
How to Compute Securely

- even if you trust only yourself

Ivan Damgård,

Computer Science dept., Aarhus University

Private Information
PIN codes, the customer database of a company, patient
records at the hospital,..

- it’s often valuable, must keep it confidential

- but sometimes, combining private information from different
sources can provide large added value.

A few examples...

Simple first price Auction
Some participants are bidding for some item. Each bidder has private
information: some maximum price he is willing to pay
– but wants to pay as small a price as he can get away with.

Goal: find a winner and a price in a fair way.

Double Auction – the ”Stock Exchange”
Several potential buyers and sellers want to exchange a
commodity.

Each seller is willing to sell
various quantities, depending on
the price he can get. Each buyer
will buy various quantities, again
depending on the price.

Goal: find a fair market price,
given the existing supply and
demand

Data like the max price you are
willing to pay must be private..

Benchmarking
A number of companies work in the same sector. Each company has
data on how their business is running – productions costs,
turnover, etc.

Goal: each company wants to
find out how well it is doing
compared to others

- but without disclosing
information to the competitors..

Database privacy
Several different institutions possess different databases with
information on individual persons.

Goal: to extract statistics drawing on all databases simultaneously.

- but without breaking the privacy laws by giving someone full
acces to all the databases.

A Fundamental Problem
How do we compute the desired results in these scenarios,
without giving up on privacy?

One idea: find someone we can all trust, give him all the data and
let him compute the result we want.

But finding such a trusted party can be impossible or very
expensive.

Can we do without a trusted third party?

This is the Multiparty Computation Problem..

The MPC problem
n players P1, P2, …, Pn

Player Pi holds input xi

Goal: for some given function f with n inputs and n outputs,
compute f(x1,…,xn)= (y1,…,yn) securely, i.e., we want a protocol
such that:

•  Pi learns the correct value of yi

•  No information on inputs is leaked to Pi, other than what
follows from xi and yi.

We want this to hold, even when some of the players behave
adversarially - are corrupted by an Adversary.

Potentially Very Useful Tool:
For instance,to implement a trusted mediator in a mechanism.
But beware of differences between crypto and game theory way
to model behavior..

The scenario

Adv

The players

Communication Network

x2, y2 x1, y1

x3,y3 x4,y4

Corruption can be passive:
just observe computation
and mess.
Or active: take full control

Inputs,
Desired
outputs

Goal of MPC – a bit more precisely

Adv

T

Exchange inputs/
results with
players

Corrupt
Running protocol is
equivalent to using a
trusted
(uncorruptible)
party T, who gets
inputs from players,
computes f and
returns outputs to
the players.

Basic Fact about MPC (Simplified):

Any function that can be computed efficiently, can also be computed
securely – long series of results starting in the late 80-ties
[Yao 86], [Goldreich-Micali-Wigderson 87],
[Chaum Damgård Crepeau 88], [Ben-Or Goldwasser Wigderson 88]

-  but not always with the same efficiency..

The Hardest Case: all but one player may be corrupt
-  Only need to trust yourself.

Often a natural model of trust for real applications – if we have just
two parties, this is the only possibility..

But there is a limit to the type of solution we can get…

Computing the AND – mutual interest or not?

Maybe Charlie is interested in Lucy and she in him ….
Or maybe not.
Can they find out without risking embarrassment?
Equivalent to computing the AND of two bits securely

bC bL

If bL=0, Lucy already knows the answer is 0, so she must
not learn anything new.
 If Charlie is supposed to send first message, cannot
send anything that gives information on bC.
 Lucy in same situation.
 No solution possible?! 

…..

bC AND bL

Not Really Impossible…
..if we assume bounded computing power – means we can use
cryptography.

Say Charlie has a pair of keys
-  Public key pkC for encryption - known by all
-  Secret key skC for decryption - known only to Charlie

For any message m, have DskC(EpkC(m)) = m
 Charlie can send his input to Lucy, encrypted under pkC.

Want more: homomorphic encryption:
Ciphertexts are elements in some abelian group determined by
the public key, and we have
 x EpkC(a) + EpkC(b) = EpkC(xa+b)
For integers x, a and b.

bC
bL

Decrypt to
get bC AND bL

EpkC(bC)

C= EpkC(bC) bL + EpkC(0)

A Solution Using Homomorphic Encryption

= EpkC(bCbL)

Remark: encryption function must be randomized to be secure.
Otherwise, if b is a bit, trivial to find b from EpkC(b)

Semi-Homomorphic Encryption mod p and Multiparty
Computation
(Bendlin, Damgård, Orlandi, Zakarias 2010)

- A weaker notion of homomorphic encryption, several known
cryptosystems can be modified to be semi-homomorphic mod a prime
p:

[Okamoto-Uchyama98],[Paillier 99],[Damgård-Jurik 01], [Regev 05],
[Damgård, Krøigaard, Geisler 09], [Lubashevsky, Palacio, Segev 10],
[van Dijk, Gentry, Halevi, Vaikunthanathan 10].

Suppose computing f can be done using T arithmetic operations mod p.
Then f can be computed securely using O(T n2) encryption/decryption
operations, n the number of players.

Protocol tolerates that up to n-1 of the n players are actively
corrupted.

Futhermore..

Can split protocol in off-line and an on-line phase

In off-line phase inputs need not be known, just produce “raw
material” for the on-line phase. Computationally heavy stuff,
like public-key crypto used only here.

In on-line phase actual computation is done. Uses no crypto,
only basic arithmetic mod p. Hence much more efficient.

Preliminary implementation results: for a 65 bit prime p,
about 6 msec per secure multiplication, additions negligible.

The On-line Phase

A shared representation of numbers mod p

x = xC + xL mod p

Verification key
(a, bx)

Authentication code
mLx = axL + bx mod p

Additional data to prevent Lucy from lying about xL
Similar data set up to prevent Charlie from lying..

Verification key
(c, dx)

Authentication code
mCx = cxL + dx mod p

Data of correct form can be set up in off-line phase

Computing on Shared Numbers

 Charlie Lucy

 xC (a, bx) mCx xL (c, dx) mLx
 yC (a, by) mCy yL (c, dy) mLy

Two numbers x, y with authenticated shares
To add x and y, just add corresponding numbers locally..

xC+yC (a, bx+by) mCx+mCy xL+yL (c, dx+dy) mLx+mLy

Now have a representation of the same form of x+y (all
additions mod p).

Multiplication more complicated, requires extra data
prepared in off-line phase.

Applications of MPC.
From the SIMAP project, predates CFEM.

A secure double auction for trading contracts for sugar beet
production. A nation-wide market for such contracts.

No single trusted auctioneer, multiparty computation is used to
compute the result of the auction, based on encrypted bids
submitted by the farmers

The protocol executed by 3 parties: the farmers’ organization, the
company processing the sugar beets (Danisco) and SIMAP.

Application Cont’d

Þ Shows multiparty computation is practical: 2400 bids, each
containing several hundred numbers, results ready in about 30
minutes.

Þ  more later, in Jakob Pagter’s talk.

Þ  First implementation used simple protocol assuming at most
one corrupted player. Would be more natural to do a 2-party
solution.

Þ By recent results: we are close to being able to do this in
practice.

Conclusion

MPC is a very powerful tool for implementing auctions,
benchmarking, procurement etc. with improved confidentiality

In many cases, a 2-party solution, or a solution where players only
need to trust themselves is the most natural approach.

Even for this most difficult case, MPC is becoming practical.

But we do not know the exact complexities yet. At this point it
seems to be much more expensive to compute securely than to
just compute. But is this true?

