
Invertible Transformations of Types and Their
Applications to Security

(updated talk from Types 2018)
EU Types, Aarhus

Sergei Soloviev, IRIT, France
Jan Malalkhovski, IRIT, France, and ITMO University, Russia

09/10/2018

1

About this talk

This talk is an updated version of the talk presented at “Types 2018”:
We contibue to work on this topic.
To our mind, it deserves more discussion, and this workshop is a
more appropriate place than “general purpose” Types conference.

2

Recall: Isos, Autos, Retractions

As usual, t : A→ B, t−1 : B → A are mutually inverse
isomorphisms if t−1 ◦ t ≡ idA and t ◦ t−1 ≡ idB.
E.g., λz : B1 → (B2 → C).λx2 : B2.λx1 : B1.(zx1x2) is an
isomorphism from B1 → (B2 → C) to B2 → (B1 → C)

It works for different systems of Type Theory and λ-calculus.
An automorphism is an isomorphism t : A→ A.
Non-trivial automorphism
λz : B → (B → C).λx2 : B.λx1 : B.(zx1x2)

I.e., B1 = B2 above.

3

Isos, Autos, Retractions

Remark. If one-side invertibility is considered, we spek about
retractions:
in t : A→ B, t ′ : B → A where t ′ ◦ t = idA the terms t ′ is a
retraction, and t is a coretraction.
Example. (Adding fictive parameters.)

t = λy : C.λx : A.x : A→ (C → A)

z : C ` t ′ = λu : C → A.(uz) : (C → A)→ A

Of course it works with more arguments: A1 → ...→ Ak → A is a
retract to A1 → ...→ An → A (k ≤ n).

4

Isos, Autos, Retractions

For each type A the automorphisms A→ A form the group of
automorphisms Aut(A).
It may be seen as subcategory of the groupoid of isomorphisms .
i.e., the subcategory of the category of types and deductions - or
terms - with the same objects and only isomorphisms as
morphisms.
If we fix a type, we may consider also the groupoid Gr(A) of types
isomorphic to A.

5

Isos, Autos, Retractions

To distinguish: the isomorphism relation ∼ and the isomorphisms
as morphisms.
A ∼ B iff ∃t : A→ B.(t is an iso).
The equivalence class w.r.t ∼ of A may contain one element while
Aut(A) is non trivial: e.g., for X → (X → X) (X is a type variable).
Also, Aut(A) may be trivial (Aut(A) = {id}) while the
∼-equivalence class is non-trivial: e.g., for X → (Y → Z).
Remark. To describe retractions “globally” is a much more difficult
task.

6

Isos, Autos, Retractions

In type theories below the number of types isomorphic to A is finite, so
the groupoid may be represented by the diagram

A1

f2◦f−1
1 //

f−1
1

φ′1
��

A2
f1◦f−1

2

oo

f−1
2

��

φ′2
��

...
// Anoo

f−1
n

}}

φ′n
��

A

f1

``

f2

OO

fn

==

φ

MM

where A1, ...,An are all types that are isomorphic (but not equal) to A
(and to each other), fi , f−1

i denote the fixed isomorphisms and their
inverses, φ denotes an arbitrary automorphism of A and
φ′i = fi ◦ φ ◦ f−1

i (1 ≤ i ≤ n).
7

Isos, Autos, Retractions

If retractions are involved, the algebraic structures are less “nice”
but still (of course) there are some.
For example, there is the monoid of endomorphisms A→ A. Let
End(A) be this monoid.
If A0 is a retract of A, t : A0 → A, t ′ : A→ A0, there is also the
semigroup homomorphism End(A0)→ End(A) defined by
f 7→ t ◦ f ◦ t ′.
It is not a monoid homomorphism, id is not preserved.

8

Automorphism Groups

Second order λ-calculus without constants.
The types are now considered up to renaming of bound variables.
Simple types are included, and ∀.A denotes the universal closure
of any type A (quantification over all free variables).

Theorem
For every finite group G there exists a type AG in simply typed
λ-calculus such that the group Aut(∀.AG) is isomorphic to G.

Remark. The question about optimal presentation may be
considered separately.

9

Automorphism groups

In the case with dependent product (e.g., Z. Luo’s typed logical
framework LF) the universal quantification is modelled by
dependent product.
Instead of ∀X .B(X) we write (X : Type)B(X). We can obtain a
similar theorem: any finite group may be represented in LF .
The case of simply typed λ-calculus is rather more limited:

Theorem
The groups Aut(A) for simple types A are (up to isomorphism of
groups) exactly the groups that may be obtained from symmetric
groups by cartesian product and wreath product.

By an old Jordan’s theorem: exactly the groups of automorphisms
of finite trees. (Not C3 for example.)

10

Applications to Security

What may be the use of λ-terms, isomorphisms and
automorphisms in a security-oriented picture?
A general idea: lambda terms may be seen as derived
combinators. They may be used to create any program from more
elementary building blocks of code.
To use them “intelligently” to hide (and thus protect) the way how
the main program is built from these elementary blocks; if
necessary, even the specification may be hidden.
Isos and autos to encrypt and decrypt (invertibility).

11

Applications to Security

Consider some type S. The closed terms F : S represent
combinators that may take other terms as arguments.
Let f1÷n abbreviate f1, ..., fn.
If we take F ≡ λf1÷n : X → Xλx : X .(fσ(1)(...(fσ(n)x)...) (σ a
permutation of {1, ...,n}), and apply to some concrete φ1÷n, it will
combine them in any desired order. The φ1÷n themselves may be
even coding functions, as in [?].
If F ≡ λf1÷n : X → Xλx : X .fix then one of φ will be selected, etc.
If Φ ≡ λG : S.G : S → S, then we may first apply Φ to some
operator, like F above, and then “feed” φ′s (and x in the end).

12

Applications to Security

In this example λG : S.G belongs to λ1βη.
In λ2βη we may add a second-order λ and consider
Θ ≡ λX .λG : S.G.
In this way the type X also becomes one of controlled parameters,
for example it may be Nat , Bool or any other type.
If dependent types are admitted, the type X itself may depend on
terms as parameters.
Remark. If we want to use terms (isos, autos) to encrypt, we
encrypt programs, not texts, and all remains well-typed.
What happens if we add inductive types? For example, Nat?

13

Applications to Security

The recursion operator from Nat to some type A is of the type
A→ (Nat → A→ A)→ Nat → A.
For example, we may take A = (B → B)→ (B → B)

and define the iteration operator on the functional space B → B:
J(n) : f 7→ f n.
Only J(1) will be an automorphism. It opens a way to “inject”
ordinary cryptographic protocols (based on number theory) into
Type Theory.
But more direct way is possible as well.

14

ElGamal with Autos

Illustration: ElGamal cryptosystem (cf. [4, 5]).
The protocol may use the iterations of a distinguished
automorphism g : A→ A, where gm is g ◦ ... ◦ g (m times).
Private Key: m,m ∈ N. Public Key: g and gm.
Encryption. To send a message a : A (in our approach it is not a
plain text, but an element of type A, and may have more complex
structure) Bob computes gr and gmr for a random r ∈ N. The
ciphertext is (gr ,gmr a).
Decryption. Alice knows m, so if she receives the ciphertext
(gr ,gmr a), she computes gmr from gr , then (gmr)−1, and then
computes a from gmr a.

15

ElGamal with Autos

Remark.We do not consider here the cryptosystems like MOR
based on a more sophisticated group theory [5] but they, too, can
be represented in type theory using the results of [6].
By encoding a finite cyclic group of prime order as a group of
automorphism of some type we can implement ElGamal (or any
other cryptographic protocol based on finite groups) since the
composition and inverse of type automorphisms (represented by
finite hereditary permutations [2]) can be computed in linear time.
However to encode a finite cyclic group is not the only possibility.
The maximal period of an element in the group Aut(A) may be
quite high, and this can be exploited.

16

ElGamal with Autos

Let us recall that the longest period in the symmetric group Sn is
given by Landau function ∼ n

√
n.

It corresponds to Aut(a→ ...→ a→ p). This gives an idea of the
length of the periods of automorphisms f ∈ Aut(A).
Clearly, type-based implementations are going to be less efficient
than an equivalent long integer-based ones which would make
them less desirable for conventional applications. But that alone
can make them more desirable for other uses like proof-of-work
algorithms.
Also of note is the fact that the above encryption scheme
preserves the structure of a : A. Which, for instance, means that
Alice needs not typecheck the decrypted a if she trusts Bob to
typecheck his.

17

Other Possibilities

The type S of the combinator F may have many automorphisms
which form a subset of all possible isomorphisms to/from this type.
Automorphisms do not change the types of parameters (taken in a
fixed order). So, if an automorphism θ of S is applied to F , the
application θ(F) to t1÷n is valid iff the application Ft1÷n is valid.
In difference from automorphisms, an action of an isomorphism θ′

may make invalid the application θ′(F)t1÷n.
This fact may be exploited to detect code transformations
performed by third-parties or to execute zero-knowledge proof
protocols if the distinctions between some type variables remain
hidden from external observers.
Retractions may be used to hide relevant parameters and create
situations when more automorphisms exist.

18

Erasures and Finite Hereditary Permutations

There is a fundamental theorem by Dezani-Ciancaglini that
βη-invertible terms in the untyped λ-calculus are exactly the finite
hereditary permutations (f.h.p.):
and f.h.p. is defined recursively as the term

λz.λxσ(1)÷σ(n).ut1÷n

where λxi .ti also are f.h.p.’s.
Based on this theorem, it is possible to show that t : A→ B is an
isomorphism iff its erasure is an f.h.p.
Similar fact was established by Soloviev in [6] for Luo’s LF with
dependent product.
This property has still to be explored, however, in the security
context.

19

Erasures and Finite Hereditary Permutations

A very interesting point is, however, what is the minimal
information to be known needed to restore f with types.
And what will be the complexity?
In case of simply typed λ-calculus it is enough to know one of the
types A, B and we may restore f types in f with low (linear)
complexity.
The same happens in the second order system.
Theorem. If one of two types A,B is known and it is known, that
an f.h.p. is the erasure e(f) of some type isomorphism f : A→ B
then f can be reconstructed.
Remark. The proof goes by structural induction on types and in
fact the assumption which type is known has to be alternated.

20

Erasures and Finite Hereditary Permutations

In case of dependent types the situation is more complicated
(from the complexity point of view).
This is because partial reconstruction influences the types.
For example we consider the erasure λzx ′y ′.zt1t2 and the type of
z is given: (x : A)(y : B(x))C.
Then the type of t1 has to be A, by induction we reconstruct the
typed form of t ′1 of t1 before erasure. Only then we can see that
the type of t2 is B(t ′1(x ′)) where x ′ : A′ (A′ isomorphic to A). Then
we can proceed.

21

Relative Sizes

Size of a ∼-equivalence class (recurrent formula).
Let A = A1 → ...→ An → p.
Some Ai may be isomorphic, some not, let there be “subclasses”
(intersections with A1, ...,An) with k1,..., km elements;
n = k1 + ...+ km.
Let ni be the full size of the i-th class.
The size of the ∼-equivalence class of A is

n!

k1!...km!
nk1

1 ...n
km
m .

22

Relative Sizes

For each A(i) ∼ A we may fix an isomorphism fi : A→ A(i)

A(1) ... A(i)

... A

f1
aa

fi
==

fk}} fj !!

...

A(k) ... A(j)

and any other isomorphism A→ A(i) may be obtained as composition
with some automorphism A→ A. As consequence, the number of
isomorphisms A→ ... is given by

|Aut(A)| · n!

k1!...km!
nk1

1 ...n
km
m

23

Conclusion

Many questions must be solved to make practical the ideas
outlined in this paper. The precise communications protocols
should be elaborated that would make use of the distinction
between iso- and automorphisms, public and private type
information.
The complexity of algorithms (for example, for reconstruction of
typed isomorphisms from erasure) needs to be investigated much
more precisely.
Still, we believe that the use of type theory and λ-calculus as a
higher-level formal language for data protection (especially
software protection) and detection of attacks has good
perspectives and must be developed further.

THANKS FOR YOUR ATTENTION!

24

References

Barendregt, H. (1984) The Lambda Calculus; Its Syntax and
Semantics. North-Holland Plc.

Di Cosmo, R. (1995) Isomorphisms of types: from lambda-calculus
to information retrieval and language design. Birkhauser.

Heather, J., Lowe, G., and Schneider, S. (2003) How to prevent
type flaw attacks on security protocols. J. of Computer Security,
11(2), 217-244.

Hoffstein, J., Pipher, J. and Silverman, J.H. (2008) An introduction
to mathematical cryptography. Springer, New York, 2008.

Mahalanobis, A. (2015) The MOR cryptosystem and finite
p-groups. Contemp. Math., 633, 81-95.

Soloviev, S. (2018) Automorphisms of Types in Certain Type
Theories and Representation of Finite Groups. To appear in Math.
Structures in Computer Science.

25

