
5 years of FHE

Zvika Brakerski

Weizmann Institute of Science

Aarhus MPC Workshop, May 2014

Outsourcing Computation

Email, web-search, navigation, social networking…

𝑥 𝑓

𝑓(𝑥)

𝑥

What if 𝑥 is private?

Search query, location, business
information, medical information…

Outsourcing Computation – Privately

WANTED

Homomorphic Evaluation function:

𝐸𝑣𝑎𝑙: 𝑓, 𝐸𝑛𝑐 𝑥 → 𝐸𝑛𝑐(𝑓 𝑥)

𝑥 𝑓

𝑦

𝐸𝑛𝑐(𝑥)

𝐷𝑒𝑐 𝑦 = 𝑓(𝑥)

Learns nothing on 𝑥.

Fully Homomorphic Encryption (FHE)

𝑥 𝑓

𝑦 = 𝐸𝑣𝑎𝑙𝑒𝑣𝑘(𝑓, 𝐸𝑛𝑐 𝑥)

𝐷𝑒𝑐𝑠𝑘 𝑦 = 𝑓(𝑥)

𝑠𝑘 , 𝑝𝑘 𝑒𝑣𝑘

Correctness:

𝐸𝑛𝑐(𝑥) ≅ 𝐸𝑛𝑐(0)
Input privacy:

• NAND.
• (+,×) over ℤ2 (= binary 𝑋𝑂𝑅, 𝐴𝑁𝐷)

𝐸𝑛𝑐𝑝𝑘(𝑥)

Fully Homomorphic = Correctness for any efficient 𝑓

 = Correctness for universal set

Compactness: Dec complexity
independent of 𝑓.

Some Applications
In the cloud:

• Private outsourcing of computation.

• Near-optimal private outsourcing of storage (single-server PIR). [G09,BV11b]

• Verifiable outsourcing (delegation). [GGP11,CKV11,KKR13]

• Private machine learning in the cloud. [GLN12,HW13]

Secure multiparty computation:

• Low-communication multiparty computation. [AJLTVW12,LTV12]

• More efficient MPC. [BDOZ11,DPSZ12,DKLPSS12]

Primitives:

• Succinct argument systems. [GLR11,DFH11,BCCT11,BC12,BCCT12,BCGT13,…]

• General functional encryption. [GKPVZ12]

• Indistinguishability obfuscation for all circuits. [GGHRSW13]

Making Crypto History

30 years of hardly scratching
the surface:

• Only-addition [RSA78, R79, GM82,

G84, P99, R05].
• Addition + 1 multiplication

[BGN05, GHV10].
• Other variants [SYY99, IP07,

MGH10].

… is it even possible?

Constructing Homomorphic Encryption [G09]

Basic Idea: Find scheme s.t. 𝑐 ≈ 𝑚

ciphertext message

secret algebraic equivalence

Add/multiply ciphertexts ⇒ Add/multiply messages

e.g. (mod p) for secret p

For now: Any non-trivial homomorphism

+ 2𝑒

small (even) noise

Noise grows with homomorphic evaluation –
must not grow “too much”!

In this example [DGHV10]: 𝑒𝑚𝑢𝑙𝑡 ≈ 𝑒𝑖𝑛𝑝𝑢𝑡
2

Noise in Homomorphic Evaluation

𝑒 𝑜𝑢𝑡𝑝𝑢𝑡 ≤ 𝐸2𝑑

𝑒 𝑖𝑛𝑝𝑢𝑡 ≤ 𝐸 𝑒 𝑖𝑛𝑝𝑢𝑡

𝑒 𝑜𝑢𝑡𝑝𝑢𝑡

Noise grows during homomorphic evaluation

Depth 𝑑

𝑒 𝑖+1 ≤ 𝑒 𝑖
2

…

Benchmark: 𝐸 = 𝑁, 𝑑 = log𝑁

𝑒 𝑜𝑢𝑡𝑝𝑢𝑡

𝑒 𝑖𝑛𝑝𝑢𝑡

= 𝑁𝑁

FHE Challenges

Security.

Simplicity.

Efficiency.
• Size of keys/ciphertexts.
• Time overhead for Eval.
• Computational model.

• Assumptions.
• Security notions.

Second Generation FHE [BV11b]

Basic Idea: Find scheme s.t. 𝑐 ⋅ 𝑠 ≈ 𝑚 +2𝑒

ciphertext message

secret key

Different (⋅) ⇔ different assumption:

• Vector IP ⇒ Learning with Errors (LWE) / Lattice

• Vector of polynomials ⇒ Ring LWE / Ideal lattice [BV11a]

• Polynomials over a ring ⇒ NTRU / Ideal lattice [LTV12]

publicly computable

Any non-trivial homomorphism

small (even)
noise

Second Generation FHE [BV11b]

Basic Idea: Find scheme s.t. 𝑐 ⋅ 𝑠 ≈ 𝑚 +2𝑒

Any non-trivial homomorphism

Multiplication (very high level): 𝑐𝑚𝑢𝑙𝑡 = 𝑐1 ⋅ 𝑐2

𝑐1 ⋅ 𝑐2 ⋅ 𝑠2 ≈ 𝑚1𝑚2 + 2𝑒

For 𝑚 = 𝑠2:

𝑐𝑠2→𝑠 ⋅ 𝑠 ≈ 𝑠2 +2𝑒

𝑐1 ⋅ 𝑐2 ⋅ 𝑐𝑠2→𝑠 ⋅ 𝑠 ≈ 𝑚1𝑚2 + 2𝑒

key-switching ciphertext
In evk (public parameter)

Key switching ⇒ proxy re-encryption

()⋅ 𝑐𝑠2→𝑠

Second Generation FHE [BV11b]

Follow-ups [BGV12,GHS12a,B12,GHS12c,BGH13]:

• Improved noise behavior: 𝐸 → (𝑁 + 1) ⋅ 𝐸 (instead of 𝐸2)

⇒ I/O noise ratio (𝐸 = 𝑁, 𝑑 = log𝑁) drops to 𝑁log 𝑁 .

• Improved security reductions.

• Significant efficiency improvements using “batching”.

Conclusion:

• Simplified constructions.

• Improved hardness assumptions (quasi-poly apx. to worst case
lattice problems).

• More efficient by orders of magnitude.

The “Approximate Eigenvector” Method
[GSW13]

Basic Idea: Find scheme s.t. 𝑐 ⋅ 𝑠 ≈ 𝑚 𝑠 +2𝑒

Multiplication (very high level): 𝑐𝑚𝑢𝑙𝑡 = 𝑐1 ⋅ 𝑐2

𝑐1 ⋅ 𝑐2 ⋅ 𝑠 ≈ 𝑐1𝑚2𝑠 + 2𝑒 ≈ 𝑚1𝑚2𝑠 + 2𝑒

No need for key-switching ciphertext in evk!

⇒ IB-FHE, AB-FHE via [GPV08,CPHK10,ABB10,GVW13]

The “Approximate Eigenvector” Method
[GSW13]

Basic Idea: Find scheme s.t. 𝑐 ⋅ 𝑠 ≈ 𝑚 𝑠 +2𝑒

Actually implied by previous method:

Starting with 𝑚 = 0 : 𝑐 ⋅ 𝑠 ≈ 0 + 2𝑒

⇒ 𝑐′ = 𝑐 + 1 ⋅ 𝑚 : 𝑐′ ⋅ 𝑠 ≈ 𝑚 𝑠 + 2𝑒

However, only known instantiation:

𝐶 = matrix, 𝑠 = “eigenvector”.

Ciphertext size = 𝑁2 ⇒ Large!

Approximate Eigenvector Method [GSW13]

𝐶1 ⋅ 𝑠 = 𝑚1𝑠 + 𝑒 1

𝐶2 ⋅ 𝑠 = 𝑚2𝑠 + 𝑒 2

𝐶𝑚𝑢𝑙𝑡 = 𝐶1 ⋅ 𝐶2:

(𝐶1⋅ 𝐶2) ⋅ 𝑠 = 𝐶1 𝑚2𝑠 + 𝑒 2

= 𝑚2𝐶1𝑠 + 𝐶1𝑒 2

= 𝑚2 𝑚1𝑠 + 𝑒 1 + 𝐶1𝑒 2

𝑒 𝑚𝑢𝑙𝑡

Can also use 𝐶2 ⋅ 𝐶1

= 𝑚2𝑚1𝑠 + 𝑚2𝑒 1 + 𝐶1𝑒 2

𝑒 𝑚𝑢𝑙𝑡 ≤ 𝑁 ⋅ 𝑒 2 + 𝑚2 ⋅ 𝑒 1 ≤ 𝑁 + 1 ⋅ max* 𝑒 1 , 𝑒 2 +

𝐶1 can be reduced to ≈ 𝑁.

Noise in Homomorphic Evaluation

𝑒 𝑜𝑢𝑡𝑝𝑢𝑡 ≤ 𝑁 + 1 𝑑 ⋅ 𝐸

𝑒 𝑖𝑛𝑝𝑢𝑡 ≤ 𝐸 𝑒 𝑖𝑛𝑝𝑢𝑡

𝑒 𝑜𝑢𝑡𝑝𝑢𝑡

Noise grows during homomorphic evaluation

Depth 𝑑

𝑒 𝑖+1 ≤ (𝑁 + 1) 𝑒 𝑖

…

Benchmark: 𝐸 = 𝑁, 𝑑 = log𝑁

𝑒 𝑜𝑢𝑡𝑝𝑢𝑡

𝑒 𝑖𝑛𝑝𝑢𝑡

= 𝑁log 𝑁

Sequentialization [BV14]
What is the best way to evaluate a product of 𝑘 numbers?

X

X

X

X

vs. X

X

Parallel Sequential

c1 c2 c3 c4

c1

c2

c3 c4

Conventional wisdom Actually better
(if done right)

Sequentialization [BV14]

X

X

X

X

vs. X

X

Parallel Sequential

c1 c2 c3 c4

c1

c2

c3 c4

𝐸 𝐸 𝐸 𝐸

𝑁 ⋅ 𝑒 2 + 𝑚2 ⋅ 𝑒 1

(𝑁 + 1)𝐸 (𝑁 + 1)𝐸

𝑁 + 1 log 𝑘𝐸

𝐸 𝐸

𝐸

𝐸

(𝑁 + 1)𝐸

(2𝑁 + 1)𝐸

(𝑘 ⋅ 𝑁 + 1)𝐸

Actually even better! Only the 1-suffix matters.
⇒ MUXing only costs additive noise.

Sequentialization [BV14]

Barrington’s Theorem [B86]: Every depth 𝑑 computation can be
transformed into a width-5 depth 4𝑑 branching program.

A sequence of MUXes.

• Noise growth improved to 𝑝𝑜𝑙𝑦(𝑁).

⇒ Better security – breaks barrier of [BGV12, B12,GSW13].

• Using dimension-modulus reduction (from [BV11b]) ⇒ same
hardness assumption as non homomorphic encryption.

• Short ciphertexts (with bootstrapping – coming up).

𝑀𝑈𝑋 𝑥, 𝑦1, 𝑦2 = 𝑥 ⋅ 𝑦1 + 1 − 𝑥 ⋅ 𝑦2 ⇒ 𝑒𝑀𝑈𝑋 ≤ max * 𝑒𝑦 + + 𝑁 𝑒𝑥

Sequentialization [BV14]

Barrington’s Theorem [B86]: Every depth 𝑑 computation can be
transformed into a width-5 depth 4𝑑 branching program.

A sequence of MUXes.

• Noise growth improved to 𝑝𝑜𝑙𝑦(𝑁).

⇒ Better security – breaks barrier of [BGV12, B12,GSW13].

• Using dimension-modulus reduction (from [BV11b]) ⇒ same
hardness assumption as non homomorphic encryption.

• Short ciphertexts (with bootstrapping – coming up).

Implementations of FHE

• HElib (IBM/NYU)
– Ring-LWE (ideal-lattice) scheme of [BGV12], optimizations of

[GHS12a]
– https://github.com/shaih/HElib

• “Stanford FHE”

– LWE scheme of [B12] with optimizations
– http://cs.stanford.edu/~dwu4/fhe.html

• Unpublished code

– Ring-LWE implementation of [GHS12b].
– Over the integers implementation of [CCKLLTY13].

Approximate eigenvalue method not implemented yet.

https://github.com/shaih/HElib
https://github.com/shaih/HElib
http://cs.stanford.edu/~dwu4/fhe.html
http://cs.stanford.edu/~dwu4/fhe.html

