

publicly computable 

Any non-trivial homomorphism 

small (even)  
noise 



Second Generation FHE [BV11b] 

Basic Idea:   Find scheme s.t.    𝑐 ⋅ 𝑠 ≈ 𝑚 +2𝑒 

Any non-trivial homomorphism 

Multiplication (very high level): 𝑐𝑚𝑢𝑙𝑡 = 𝑐1 ⋅ 𝑐2  

𝑐1 ⋅ 𝑐2 ⋅ 𝑠2 ≈ 𝑚1𝑚2 + 2𝑒  

For 𝑚 = 𝑠2:   

𝑐𝑠2→𝑠 ⋅ 𝑠 ≈ 𝑠2 +2𝑒 

𝑐1 ⋅ 𝑐2 ⋅ 𝑐𝑠2→𝑠 ⋅ 𝑠 ≈ 𝑚1𝑚2 + 2𝑒  

key-switching ciphertext 
In evk (public parameter) 

Key switching ⇒ proxy re-encryption 

(          )⋅ 𝑐𝑠2→𝑠 



Second Generation FHE [BV11b] 

Follow-ups [BGV12,GHS12a,B12,GHS12c,BGH13]: 
 

• Improved noise behavior:  𝐸 → (𝑁 + 1) ⋅ 𝐸 (instead of 𝐸2) 
 

⇒ I/O noise ratio (𝐸 = 𝑁, 𝑑 = log𝑁) drops to 𝑁log 𝑁 . 
 

• Improved security reductions. 

• Significant efficiency improvements using “batching”. 

Conclusion: 
 

• Simplified constructions. 

• Improved hardness assumptions (quasi-poly apx. to worst case 
lattice problems). 

• More efficient by orders of magnitude. 



The “Approximate Eigenvector” Method 
[GSW13] 

Basic Idea:   Find scheme s.t.    𝑐 ⋅ 𝑠 ≈ 𝑚 𝑠 +2𝑒 

Multiplication (very high level): 𝑐𝑚𝑢𝑙𝑡 = 𝑐1 ⋅ 𝑐2  

𝑐1 ⋅ 𝑐2 ⋅ 𝑠 ≈ 𝑐1𝑚2𝑠 + 2𝑒 ≈ 𝑚1𝑚2𝑠 + 2𝑒 

No need for key-switching ciphertext in evk! 

⇒ IB-FHE, AB-FHE  via [GPV08,CPHK10,ABB10,GVW13] 



The “Approximate Eigenvector” Method 
[GSW13] 

Basic Idea:   Find scheme s.t.    𝑐 ⋅ 𝑠 ≈ 𝑚 𝑠 +2𝑒 

Actually implied by previous method: 

Starting with 𝑚 = 0 :     𝑐 ⋅ 𝑠 ≈ 0 + 2𝑒 

⇒   𝑐′ = 𝑐 + 1 ⋅ 𝑚 :       𝑐′ ⋅ 𝑠 ≈ 𝑚 𝑠 + 2𝑒 

However, only known instantiation: 
 

𝐶 = matrix, 𝑠  = “eigenvector”. 

Ciphertext size = 𝑁2 ⇒ Large!  



Approximate Eigenvector Method [GSW13] 

𝐶1 ⋅ 𝑠 = 𝑚1𝑠 + 𝑒 1 
 

𝐶2 ⋅ 𝑠 = 𝑚2𝑠 + 𝑒 2 
 

𝐶𝑚𝑢𝑙𝑡 = 𝐶1 ⋅ 𝐶2: 

(𝐶1⋅ 𝐶2) ⋅ 𝑠   = 𝐶1 𝑚2𝑠 + 𝑒 2   

= 𝑚2𝐶1𝑠 + 𝐶1𝑒 2  

= 𝑚2 𝑚1𝑠 + 𝑒 1 + 𝐶1𝑒 2   

𝑒 𝑚𝑢𝑙𝑡 

Can also use 𝐶2 ⋅ 𝐶1 

= 𝑚2𝑚1𝑠 + 𝑚2𝑒 1 + 𝐶1𝑒 2  

𝑒 𝑚𝑢𝑙𝑡 ≤ 𝑁 ⋅ 𝑒 2 + 𝑚2 ⋅ 𝑒 1 ≤ 𝑁 + 1 ⋅ max* 𝑒 1 , 𝑒 2 + 

𝐶1  can be reduced to ≈ 𝑁. 



Noise in Homomorphic Evaluation 

𝑒 𝑜𝑢𝑡𝑝𝑢𝑡 ≤ 𝑁 + 1 𝑑 ⋅ 𝐸 

𝑒 𝑖𝑛𝑝𝑢𝑡 ≤ 𝐸 𝑒 𝑖𝑛𝑝𝑢𝑡 

𝑒 𝑜𝑢𝑡𝑝𝑢𝑡 

Noise grows during homomorphic evaluation 

Depth 𝑑 

𝑒 𝑖+1 ≤ (𝑁 + 1) 𝑒 𝑖  

…
 

Benchmark: 𝐸 = 𝑁, 𝑑 = log𝑁 

𝑒 𝑜𝑢𝑡𝑝𝑢𝑡

𝑒 𝑖𝑛𝑝𝑢𝑡

= 𝑁log 𝑁 



Sequentialization [BV14] 
What is the best way to evaluate a product of 𝑘 numbers? 

X 

X 

X 

X 

vs. X 

X 

Parallel Sequential 

c1 c2 c3 c4 

c1 

c2 

c3 c4 

Conventional wisdom Actually better 
(if done right) 



Sequentialization [BV14] 

X 

X 

X 

X 

vs. X 

X 

Parallel Sequential 

c1 c2 c3 c4 

c1 

c2 

c3 c4 

𝐸 𝐸 𝐸 𝐸 

𝑁 ⋅ 𝑒 2 + 𝑚2 ⋅ 𝑒 1  

(𝑁 + 1)𝐸 (𝑁 + 1)𝐸 

𝑁 + 1 log 𝑘𝐸 

𝐸 𝐸 

𝐸 

𝐸 

(𝑁 + 1)𝐸 

(2𝑁 + 1)𝐸 

(𝑘 ⋅ 𝑁 + 1)𝐸 

Actually even better! Only the 1-suffix matters. 
⇒ MUXing only costs additive noise. 



Sequentialization [BV14] 

Barrington’s Theorem [B86]: Every depth 𝑑 computation can be 
transformed into a width-5 depth 4𝑑 branching program. 

A sequence of MUXes. 

• Noise growth improved to 𝑝𝑜𝑙𝑦(𝑁).  
 

⇒ Better security – breaks barrier of [BGV12, B12,GSW13]. 
 

• Using dimension-modulus reduction (from [BV11b]) ⇒ same 
hardness assumption as non homomorphic encryption. 
 

• Short ciphertexts (with bootstrapping – coming up). 

𝑀𝑈𝑋 𝑥, 𝑦1, 𝑦2 = 𝑥 ⋅ 𝑦1 + 1 − 𝑥 ⋅ 𝑦2 ⇒   𝑒𝑀𝑈𝑋 ≤ max * 𝑒𝑦 + + 𝑁 𝑒𝑥  



Sequentialization [BV14] 

Barrington’s Theorem [B86]: Every depth 𝑑 computation can be 
transformed into a width-5 depth 4𝑑 branching program. 

A sequence of MUXes. 

• Noise growth improved to 𝑝𝑜𝑙𝑦(𝑁).  
 

⇒ Better security – breaks barrier of [BGV12, B12,GSW13]. 
 

• Using dimension-modulus reduction (from [BV11b]) ⇒ same 
hardness assumption as non homomorphic encryption. 
 

• Short ciphertexts (with bootstrapping – coming up). 



Implementations of FHE 

• HElib (IBM/NYU) 
– Ring-LWE (ideal-lattice) scheme of [BGV12], optimizations of 

[GHS12a] 
– https://github.com/shaih/HElib 

 
• “Stanford FHE” 

– LWE scheme of [B12] with optimizations 
– http://cs.stanford.edu/~dwu4/fhe.html 

 
• Unpublished code 

– Ring-LWE implementation of [GHS12b]. 
– Over the integers implementation of [CCKLLTY13]. 
 

Approximate eigenvalue method not implemented yet. 

https://github.com/shaih/HElib
https://github.com/shaih/HElib
http://cs.stanford.edu/~dwu4/fhe.html
http://cs.stanford.edu/~dwu4/fhe.html

