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Motivation

Talk by Ahrens/Maggesi (TYPES2018):

I Goal: general notion of signature of type theory.

I Empty signatures: categories with families

I CWFs form a bicategory (objects+morphisms+morphisms
between morphisms)

Bicategory theory as a framework to study type theory
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Motivation

Talk by Frumin/Geuvers/Van der Weide (TYPES2018).

I Goal: compare groupoids and 1-types (use HITs in groupoids
to find HITs in 1-types)

I Groupoids and 1-types are models of type theory

I They also form bicategories and there is a biequivalence
between them

Bicategories as models of higher type theory
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This Talk

This talk: study bicategories in more detail using HoTT.
It’s a formalization in Coq using the HoTT library.
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What is a bicategory?
From Categories to Bicategories

The notion of bicategories is the weak version of the
categorification of the notion of categories.

Definition (Category)

A category consists of

I A type C0 of objects;

I For all S ,T : C0 a set C1(S ,T ) of arrows from S to T ;

I For all X : C0 an element id1 X : C1(X ,X );

I For all objects X ,Y ,Z : C0 an function
· : C1(Y ,Z )× C1(X ,Y )→ C1(X ,Z )

such that the operation · is associative and id1 X is the left unit
and right unit for ·.
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What is a bicategory?
Categorification

Step 1: replace sets by categories, functions by functors

Definition (Preliminary Definition)

An almost-bicategory consists of

I A collection C0 of objects;

I For all S ,T ∈ C0 a category C1(S ,T ) of arrows from S to T ;

I For all X : C0 an object id1 : C1(X ,X );

I For all objects X ,Y ,Z ∈ C0 an functor
· : C1(Y ,Z )× C1(X ,Y )→ C1(X ,Z )

such that the operation · is associative and id1 X is the left unit
and right unit for ·.
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What is a bicategory?
Weakening

Step 2: weakening.
Laws become natural transformations, which satisfy coherencies.
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What is a bicategory?
Structure

Definition (Bicategory)

A bicategory consists of

I A collection C0 of objects;

I For all S ,T ∈ C0 a category C1(S ,T ) of arrows from S to T ;

I For all X : C0 an object id1 X : C1(X ,X );

I For all objects X ,Y ,Z ∈ C0 a functor
· : C1(Y ,Z )× C1(X ,Y )→ C1(X ,Z )

I For all X ,Y ∈ C0 a natural isomorphism λ (left unitor) from
the functor f 7→ id1 Y · f to the identity on C1(X ,Y )

I For all X ,Y ∈ C0 a natural isomorphism ρ (right unitor) from
the functor f 7→ f · id1 X to the identity on C1(X ,Y )

I For all X ,Y ,Z ∈ C0 a natural isomorphism α (associator)
from the functor (f , g , h) 7→ (f · g) · h to (f , g , h) 7→ f · (g · h)
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What is a bicategory?
Some notation needed for the properties

Before giving the properties, we need some notation

I 0-cell: element of C0;

I 1-cell from X to Y : object in C1(X ,Y );

X
f // Y

I 2-cell from f , g : C1(X ,Y ): arrow in C1(X ,Y ) from f to g ;

X

f

''

g

77 Yβ

��
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What is a bicategory?
Some notation needed for the properties

I For X : C0, we have a 1-cell

X
id1 X

// X

I For f : X → Y , we have a 2-cell

X

f

''

f

77 Yid2 f
��

I Composition of 1-cells: g · f (object part of ·);

X
f // Y

g
// Z
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What is a bicategory?
Some notation needed for the properties

I Vertical composition: composition in C1(X ,Y )

X

f

##
//

h

;; Y
β
��
γ
��

gives a 2-cell γ ◦ β : f ⇒ h.

I Horizontal composition of 2-cells: morphism part of ·

X

f1

''

f2

77 Y

g1

''

g2

77 Zβ

��
γ

��

gives a 2-cell γ ∗ β : g1 · f1 ⇒ g2 · f2;
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What is a bicategory?
Properties (coherencies)

How can we make a transformation from (g , f ) 7→ (g · id1 Y ) · f to
(g , f ) 7→ g · f ?

(g · id1 Y ) · f

ρ∗(id2 f ) "*

α +3 g · (id1 Y · f )

(id2 g)∗λt|
g · f

The triangle coherency says this diagram commutes.

Similarly, we can write down the pentagon coherency.
There are two ways to make a transformation from
(k , h, g , f ) 7→ ((k · h) · g) · f to (k , h, g , f ) 7→ k · (h · (g · f )).
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Examples of bicategories

Structured categories:

I Categories with functors and natural transformations;

I Groupoids with functors and natural transformations;

I CWFs (Ahrens/Maggesi).

From HoTT:

I 1-Types with functions and paths between functions;

I Every 2-type is a bicategory.

Interesting, but not formalized:

I Terms in typed lambda calculus are types, the 1-cells are
terms of type A→ B, and the 2-cells are reductions.
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Variations: locally strict bicategories

Definition (HoTT Book)

A category C is strict if C0 is a set.

Definition
A locally strict bicategory is a bicategory C for which each
C1(X ,Y ) is a strict category.
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Variations: locally univalent bicategories

Definition (HoTT Book)

For each category C and X ,Y ∈ C0 we have a map
idtoiso : X = Y → X ∼= Y .
Equal objects are isomorphic

Definition (HoTT Book)

A category C is univalent if idtoiso is an equivalence.
Isomorphic objects are equal

Definition
A locally univalent bicategory is a bicategory C for which each
C1(X ,Y ) is a univalent category.
Isomorphic 1-cells are equal
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HoTT vs Math: Strictness as a Structure

Definition (Strict Bicategory)

A bicategory C has a strictness structure if we can find paths

I ` : id1 Y · f = f

I r : g · id1 X = g

I a : (h · g) · f = h · (g · f )

such that

I λ = idtoiso `

I ρ = idtoiso r

I α = idtoiso a

I (coherencies similar to triangles and pentagon)

HoTT is proof-relevant, so this is a structure.
If C is locally strict or locally univalent, then having a strictness
structure is a mere proposition.
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Towards Univalent Bicategories: Equivalences

Definition (Equivalence)

Given a bicategory C with X ,Y : C0.
Then a map ` : C1(X ,Y ) is an equivalence if there is

I r : C1(Y ,X )

I An isomorphism ε in C1(X ,X ) from id1 X to r · `
I An isomorphism η in C1(Y ,Y ) from ` · r to id1 Y
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Towards Univalent Bicategories: Adjoint Equivalences

Definition (Adjoint Equivalence)

Given a bicategory C with X ,Y : C0.
An equivalence (l , r , ε, η) is an adjoint equivalence if the maps

`
ρ−1
+3 ` · id1 X

`∗ε +3 ` · (r · `) α−1
+3 (` · r) · ` η∗` +3 id1 Y · l λ +3 `

r
λ−1
+3 id1 X · r ε∗r +3 (r · `) · r α +3 r · (` · r)

r∗η +3 r · id1 Y
ρ +3 r

are identities.
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What’s so nice about adjoint equivalences?

Being an equivalence is not a property.
The inverse of an adjoint equivalence is unique up to isomorphism.

Proposition

If C is locally univalent, then being an adjoint equivalence is a
mere proposition.
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HoTT vs Math: Univalent Bicategories

Definition
For all objects X ,Y : C0 we have a map
idtoadjequiv : X = Y → X ' Y .
Equal objects are adjoint equivalent

Definition
A bicategory is univalent if

I it is locally univalent;

I the map idtoadjequiv is an equivalence.

Adjoint equivalent objects are equal
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Morphisms of Bicategories

The notion of pseudofunctors is the weak version of the
categorification of the notion of functors.

Definition (Functor)

Given categories C and D. A functor F : C → D consists of

I A map F0 : C0 → D0;

I For all X ,Y : C0 a function F1 : C1(X ,Y )→ D1(F0 X ,F0 Y );

such that F1(id1 X ) = id1(F0 X ) and F1(g · f ) = F1 g · F1 f .
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Categorification

Step 1: categorification

Definition (Preliminary Definition)

Given bicategories C and D. A semi-pseudofunctor F : C → D
consists of

I A map F0 : C0 → D0;

I For all X ,Y : C0 a functor F1 : C1(X ,Y )→ D1(F0 X ,F0 Y );

such that F1(id1 X ) = id1(F0 X ) and F1(g · f ) = F1 g · F1 f .
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From Functors to Pseudofunctors

Step 2: weaken it, laws as natural isomorphisms

Definition (Pseudofunctor)

Given bicategories C,D, a pseudofunctor F : C → D consists of

I A map F0 : C0 → D0;

I For all X ,Y : C0 a functor F1 : C1(X ,Y )→ D1(F0 X ,F0 Y );

I A isomorphism Fu between the 1-cells F1(id1 X ) to id1(F0 X );

I A natural isomorphism Fc from (f , g) 7→ F1(g · f ) to
(f , g) 7→ F1 g · F1 f .

such that (some coherencies).
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Rezk Completion/Coherence Theorem

Theorem
If C is locally strict, then there is a bicategory D and a
pseudofunctor F : C → D such that

I D is locally strict and it has a strictness structure;

I F0 is surjective;

I F1 is an equivalence.

Conjecture

If C is locally univalent, then there is a bicategory D and a
pseudofunctor F : C → D such that

I D is univalent;

I F0 is surjective;

I F1 is an equivalence.
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Summary

We formalized:

I Basic notions in bicategory theory;

I Biadjunctions, biadjoint equivalence, and the biadjoint
equivalence between 1-types and univalent groupoids;

I The Yoneda lemma and the Rezk completion (locally strict).

Still remaining:

I If D is univalent, then the bicategory of functors from C to D
is univalent;

I The Rezk completion for locally univalent bicategories.

See https://github.com/nmvdw/groupoids.
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Pentagon Coherency

(k · h) · (g · f )

α

((

((k · h) · g) · f

α
66

α∗f
��

k · (h · (g · f ))

(k · (h · g)) · f α
// k · ((h · g) · f )

k∗α

OO
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Left Unit Coherency for Pseudofunctors

id1 (F0 Y ) · F1 f

λ
��

Fu∗F1 f // F (id1 Y ) · F1 f

Fc

��

F1f F1(id1 Y · f )
F2 λ

oo
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Right Unit Coherency for Pseudofunctors

F1 f · id1 (F0 X )

ρ

��

F1 f ∗Fu // F1 f · F (id1 X )

Fc

��

F1f F1(f · id1 X )
F2 ρ

oo
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Associativity Coherency for Pseudofunctors

(F1 h · F1 g) · F1 f α //

Fc∗F1 f
��

F1 h · (F1 g · F1 f )

F1 h∗Fc

��

F1(h · f ) · F1 f

Fc

��

F1 h · F1(g · f )

Fc

��

F1((h · g) · f )
F2 α

// F1(h · (g · f ))
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Coherencies for Strictness Structures

I Triangle coherency

ap (λz , z · f ) (r g) = a g (id1 Y ) f @ ap (λz , g · z) (l f )

I Pentagon coherency

a (k · h) g f @ a k h (g · f )

=

ap (λz , z · f ) (a k h g) @ a k (h · g) f @ ap (λz .k · z) (a h g f )
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