5 years of FHE

Zvika Brakerski

Weizmann Institute of Science

Outsourcing Computation

Email, web-search, navigation, social networking...
Search query, location, business information, medical information...
What if x is private?

Outsourcing Computation - Privately

WANTED

Homomorphic Evaluation function:

$$
\text { Eval: } f, \operatorname{Enc}(x) \rightarrow \operatorname{Enc}(f(x))
$$

Fully Homomorphic Encryption (FHE)

Correctness:

$$
\begin{aligned}
& \operatorname{Dec}_{s k}(y)=f(x) \quad \text { Compactness: Dec complexity } \\
& \text { Input privacy: } \quad \operatorname{Enc}(0) \cong \operatorname{Enc}(x) \quad \text { independent of } f .
\end{aligned}
$$

Fully Homomorphic $=$ Correctness for any efficient f = Correctness for universal set

- NAND.
- $(+, \times)$ over \mathbb{Z}_{2} (= binary $\left.X O R, A N D\right)$

Some Applications

In the cloud:

- Private outsourcing of computation.
- Near-optimal private outsourcing of storage (single-server PIR). [G09,BV11b]
- Verifiable outsourcing (delegation). [GGP11,CKV11,KKR13]
- Private machine learning in the cloud. [GLN12,HW13]

Secure multiparty computation:

- Low-communication multiparty computation. [AJLTVW12,LTV12]
- More efficient MPC. [BDOZ11,DPSZ12,DKLPSS12]

Primitives:

- Succinct argument systems. [GLR11,DFH11,BCCT11,BC12,BCCT12,BCGT13,...]
- General functional encryption. [GKPVZ12]
- Indistinguishability obfuscation for all circuits. [GGHRSW13]

Making Crypto History

Constructing Homomorphic Encryption [G09]

For now: Any non-trivial homomorphism

secret algebraic equivalence e.g. $(\bmod p)$ for secret p

Basic Idea: Find scheme s.t. $c \approx \underset{\text { ciphertext }}{m_{<}}+2 \underset{\text { message }}{e} \underset{\text { small (even) noise }}{e}$

Add/multiply ciphertexts \Rightarrow Add/multiply messages
Noise grows with homomorphic evaluation must not grow "too much"!

In this example [DGHV10]: $\left\|e_{\text {mult }}\right\| \approx\left\|e_{\text {input }}\right\|^{2}$

Noise in Homom Benchmark: $E=N, d=\log N$ $\frac{\left\|\vec{e}_{\text {output }}\right\|}{\left\|\vec{e}_{\text {input }}\right\|}=N^{N}$

$$
\left\|\vec{e}_{\text {output }}\right\| \leq E^{2^{d}}
$$

$\left\|\vec{e}_{i+1}\right\| \leq\left\|\vec{e}_{i}\right\|^{2}$
$\left\|\vec{e}_{\text {input }}\right\| \leq E$

FHE Challenges

Simplicity.

Security.

- Assumptions.
- Security notions.

Efficiency.

- Size of keys/ciphertexts.
- Time overhead for Eval.
- Computational model.

Second Generation FHE [BV11b]

Any non-trivial homomorphism

Basic Idea: Find scheme s.t. $c \cdot s \approx m+2 e$ ciphertext

message
small (even) noise

Different $(\cdot) \Leftrightarrow$ different assumption:

- Vector IP \Rightarrow Learning with Errors (LWE) / Lattice
- Vector of polynomials \Rightarrow Ring LWE / Ideal lattice [BV11a]
- Polynomials over a ring \Rightarrow NTRU / Ideal lattice [LTV12]

Second Generation FHE [BV11b]

Any non-trivial homomorphism

$$
\begin{aligned}
& \text { For } m=s^{2}: \\
& \qquad c_{s^{2} \rightarrow s} \cdot s \approx s^{2}+2 e
\end{aligned}
$$

Basic Idea: Find scheme s.t. $c \cdot s \approx m+2 e$
Multiplication (very high level): $\quad c_{\text {mull }}=\left(c_{1} \cdot c_{2}\right) \cdot c_{s^{2} \rightarrow s}$

$$
\begin{aligned}
& \left(c_{1} \cdot c_{2}\right) \cdot\left(s^{2}\right) \approx m_{1} m_{2}+2 e \\
& \left(c_{1} \cdot c_{2}\right) \cdot c_{s^{2} \rightarrow s}^{c^{s}} \cdot s \approx m_{1} m_{2}+2 e \\
& \text { roxy re-encryption } \begin{array}{r}
\text { key-switching ciphertext } \\
\text { In eve (public parameter) }
\end{array}
\end{aligned}
$$

Key switching \Rightarrow proxy re-encryption

Second Generation FHE [BV11b]

Follow-ups [BGV12,GHS12a,B12,GHS12c,BGH13]:

- Improved noise behavior: $E \rightarrow(N+1) \cdot E$ (instead of E^{2})
$\Rightarrow \mathrm{I} / \mathrm{O}$ noise ratio $(E=N, d=\log N)$ drops to $N^{\log N}$.
- Improved security reductions.
- Significant efficiency improvements using "batching".

Conclusion:

- Simplified constructions.
- Improved hardness assumptions (quasi-poly apx. to worst case lattice problems).
- More efficient by orders of magnitude.

The "Approximate Eigenvector" Method [GSW13]

Basic Idea: Find scheme s.t. $\quad c \cdot s \approx m s+2 e$

Multiplication (very high level): $\quad c_{\text {mult }}=c_{1} \cdot c_{2}$

$$
\left(c_{1} \cdot c_{2}\right) \cdot s \approx c_{1} m_{2} s+2 e \approx m_{1} m_{2} s+2 e
$$

No need for key-switching ciphertext in evk!
\Rightarrow IB-FHE, AB-FHE via [GPV08,CPHK10,ABB10,GVW13]

The "Approximate Eigenvector" Method [GSW13]

Basic Idea: Find scheme s.t. $c \cdot s \approx m s+2 e$

Actually implied by previous method:
Starting with $m=0: \quad c \cdot s \approx 0+2 e$
$\Rightarrow \quad c^{\prime}=c+1 \cdot m: \quad c^{\prime} \cdot s \approx m s+2 e$

Howel Ciphertext size $=N^{2} \Rightarrow$ Large!

$$
C=\text { matrix, } \vec{s}=\text { "eigenvector". }
$$

Approximate Eigenvector Method [GSW13]

$$
\begin{aligned}
& C_{1} \cdot \vec{s}=m_{1} \vec{s}+\vec{e}_{1} \quad C_{2} \cdot \vec{s}=m_{2} \vec{s}+\vec{e}_{2} \\
& \begin{array}{c}
C_{m u l t}=C_{1} \cdot C_{2}: \quad \text { Can also use } C_{2} \cdot C_{1} \\
\left(C_{1} \cdot C_{2}\right) \cdot \vec{s}
\end{array}=C_{1}\left(m_{2} \vec{s}+\vec{e}_{2}\right) \\
& \\
& =m_{2} C_{1} \vec{s}+C_{1} \vec{e}_{2} \\
& \\
& =m_{2}\left(m_{1} \vec{s}+\vec{e}_{1}\right)+C_{1} \vec{e}_{2}\left\|C_{1}\right\| \text { can be reduced to } \approx N . \\
& \\
& =m_{2} m_{1} \vec{s}+\underbrace{m_{2} \vec{e}_{1}+C_{1} \vec{e}_{2}}_{2}
\end{aligned}
$$

$\left\|\vec{e}_{\text {mult }}\right\| \leq N \cdot\left\|\vec{e}_{2}\right\|+m_{2} \cdot\left\|\vec{e}_{1}\right\| \leq(N+1) \cdot \max \left\{\left\|\vec{e}_{1}\right\|,\left\|\vec{e}_{2}\right\|\right\}$

Noise in Homomc
 Noise grows during home
 Benchmark: $E=N, d=\log N$ $\frac{\left\|\vec{e}_{\text {output }}\right\|}{\left\|\vec{e}_{\text {input }}\right\|}=N^{\log N}$

$$
\left\|\vec{e}_{\text {output }}\right\| \leq(N+1)^{d} \cdot E
$$

$\left\|\vec{e}_{i+1}\right\| \leq(N+1)\left\|\vec{e}_{i}\right\|$
$\left\|\vec{e}_{\text {input }}\right\| \leq E$

Sequentialization [BV14]

What is the best way to evaluate a product of k numbers?

Conventional wisdom

Actually better
(if done right)

Sequentialization [BV14]

$$
N \cdot\left\|\vec{e}_{2}\right\|+m_{2} \cdot\left\|\vec{e}_{1}\right\|
$$

Actually even better! Only the 1-suffix matters.
\Rightarrow MUXing only costs additive noise.

Sequentialization [BV14]

$\operatorname{MUX}\left(x, y_{1}, y_{2}\right)=x \cdot y_{1}+(1-x) \cdot y_{2} \Rightarrow\left\|e_{M U X}\right\| \leq \max \left\{\left\|e_{y}\right\|\right\}+N\left\|e_{x}\right\|$

Barrington's Theorem [B86]: Every depth d computation can be transformed into a width-5 depth 4^{d} branching program.

A sequence of MUXes.

- Noise growth improved to poly (N).
\Rightarrow Better security - breaks barrier of [BGV12, B12,GSW13].
- Using dimension-modulus reduction (from [BV11b]) \Rightarrow same hardness assumption as non homomorphic encryption.
- Short ciphertexts (with bootstrapping - coming up).

Sequentialization [BV14]

Barrington's Theorem [B86]: Every depth d computation can be transformed into a width-5 depth 4^{d} branching program.

A sequence of MUXes.

- Noise growth improved to poly(N).
\Rightarrow Better security - breaks barrier of [BGV12, B12,GSW13].
- Using dimension-modulus reduction (from $[B V 11 \mathrm{~b}]) \Rightarrow$ same hardness assumption as non homomorphic encryption.
- Short ciphertexts (with bootstrapping - coming up).

Implementations of FHE

- HElib (IBM/NYU)
- Ring-LWE (ideal-lattice) scheme of [BGV12], optimizations of [GHS12a]
- https://github.com/shaih/HElib
- "Stanford FHE"
- LWE scheme of [B12] with optimizations
- http://cs.stanford.edu/~dwu4/fhe.html
- Unpublished code
- Ring-LWE implementation of [GHS12b].
- Over the integers implementation of [CCKLLTY13].

Approximate eigenvalue method not implemented yet.

