Recent results on Howard’s
algorithm

Ingredients of CFEM

* Game theory and mechanism design
* Cryptography
* Algorithms and Operations Research

Howard’s algorithm (1960)

(aka policy iteration, policy improvement,
strategy iteration/improvement)

Basic algorithm for online, sequential
decision making in face of uncertainty

Optimal Replacement Policies for Dairy Cows Based on Daily
Yield Measurements

Lars Relund Nielsen®

Department of Business Studies, Aarhus University, Fuglesangs Allé 4, DK-8210 Aarhus V,
Denmark.

Erik Jorgensen

Department of Genetics and Biotechnology, Aarhus University, PO Box 50, DK-8830 Tjele,
Denmark.

Anders Ringgaard Kristensen

Department of Large Animal Sciences, University of Copenhagen, Gronnegardsve) 2, DK-1870
Frederiksberg C, Denmark.

Seren Ustergaard

Department of Animal Health and Bicscience, Aarhus University, PO Box 50, DK-8830 Tjele,

Denmark.

January 27, 2010

An MDP-Based Approach to Online
Mechanism Design

David C. Parkes
Division of Engineering and Applied Sciences
Harvard University
parkes@eecs.harvard.edu

Satinder Singh
Computer Science and Engineering
University of Michigan
baveja@umich.edu

Recent results on the time
complexity of Howard’s algorithm

O. Friedman, LICS'09

J. Fearnley, ICALP’10

Y. Ye, 2010

T.D. Hansen, U. Zwick, ISAAC’10

T.D. Hansen, P.B. Miltersen, U. Zwick, ICS’11

K.A. Hansen, R. Ibsen-Jensen, P.B. Miltersen,
2011

Markov Decision Process (MDP)

Markov Decision Process (MDP)

+1
0.10
0.70 'e
0 a
0.20
0.95 @

Markov Decision Process (MDP)

+1
0.10
0.70 'e
0 a
0.20
0.95 @

Markov Decision Process (MDP)

+1
0.10
0
0.20
0.95 @

Markov Decision Process (MDP)

+1

0.10

'
‘\

O
o) e

Markov Decision Process (MDP)

Rewards and Payoffs

* We play forever and keep collecting rewards.

* Our payoff is an accumulated reward that
starts at O.

* |f rewardris collected at time t, our payoff is

increased by by r(1-A)t, where A is the discount
factor.

 We want to find a policy that maximizes our
expected total payoff.

Howard’s algorithm (1960)

Start with an arbitrary policy (a choice of
action in each position)

Compute expected total payoff for each
position
For all positions, if a chosen action picks a

lower expected payoff over a higher expected
payoff, switch.

Ilterate!

Howard’s algorithm

 The method of choice in practice for solving
MDPs.

 Complexity analysis?

Zeitschrift fiir Operations Research, Volume 29, page 315 — 316

Letter to the Editor:

How Good is Howard's Policy Improvement Algorithm?

By N. Schmiz®

Some standard algorithms of Operations Research are known to be very useful in prac-
tice, although they may show an extremely bad (“exponentially bad"') worst case be-
haviour. An important example is Dantzig’s simplex algorithm for linear programming
(see ¢.g. Klee/Minty [1972)).

From our experience the first property (good behaviour / small number of iterations
for real life problems) also applies to Howard's policy improvement algorithm for
Markovian decision processes (see Mine/Osaki [1970]). However, we could not find
any information as to the second aspect (bad worst cases). Therefore 1 would like to
ask the following

Question 1: What is the worst case behaviour of Howard's policy improvement algo-
rithm?

If the considered decision process concems a system with N “states™ 1,... N, where
in state { one has to choose among m1; “actions”, the usual proof of convergence for

the policy improvement algorithm yields the (trivial) bound

N
") n m;
i=1

OR Spektrum (1986) 8:37-40

OR Spektrum

‘C) Sprninger-Verlag 1986

A Polynomial Time Bound for Howard’s Policy Improvement Algorithm

U. Meister and U. Holzbaur

Universitit Ulm, Abtcilung Mathematik VII (OR), Oberer Eselsberg, D-7900 Ulm

Received March 18, 1985 / Accepted in revised form October 16, 1985

Summary. We consider a discounted Markovian Decision
Process (MDP) with finite state and action space. For a
fixed discount factor we derive a bound for the number
of steps, taken by Howard's policy improvement algo-
rithm (PIA) to determine an optimal policy for the
MDP, that is essentially polynomial in the number of
states and actions of the MDP. The main tools are the
contraction properties of the PIA and a lower bound
for the difference of the value functions of a MDP with

(cf. e.g. Klee and Minty [4]). A trivial bound for the
number of iterations in the PIA would be the number
of policies of the MDP. We give a bound for the number
of iterations in Howard's PIA, that is essentially poly-
nomial, i.e. the bound for the number of iterations in
the PIA is linear in the number of states, but depends
on the logarithms of the size of the data and of the
discount factor as well.

How many iterations before
termination?

(assuming fixed discount factor)

* Meister and Holzbaur, 1986: O(n L)
— n =number of states, L = largest bitsize of reward.
— Not a strongly polynomial bound.
* Ye, 2010: O(m n log n)
— m = number of actions

— first strongly polynomial bound

* Hansen, Miltersen, Zwick, 2011: O(m log n)

About the proof

* |dentify an action that
— is played in the current policy

— will never be played again in any policy that occurs
after another O(log n) iterations.

How to find the action?

Primal:
min c X
X

s.t. (J— 7P)Tx —e

Complementary slackness:

Take action so that

corresponding term makes
big contribution to this sum

How many iterations before
termination?

(assuming fixed discount factor)

* Meister and Holzbaur, 1986: O(n L)
— n =number of states, L = largest bitsize of reward.
— Not a strongly polynomial bound.
* Ye, 2010: O(m n log n)
— m = number of actions

— first strongly polynomial bound

* Hansen, Miltersen, Zwick, 2011: O(m log n)

Even better bounds?

 O(m) iterations?
 O(n) iterations?
— No! Hansen and Zwick, ISAAC 2010.

Markov Decision Process (MDP)

+1
0.10
0
0.20
0.95 @

Turn-based Stochastic Game

TBSG)
A 0.10

Protagonist - Dante

Howard’s algorithm (1960)

Start with an arbitrary policy (a choice of
action in each position)

Compute expected total payoff for each
position.

For all positions, if a chosen action picks a
lower expected payoff over a higher expected
payoff, switch.

Iterate!

Strategy iteration

e Start with an arbitrary strategy for the
protagonist

* Solve the resulting one-player game (MDP) for
the antagonist. Compute expected total payoff
for each position

* For all positions, if a chosen action picks a
lower expected payoff over a higher expected
payoff, switch.

* |terate!

How many iterations?

 Hansen, Miltersen and Zwick, 2011:

— O(m log n) iterations suffices, as for the case of
MDPs!

— This is the first strongly polynomial bound for any
algorithm solving turn-based stochastic games.

— "De-LPfication” of Ye’s analysis.

What if the discount factor is not

fixed (of if the MDP is

undiscounted)?

* Friedman, 2009: ¥{(2") iterations for TBSGs.
* Fearnley, 2010: {¥j(2") for MDPs

* Technique recently generalized by Friedman,
Hansen and Zwick to show tight lower bounds
for the Random Facet Algorithm

— for turn-based stochastic games (SODA’11)
— for linear programing! (upcoming)

Concurrent Reachability Game
(CRG)

N
[g

Dante - Row player
Wants to reach GOAL

& ¥ Lucifer — Column player
Y Wants to prevent Dante
ﬂ | from reaching GOAL

Concurrent Reachability Game
(CRG)

Dante - Row player
Wants to reach GOAL

& ¥ Lucifer — Column player
Y Wants to prevent Dante
ﬂ | from reaching GOAL

Concurrent Reachability Game
(CRG)

Dante - Row player
Wants to reach GOAL

& ¥ Lucifer — Column player
Y Wants to prevent Dante
ﬂ | from reaching GOAL

Concurrent Reachability Game

(CRG)

GOAL

Dante - Row player
Wants to reach GOAL

& ¥ Lucifer — Column player
Y Wants to prevent Dante
ﬂ | from reaching GOAL

Concurrent Reachability Game
(CRG)

Dante - Row player
Wants to reach GOAL

& ¥ Lucifer — Column player
Y Wants to prevent Dante
ﬂ | from reaching GOAL

Concurrent Reachability Game

* Arena:
— Finite directed graph.

— One terminal GOAL node, a terminal trap node, N non-terminal
nodes.

— Each non-terminal node contains an m x m matrix of outgoing
arcs.

* Play:
— A pebble moves from position to position.

— In each step, Dante chooses a row and Lucifer simultaneously
chooses a column of the matrix.

— The pebble moves along the appropriate arc.
— |f Dante reaches the GOAL position he wins
— If this never happens, Lucifer wins.

Why?

* Generalizes all problems we saw earlier
— Not obvious — how to model rewards?

— "generalizes” can be rigorously defined by the
notion of polynomial reductions.

 The simplest case of two-player undiscounted
imperfect information stochastic games.

 Models poker tournaments...

Values and Near-Optimal Strategies

* Each positioniin a CRG has a value v, so that

Vi = rnmsta’tionaryy rnaxgeneral X I"li(x'y)

= sup stationary x rnlngeneral '} ui(x,y)

where W (x,y) is the probability of reaching
GOAL when Dante plays by strategy x and
Lucifer plays by strategyy.

Algorithmic problems

* Quantitatively solving a CRG.

— Approximating the values of the nodes.

* Strategically solving a CRG.

— Computing an %-optimal stationary strategy for a
given Z.

Howard’s algorithm for CRGs

Chatterjee, de Alfaro, Henzinger ‘06

1: t:=1

2: 7! := the uniform distribution at each position

3: while true do

4 y' = an optlmal best reply to =5 < Solve Markov
5. forie{0,1,2,...,] N,N+1} do Decision Process
6: '-Z- = iz, y")

7. end for

8: t:=t+1

0: t01 e {1,2,...,N} clo

10: “val(A (v - 1)) > v I then

11: lt = maximin(A4; (= l)_,) " Solve matrix game
12: else

13: lt = lt :

14: end if

15: end for
16: end while

Properties

* The valuations V!, converge to the values v, (from
below).

* The strategies x' guarantee the valuations Vv, for
Dante.

* What is the number of iterations required to
guarantee a good approximation?

Hansen, Ibsen-Jensen, M., 2011

* Solving Concurrent Reachability Games using

strategy iteration has worst case time complexity
doubly exponential in size of the input.

* Thisis an upper and a lower bound. For games with
N positions and m actions for each player in each
position:

— (1/?.)”"'\'/4 iterations are (sometimes) necessary to get ¢-
approximation of value.

— (1/8)231 "N iterations are always sufficient.

Dante in Purgatory
(Hansen, Koucky, Miltersen, LICS’09)

\5 Purgatory has 7 terraces.

Dante enters Purgatory
at terrace 1.

Dante in Purgatory
(Hansen, Koucky, Miltersen, LICS’09)

[N
/ \

While in Purgatory, once a
second, Dante must play
Matching Pennies

with Lucifer

Dante in Purgatory
(Hansen, Koucky, Miltersen, LICS’09)

\3

If Dante wins, he proceeds
\2 to the next terrace
1

\

Dante in Purgatory
(Hansen, Koucky, Miltersen, LICS’09)

\3

If Dante wins, he proceeds
\2 to the next terrace
1

\

Dante in Purgatory
(Hansen, Koucky, Miltersen, LICS’09)

\3

If Dante wins, he proceeds
\2 to the next terrace
1

\

Dante in Purgatory
(Hansen, Koucky, Miltersen, LICS’09)

\3

If Dante wins, he proceeds
\2 to the next terrace
1

\

Dante in Purgatory
(Hansen, Koucky, Miltersen, LICS’09)

\3

If Dante wins, he proceeds
\2 to the next terrace
1

\

Dante in Purgatory
(Hansen, Koucky, Miltersen, LICS’09)

\3

If Dante wins, he proceeds
\2 to the next terrace
1

\

Dante in Purgatory
(Hansen, Koucky, Miltersen, LICS’09)

\3

If Dante wins, he proceeds
\2 to the next terrace
1

\

Dante in Purgatory
(Hansen, Koucky, Miltersen, LICS’09)

[N

to the next terrace

3
\ If Dante wins, he proceeds
2
\ 1

Dante in Purgatory
(Hansen, Koucky, Miltersen, LICS’09)

AR

3
\ If Dante wins, he proceeds
\2 to the next terrace
1

Dante in Purgatory
(Hansen, Koucky, Miltersen, LICS’09)

to the next terrace

3
\ If Dante wins, he proceeds
2
\ 1

Dante in Purgatory
(Hansen, Koucky, Miltersen, LICS’09)

3
/ \ If Dante wins, he proceeds
\2 to the next terrace
1

Dante in Purgatory
(Hansen, Koucky, Miltersen, LICS’09)

3
\ If Dante wins, he proceeds
\2 to the next terrace
1

Dante in Purgatory
(Hansen, Koucky, Miltersen, LICS’09)

7 If Dante wins Matching Pennies
at terrace 7, he wins the game of
6 Purgatory.

Dante in Purgatory
(HanseﬁKoucky, Miltersen, LICS’09)

7 If Dante wins Matching Pennies
at terrace 7, he wins the game of
6 Purgatory.

Dante in Purgatory
(Hansen, Koucky, Miltersen, LICS’09)

If Dante loses Matching Pennies

4 guessing Heads, he goes back to
terrace 1.

Dante in Purgatory
(Hansen, Koucky, Miltersen, LICS’09)

If Dante loses Matching Pennies

4 guessing Heads, he goes back to
terrace 1.

Dante in Purgatory
(Hansen, Koucky, Miltersen, LICS’09)

5
\ If Dante loses Matching Pennies

4 guessing Heads, he goes back to
terrace 1.

Dante in Purgatory
(Hansen, Koucky, Miltersen, LICS’09)

If Dante loses Matching Pennies
4 guessing Tails.....

\ he loses the game of Purgatory!!!!

Dante in Purgatory

* Is there is a strategy for Dante so that he is
guaranteed to win the game of Purgatory with
probability at least 90%?

— Yes! A bit surprising — when Dante wins, he has guessed
correctly seven times in a row!

Purgatory is a game of doubly exponential
patience (Hansen, Koucky, M., LICS’09).

The patience of a stationary strategy is 1/p where p is the smallest
non-zero probability used by the strategy (Everett, 1953).

To win with probability 1-g, Dante must choose “Heads” at terrace i
with prc;bablllty greater than (roughly)

1- g2

On the other hand, choosing “Heads” with probability 1 is no good!

To win with probability 9/10, he must choose “Heads” at terrace 1
with probability greater than 1-(1/10)%* =
0.99
999999999999.

Note that Lucifer can respond by always choosing “Tails” at terrace
1, making the play take very long time.

New: Strategy iteration is slow on

Purgatory
#iterations: Valuation of lowest terrace:

1 0.01347

10 0.03542

100 0.06879

1000 0.10207

10000 0.13396

100000 0.16461

1000000 0.19415

10000000 0.22263

100000000 0.24828
> 2%106° 0.9

> 10128 0.99

Main result

* For games with N positions and m actions for each
player in each position:

— (1/e)mN/4 iterations are (sometimes) necessary to get ¢-
approximation of value.

— (1/£)231 ™M iterations are always sufficient.

* For the lower bound, we generalize Purgatory
to more than 2 actions..

Generalized Purgatory P(N,m)

Lucifer repeatedly hides a number between 1
and m.

Dante must try to guess the number.

If he guesses correctly N times in a row, he
wins the game.

If he ever guesses incorrectly overshooting
Lucifer’s number, he loses the game.

A bit about the proof

A bit about the proof

* As for the case of MDPs we can relate the
valuations computed by strategy iteration to
the valuations computed by value iteration.

1. 1. 5
U 7 — U 7 — U L Actual values

Valuations computed

by value iteration Valuations computed
by strategy iteration

Value iteration (dynamic
programming)

1: t:=10
2. oY :=(0,0,.. ., 1) {the vector oY is indexed 0.1,...,N. N + 1}
3: while true do

5: 15‘6 = ()

~ ",t o—

G: l;\'.—l-l —J.

7. forie{l.2,.... ! N} do
8: ol = val(A; (0t—1))

2 \

9: end for
10: end while

Value iteration computes the value of the time bounded game,
for larger and larger values of the time bound, by backward induction.

Why value iteration is slow on
Purgatory (sketch!)

The valuations computed after t iterations are the actual
values of the game with time bound t.

We know that to win Purgatory with any significant
probability, Dante must be very patient (use very small
probabilities).

This means that Lucifer can make play take a very long time.

This means that Dante cannot win the time-bounded game
with any good probability.

This means the valuations computed by value iteration are far
from the correct values. QED!

(the above “proof” cheats slightly by blurring the distinction
between stationary strategies and arbitrary ones)

Why strategy iteration is slow on
Purgatory (sketch!)

Strategy iteration on Purgatory with n terraces compute the
same sequence of strategies for the lowest terrace as strategy
itearation on Purgatory with one terrace only.

Strategy iteration and value iteration are in synch when
applied to Purgatory with one terrace.

This allows us to conclude that the patience of the strategy
computed after few iterations is low.

We already know that strategies of low patience do not do

well for Purgatory, so the strategies computed are not very
good. QED!

Upper bound

* For any CRG with n positions and m,actions for
each player in each position, (1/2)2°
iterations are sufficient to achieve %-optimal
strategy.

* Proof sketch: Express that the value of the

time bounded game approximates the
unrestriced game in the first order theory of

the reals and appeal to the model theory of
that logic.

Conclusion

* Howard’s algorithm solves discounted MDPs
and turn based stochastic games really fast —
number of iterations close to linear!

 Howard’s algorithm solves undiscounted
MDPs relatively slow — worst case number of
iterations exponential.

 Howard’s algorithm solves Concurrent
Reachability Games really slowly — number of
iterations doubly exponentiall

