
Universes in a Type Theory for Synthetic∞-Category Theory

Ulrik Buchholtz & Jonathan Weinberger

TU Darmstadt

October 7, 2018
EUTYPES 2018, Aarhus

http://cs.au.dk/research/logic-and-semantics/eutypes2018/


1 Introduction

2 Inspiration: Synthetic∞-Categories in Simplicial Spaces

3 Simplicial Spaces inside Cubical Spaces

4 Universes in Cubical Spaces

5 Perspectives



Outline

1 Introduction

2 Inspiration: Synthetic∞-Categories in Simplicial Spaces

3 Simplicial Spaces inside Cubical Spaces

4 Universes in Cubical Spaces

5 Perspectives



Introduction I

In order to develop synthetic higher category theory, Riehl and Shulman introduced a Type
Theory with Shapes (RSTT) in [RS17]: MLTT with types of simplices, allowing for defining
synthetic (∞, 1)-categories as complete Segal/Rezk types.

As a main feature, RSTT postulates extension types, i.e. for shape inclusions Φ� Ψ, families
A : Φ→ U , and terms a :

∏
t:Φ

A(t) there exists the type of liftings

〈∏
t:Ψ

A(t)
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a

〉
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ā


Example & Definition: For a type A and terms x, y : A, define the hom-types

homA(x, y) :=

〈∏
t:∆1

A(t)

∣∣∣∣∣
∂∆1

[x,y]

〉
.



Introduction II

Goal: Consider a variant of simplicial type theory in a model that allows for the internal
definition of the universes of synthetic (∞, 1)-categories and∞-groupoids, resp., which
themselves should be synthetic (∞, 1)-categories.

There is a model of RSTT in simplicial spaces, i.e. the model category [
op
, sSetQuillen]Reedy.

This model structure presents the (∞, 1)-category PSh∞( ).

RSTT with a univalent universe can be modeled on [
op
, sSetQuillen]Reedy, cf. [Shu15].

But the universes obtained “naively” (as Σ-types) are not the desired ones since they fail to be
synthetic (∞, 1)-categories (consider the higher simplices).



Hierarchy of Universes

USpace

Dist[Space]

Space Spaceop

Core[Space]

UCat

Dist[Cat]

Cat Catop

Core[Cat]

UsSpace

Dist[sSpace]

sSpace sSpaceop

Core[sSpace]
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Synthetic∞-Categories in Simplicial Spaces I

Definitions from [RS17]:

• A type A is a Segal type if (∆2 → A)
'−→ (Λ2

1 → A).

• A Segal type A is a Rezk type if idtoisoA :
∏
x,y:A

IdA(x, y)
'−→ isoA(x, y).

• A type A is a discrete type if idtorarrA :
∏
x,y:A

IdA(x, y)
'−→ homA(x, y).

The notions just introduced semantically coincide with their classical analogues, at the level of
objects.



Synthetic∞-Categories in Simplicial Spaces II

• Types are interpreted as Reedy fibrant objects. Families of types are interpreted as Reedy
fibrations. A map f is a fibration if m⊥f for all m which are componentwise trivial
cofibrations in sSet.

• Segal types are interpreted as Segal spaces, i.e. Reedy fibrant objects X with
m⊗ I(i)⊥X for all monomorphisms m, and i : Λ2

1 � ∆2, I : sSet ↪→ [
op
, sSet]. Segal

types are∞-precategories (i.e. non-univalent).
• Rezk types are interpreted as complete Segal spaces, aka Rezk spaces, i.e. Segal

spaces X where X0 ' Xhoeq. Rezk types are univalent∞-categories.
• Discrete types are Rezk types X such that all Xn are discrete simplicial sets. Discrete

types are (univalent)∞-groupoids.



Subuniverses of Simplicial spaces

In RSTT, defining

isSegal(A) :≡ isEquiv
(
(∆2 → A)→ (Λ2

1 → A)
)
,

isRezk(A) :≡ isSegal(A)× isEquiv(idtoisoA),

isDisc(A) :≡ isEquiv(idtorarrA) ' isRezk(A)×
∏
x,y:A

∏
f :homA(x,y)

isIso(f),

giving rise to contexts

Segal := JA : U , p : isSegal(A)K, Rezk := JA : U , p : isRezk(A)K,
Disc := JA : U , p : isDisc(A)K,

in the simplicial space model PSh∞( ). But these objects are not Segal (let alone Rezk)
themselves.

Approach: Enable internal definition of universes of fibrations by taking cubical rather than
simplicial spaces, according to Licata–Orton–Pitts-Spitters [LOPS18].
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Simplicial Sets inside Cubical Sets I

The category sSet of simplicial sets is the category of presheaves on the category of finite
ordinals with monotone maps as morphisms.

The category cSet of cubical sets is the category of presheaves on the category of powers of
the ordinal 2 with monotone maps as morphisms.

Since the category of finite lattices is the idempotent completion of this, we get
cSet ' Set

op

.

Hence, there is a inclusion i : ↪→ . This gives rise to an essential geometric morphism
i! a i∗ a i∗ : sSet→ cSet morphism where

i! = Lany y ◦ i : sSet→ cSet, i∗ = (−) ◦ iop : cSet→ sSet,

i∗ : sSet→ cSet, X 7→ sSet(N(−), X)

with the nerve N : Cat→ sSet, NC([n]) = Fun([n], C).

This has been discussed by Kapulkin–Voevodsky [KV18], Sattler [Sat18], and Streicher.



Simplicial Sets inside Cubical Sets II

• The functors i∗ and i! are full and faithful, and i∗ is bicontinuous. But i! is not continuous.
• The topos sSet ↪→ cSet can be exhibited as the localization w.r.t. to the topology where

an object L ∈ is covered by a sieve S iff i∗S = i∗y = NL. This precisely means S
contains all chains in L, i.e. all monotone maps [n]→ L.

• The adjunction i! a i∗ acts as “inclusion a sheafification”.



Simplicial Spaces inside Cubical Spaces
• Both the∞-toposes PSh∞( ) and PSh∞( ) are 1-localic.
• The 0-truncation of the sub-∞-topos of canonical∞-sheaves on is geometrically

equivalent to PSh( ) ' τ0 PSh∞( ). By Lurie [Lur09], from 1-localicness it follows that
the inclusion PSh( ) ↪→ PSh( ) lifts to PSh∞( ) ↪→ PSh∞( ).

• The minimal covers for the canonical topology are given by monotone maps whose
images are contained in some maximal chain. Thus, PSh∞( ) is equivalent to the
nullification of the family

P : �2 → Prop, P (x, y) :≡ (x ≤ y) ∨ (y ≤ x).

• Using the projective model structure on PSh∞( ) we get a model of intensional type
theory with a weak universe U .

• It follows that we can define the notion of being simplicial in the internal language as

isSimp(X) :≡ Πz:�2 isEquiv(const : X → (P z → X)).

• We have a corresponding universe that we call USimp :≡ ΣX:U isSimp(X), as well as a
nullification/sheafification operation simp : U → USimp defined as a higher inductive type,
cf. Rijke–Shulman–Spitters [RSS17].
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Recall: Hierarchy of Universes

USpace

Dist[Space]

Space Spaceop

Core[Space]

UCat

Dist[Cat]

Cat Catop

Core[Cat]

UsSpace

Dist[sSpace]

sSpace sSpaceop

Core[sSpace]

Want this in simplicial spaces, inside cubical spaces!



The Simplicial Universe of Simplicial Types

• Note that USimp is not a sheaf.
• For the interpretation of USimp in [

op
, sSet] we have

JUSimpK(L) ' ShU ( /L) ' U
op

/NL naturally in L, where L ∈ , and U is an ambient
Grothendieck universe.

• The semantic description of USimp entails JUsSpaceK ' i∗JUSimpK,
i.e. JUSimpK ' i∗JUsSpaceK.

• Thus, we have Simp :≡ UsSpace ' simp USimp, so our “top-level universe” in simplicial
types is in fact obtained by sheafifying the canonical universe USimp (which itself is just a
cubical type rather than a simplicial type).



Subuniverses of UsSpace

• Semantically, the universe Cat should classify Rezk spaces, and its space of n-simplices
should be the space of cocartesian fibrations over

n
that are JUK-small,i.e. have

JUK-small fibers.
• Similarly, the universe Space should classify discrete, i.e. groupoid-like simplicial spaces,

so the n-simplices are given by left fibrations over
n

with JUK-small fibers.
• We define Cat and Space by means of the amazing right adjoint of �1 → −.



Cocartesian Families

We define a synthetic analogue of cocartesian fibrations:

Let B be a type and P : B → U .

Assume b, b′ ∈ B, u : homB(b, b′), and e : P b, e′ : P b′.

An arrow f : dhomX,u(e, e′) is a P -cocartesian arrow iff

isCocartArrP f :≡ Πb′′:BΠv:homB(b′,b′′)Πe′′:P b′′Πh:dhomP,v◦u(e,e′′)

isContr
(
Σg:homP,v(e′,e′′)g ◦ f = h

)
. 1

We call P : B → U a cocartesian family if

isCocartFamP :≡ Πb,b′:BΠu:homB(b,b′)Πe:P bΣe′:P b′Σf :dhomP,u
isCocartArrP f

1Here, composition is to be understood as dependent composition in the sense of [RS17], Rem. 8.11., where the
subsequent arrow is “non-dependent”, i.e. over an identity.



Properties of Cocartesian Families

In the ensuing type theory, one can show that:
• Cocartesian families are closed under change of base.
• A family P : B → U is covariant (in the sense of Riehl–Shulman [RS17]) if and only if it is

cocartesian and Πb:B isDisc(P b).



The Simplicial Universe of Rezk Types

• Let P : �1 → U , e : P 0, e′ : P 1. An arrow f : dhomP,→(e, e′) is a P -cocartesian arrow iff

Πe′′:P 1Πh:dhomP,→(e,e′′) isContr
(
Σg:homP 1(e′,e′′)g ◦ f = h

)
.

• Let→: hom�1(0, 1) denote the walking arrow. We define Ccocart : (�1 → U)→ U by

Ccocart P :≡ Πe:P 0Σe′:P 1Σf :dhomP,→(e,e′)isCocartArrP f ' isCocartFamP.

• Write
√

(−) for the right adjoint to (�1 → −).
• The map Ccocart : (�1 → U)→ U has an adjunct C ′cocart : U →

√
U .

• After [LOPS18], we define Cat :≡ ΣA:SimpΣe:
√
Upt
C ′cocartA =

√
(π1) e.



The Simplicial Universe of Discrete Types

• We call X : B → U a covariant family (after [RS17]) if

isCovFamX :≡ Πb,b′:BΠf :homB(b,b′)Πx:X b isContr
(
Σx′:X b′dhomX,f (x, x′)

)
.

• We define the family Ccov : (�1 → U)→ U by

Ccov X :≡ Πx:X 0 isContr
(
Σx′:X 1dhomX,→(x, x′)

)
' isCovFamX.

• Analogously to Cat, we define Space :≡ ΣA:SimpΣe:
√
UptC

′
cov A =

√
(π1) e.
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Perspectives

• Still some coherence problems proving Cat and Space to be a Rezk type.
• How do univalent 1-categories embed into Cat?
• Extend the type theory by modalities (such as op and core). More on this in Ulrik’s talk.
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