Missing Markets Using benchmarking to identify and create markets

Peter BOGETOFT

Department of Economics Copenhagen Business School CBS pb.eco@cbs.dk

CFEM Inauguration Oct 2010

Outline

Markets and efficiency

Merger analysis

Reallocation analysis

Conclusions

Focus on ideas - not literature or mathematics

Markets and efficiency

Markets

Welfare theorems (Smith, Arrow, Debreu)

- A competitive economy leads to a Pareto efficient allocation
- Any Pareto efficient outcome can be implemented through a price system plus some initial lump sum reallocations

So minimal (governmental or CFEM) interference is necessary

Theoretical exceptions

- Market failures (externalities, natural monopolies, public goods)
- Perfect information and complete markets

Practical experience from e.g. benchmarking

- Firms usually do not use best practices
- Production usually is not optimally allocated
- Matching is often costly

So government or CFEM necessary to make or improve markets

Questions

- How identify missing and inefficient markets
- How establish new markets and improve inefficient ones

Inefficiencies

Single product examples

Inefficient	Inefficient	Inefficient	Inefficient
managers	allocation of	production	allocation of
market,	production,	level e.g.	services, e.g.
contracts,	e.g. sugar	pollution	health services
regulation	beets	control	

We need data to estimate functions and hereby identify inefficiencies.

Peter Bogetoft

First or second best

Problem:

-Informational asymmetries and incentive problems may explain inefficiencies -We should look for second best inefficiencies, not first bests inefficiencies

Solution (?):

-Use data from similar entities to depict the feasible outcomes - whether first best or second best.

Data

Data

- (x^j,y^j) input-output vectors from firm
 j, j=1,...,n
- T={(x,y): x can produce y}
- No prices (w,p) or prices already partially used to aggregate inputs and outputs.

Estimate the technology

- T may be estimated from data using DEA, SFA or similar approaches
- Best practice may include second best problems
- DEA examples in 1 input 1 output case:

ig. 4.2 DEA technology sets under different assumptions

Peter Bogetoft

Benchmarking

Relative performance evaluation May support

Learning

 What is the best practice, the impact of managerial skills, new technology, new regulation, etc

Planning and reallocation

- How should we allocate production in firm or sector?

Incentives

- How design contracts and regulation?

Merger analysis

Horizontal integration

Horizontal integration

Overall horizontal gains

A merger

- Merge DUMs in J \subseteq {1, 2, ..., n}. Merged unit denoted DMU^J
- Operated individually, DMU^j has used $\sum_{j \in J} x^j$ to produce $\sum_{j \in J} y^j$.
- What can be gained by operating DMU^J as a merged unit?

Potential overall gains

from merging the J-DMUs is

$$\mathsf{E}^{\mathsf{J}} = \mathsf{Min}\{\mathsf{E} \in \mathsf{R}_0 \mid (\mathsf{E}[\sum_{j \in \mathsf{J}} \mathsf{x}^j], \sum_{j \in \mathsf{J}} \mathsf{y}^j) \in \mathsf{T}\}\$$

E<1 is attractive!

Potential gains = potential savings

LP problem

Potential overall gains

 $\lambda \in \Lambda(k)$

Practical steps

- Add inputs used in units in J: \boldsymbol{x}^{J}
- Add outputs used in units in J: y^{J}
- Evaluate efficiency of (x^j,y^j) in technology spanned by the original data

Individual learning

Scope (Harmony)

Scale (Size)

Decomposition Horizontal

Total potential

 $- E^{j} = Min\{E \in R_{0} \mid (E[\sum_{j \in J} x^{j}], \sum_{j \in J} y^{j}) \in T\}$

Adjusted (ex learning) potential

- $E^{*j} = Min\{E \in R_0 \mid (E[\sum_{j \in J} E^j x^j], \sum_{j \in J} y^j) \in T\}$
- Technical efficiency (learning)
 - $T^{J} = E^{J}/E^{*J}$

Scope (mix, harmony)

 $- H^{J} = Min\{H \in R_{0} \mid (H[|J|^{-1} \sum_{j \in J} E^{j} x^{j}], |J|^{-1} \sum_{j \in J} y^{j}) \in T\}$

Scale (size)

 $- S^{j} = Min\{S \in R_{0} \mid (S[H^{j} \sum_{j \in J} E^{j} x^{j}], \sum_{j \in J} y^{j}) \in T\}$

Total decomposition

 $- E^{J} = T^{J} * H^{J} * S^{J}$

Note

Peter Bogetoft

- All simple LP problems when T is modeled via DEA

Examples crs and vrs

 $E^{j} = T^{j} * H^{j} * S^{j} = T^{j} * E^{*j}$

Potential	gains	= Learning	g * Harmon	y *Size

Merger	Е	Е*	TE	Н	S
4 & 89	0.78	0.95	0.81	0.95	1.00
20 & 90	0.81	0.97	0.84	0.97	1.00
29 & 30	1.00	1.00	1.00	1.00	1.00
30 & 31	0.89	1.00	0.89	1.00	1.00
30 & 91	0.83	1.00	0.83	1.00	1.00
31 & 91	0.77	0.96	0.80	0.96	1.00
34 & 92	0.80	0.94	0.85	0.94	1.00
34 & 93	0.67	0.95	0.71	0.95	1.00
35 & 41	0.81	1.00	0.81	1.00	1.00

Merger	Е	Е*	TE	Н	S
31 & 91	NA	NA	NA	0.85	NA
34 & 92	0.94	1.01	0.94	0.86	1.17
34 & 93	0.87	1.08	0.80	0.86	1.26
35 & 41	0.92	1.09	0.85	0.98	1.11
38 & 45	1.19	1.35	0.88	0.98	1.38

Interpretations and remedies

Effect	Remedy
Efficiency	Learn, incentives, change event
Scope / Mix	Exchange/trade inputs and outputs
Scale	Merge

Applications

Denmark

- Agricultural extension service
- Merging of local offices
- Individual advise on relevant partners

Netherlands

- Used by regulator to evaluate proposed mergers
- Costs gains versus competitive losses
- Most of learning and scope gains available without integration

Norway

- Norwegian DSOs under yardstick revenue cap
- 10 years of sharing of H gains with consumers
- Balance restructuring and consolidation with number of observations on benchmarking (like competitive pressure)

Dutch model

Login	Select Model	> Select Units	> <u>B</u> enchmark	Peer Units	Sector <u>A</u> nalysi	s <u>R</u> eports	Data
yUnit:	DMU65 + DMU95		Eff: Normal	Scale: CRS	💽 📃 ExSlac	k L: 0.7 🌩	J: 1.2
Varia	ble	Direction		MyUnit	Benchmark	Performance	
Total	_Cost_mio	C	100	559.624	427.450	76	
DBC1	_mio	0	o{	255.849	255.849	100	1
DBC2	_mio	0	o{	53.677	53.677	100	
DBC3	_mio		57	31.375	35.599	88	
DBC4	_mio	C	78	56.967	67.461	84	
DBC5	_mio	C	100	5.630	6.959	81	
DBC6	_mio	-0	22{	0.324	0.341	95	
(nput pr 1039 -	op. Uutput pro	48 	Frint table Hide	peers Hotate	peers 5how Int	InEff.:	23.62%
4U30 -							

H rationale

H is also solution to pure reallocation problem

$\begin{array}{ll} \text{Min} & h \\ (x^{\#j}, y^{\#j}), j \in I \\ \text{s.t.} & h \sum_{j \in J} E^j x^j \geq \sum_{j \in J} x^{\#j} \\ & \sum_{j \in J} y^j \leq \sum_{j \in J} y^{\#j} \\ & (x^{\#j}, y^{\#j}) \in T \end{array}$

So H is actually the most you can gain from making markets for resources and obligations among the Jr. firms.

Controllability and transferability

Controllability and transferability

$\begin{array}{l} \textbf{Restricted controllability (Variable versus Fixed)} \\ \textbf{E}^{J}_{V} = Min \left\{ \textbf{E} \in \textbf{R}_{0} \ \middle| \ (\textbf{E}[\boldsymbol{\Sigma}_{j \in J} \ \textbf{x}^{j}_{V}], \ [\boldsymbol{\Sigma}_{j \in J} \ \textbf{x}^{j}_{F}], \ \boldsymbol{\Sigma}_{j \in J} \ \textbf{y}^{j} \) \in \textbf{T} \right\} \end{array}$

and similar for E*, H and S

Н

Min

Restricted transferability (Local versus Global)

Vertical and network structures

Peter Bogetoft

Dis-integration

Interpretations, remedies and CFEM

Effect	Remedy	Market
Efficiency	Learn, incentives, change event	Regulation, peers groups, contracting
Scope / Mix	Exchange/trade inputs and outputs	Broker or market maker (central/ de-central)
Scale	Merge	Broker, corporate dating system

Reallocation analysis

Extended reallocations

Extend the set of firms and arrangements:

- Subset of firms -> all firms in a sector
- One merger -> new industrial structure with several mergers, splittings, exits etc
- Still explicit matching, restrictions on what can be reallocated, restrictions of ex post efficiency etc
- May even look across sectors

LP problems

Blok- angular structure

- Individual firms models
- Common constraints
- Dual prices predicts market prices

$$\begin{split} \max_{(x_S, y_S, q, F)} &\sum_{k=1}^{K} (py_S^k - wx_S^k) - \Gamma \left[(x_S, y_S, F), (x_S^*, y_S^*, F^*) \right] \\ s.t. & \left(x_S^k, x_F^{*k}, F^k y_S^k, y_F^{*k} \right) \in T \qquad (k = 1, \dots, K) \\ y_S^k &\leq q^k \qquad (k = 1, \dots, K) \\ &\sum_{k=1}^{K} q^k \leq Q \\ & x_s^k \geq 0, \ y_s^k \geq 0, \qquad q_s^k \geq 0, \ F^k \geq 1 \qquad (k = 1, \dots, K). \end{split}$$

30

Applications

Fishery quota

Sugar beet production

Study helped convince market participant

Model EC-MC

$$\Pi = \max_{(\lambda^{vv}, CPY^{v}, VCPY^{v})} \sum_{v=1}^{v} \left(\sum_{m=1}^{M} P_{m} \cdot CPY_{m}^{v} - \sum_{n=1}^{\tilde{N}} VCPY_{n}^{v} \right)$$

s.t.
$$\sum_{v=1}^{V} \lambda^{v'v} \cdot CPY_{m}^{obs v} \ge CPY_{m}^{v'} \qquad m = 1,..., M$$
$$\sum_{v=1}^{V} \lambda^{v'v} \cdot VCPY_{n}^{obs v} \le VCPY_{n}^{v'} \qquad n = 1,..., \tilde{N}$$
$$\sum_{v=1}^{V} \lambda^{v'v} \cdot FCPY_{n}^{obs v} \le FCPY_{n}^{obs v'} \qquad n = \tilde{N} + 1,..., N$$
$$\sum_{v=1}^{V} \lambda^{v'v} = 1, \lambda^{v'v} \ge 0 \qquad v = 1,..., V$$
$$\sum_{v=1}^{V} CPY_{m}^{v} \le \sum_{v=1}^{V} CPY_{m}^{obs v} \qquad industry$$

Model EF-MF

$$\begin{split} \Pi &= \max_{(\beta^{V}, \lambda^{V'}, VCPY^{V})} \sum_{v=1}^{V} \left(\sum_{m=1}^{M} P_{m} \cdot \beta^{v} \cdot \frac{CPY_{m}^{obs v}}{F^{obs v}} - \sum_{n=1}^{\tilde{N}} VCPY_{n}^{v} \right) \\ \text{s.t.} & \sum_{v=1}^{V} \lambda^{v'v} \cdot CPY_{m}^{obs v} \geq \beta^{v'} \cdot CPY_{m}^{obs v'} \qquad m = 1, \dots, M \\ & \sum_{v=1}^{\tilde{V}} \lambda^{v'v} \cdot VCPY_{n}^{obs v} \leq VCPY_{n}^{v'} \qquad n = 1, \dots, \tilde{N} \\ & \sum_{v=1}^{\tilde{V}} \lambda^{v'v} \cdot FCPY_{n}^{obs v} \leq FCPY_{n}^{obs v'} \qquad n = \tilde{N} + 1, \dots, N \\ & \sum_{v=1}^{\tilde{V}} \lambda^{v'v} = 1, \lambda^{v'v} \geq 0 \qquad v = 1, \dots, V \\ & \sum_{v=1}^{\tilde{V}} \beta^{v} \cdot \frac{CPY_{m}^{obs v}}{F^{obs v}} \leq \sum_{v=1}^{\tilde{V}} CPY_{m}^{obs v} \qquad \text{industry} \end{split}$$

Aggregated trade gains

	Gross profit		Catch value	Variable cost
	(1,000 DKK)	Change (%)	(1,000 DKK)	(1,000 DKK)
Initial	260,270		1,246,760	752,313
Model EF–MF	394,404	51.54	1,233,210	604,629
Model EC-MF	451,386	73.43	1,241,803	556,240
Model EF-MC	448,888	72.47	1,246,760	563,695
Model EC-MC	486,338	86.86	1,246,760	526,225

288 vessels

Trade effects

	Efficiency effects	Scale effects	Scope effects
Model EF–MF	x	x	
Model EC-MF		x	
Model EF–MC	X	x	х
Model EC-MC		x	x

				Traded	Number of
	Buying	Selling	Status quo	amounts	vessels with
	vessels	vessels	vessels	(tonnes)	zero catch
Model EF–MF	124	124	40	112,520	24
Model EC–MF	146	111	31	116,250	14
Model EF–MC	119	169	0	729,066	25
Model EC-MC	98	190	0	841,178	0

CFEM applications

Interesting insight

Equally profitable to

- Reallocate resources and tasks
- Learn best practice

CFEM

- Market maker
- Resource broker
- Equity funds support
- SMC based Dantzig-Wolfe algorithm?
- Restructuring of waterworks ?

Conclusions

Benchmarking and markets

Extra

Natural monopoly regulation

Natural monopoly regulation

Regulatory instruments

Natural monopolies

- Markets do not work
- Pseudo market via regulation

Instruments

- Cost recovery regimes (cost plus, rate of return etc)
- CPI–X
- Yardstick
- Concession auctions
- Menu
- Technical norm models

Ex ante CPI-X Scheme

Predicted future costs sets allowed future revenue Historical costs lowered according to ax ante plan

E.g.: $R(t)=C(0)(1-x-x_i)^t$ for t=1,...,T

Ex post Yardstick scheme

Actual future costs of "competitors" sets allowed future revenue

$$R_i(t) = \frac{1}{n-1} \sum_{j \neq i} C_i(t)$$
 for $t = 1, 2,$

Role of benchmarking

Cost norms and yardstick must reflects

- Multiple dimensional outputs
- Controllable and non-controllable cost elements
- Contextual differences
- Use flexible frontier model like DEA
- More on this in benchmarking

DEA based yardstick scheme

- Optimal revenue cap with verifiable costs:

 $\mathbf{k} + \mathbf{c} + \rho \bullet (\mathbf{C}^{\mathsf{DEA-i}}(\mathbf{y}) - \mathbf{c})$

Constant + Actual Costs + ρ of DEA-est. cost savings

Useful in general when

- Complex underlying technology / cost structure and good data

DEA based yardstick competition

Services

CFEM

- Used in all EU countries
- Better benchmarking via SMC
- Benchmark past regulatory decisions
- All DSO to pre-screen investment proposals
- Coordinate smart grid investments across multiple players.