
Precise reasoning about resources
in an affine separation logic

Aleš Bizjak
(Lars Birkedal, Daniel Gratzer, and Robbert Krebbers)

October 9, 2018

Aarhus University



A primer on separation logic



Separation logic

{P} e {v.Q} { P︸︷︷︸
assertion} e { v.Q︸︷︷︸

assertion}︸ ︷︷ ︸
specification/Hoare triple

• An extension of Hoare logic particularly well suited for
verification of heap manipulating programs.

• Now extended to richer languages (concurrency,
higher-order functions, general references, …).

• Enables concise and modular specifications via the
separating conjunction ∗.

1



Assertions

• Primitive points-to assertion:

ℓ ↪→ v

describes the singleton heap fragment with location ℓ.

• The assertion P ∗ Q describes those heap fragments h
which can be decomposed as h = h1 · h2 with h1 ∈ P and
h2 ∈ Q.

• For example
ℓ1 ↪→ 1 ∗ ℓ2 ↪→ 2

describes heap fragments with two distinct locations ℓ1
and ℓ2.

2



Specifications

• Specifications describe properties of programs.

• The meaning of {P} e {v.Q} is approximately
• if e is run in a state satisfying P

• and it terminates with value v

• then the end state satisfies Q(v).

• The key structural rule is the frame rule:

{P} e {v.Q}
{P ∗ R} e {v.Q ∗ R}

• This rule is the key to small footprint specifications.

3



Sample specifications

hoare-alloc

{Emp} ref(v) {ℓ.ℓ ↪→ v}

hoare-free

{ℓ ↪→ v} free(ℓ) {_.Emp}

hoare-load

{ℓ ↪→ v} ! ℓ {u.u = v ∧ ℓ ↪→ v}

hoare-store

{ℓ ↪→ v} ℓ← u {_.ℓ ↪→ u}

hoare-seq
{P} e1 {_.Q} {Q} e2 {v.R}

{P} e1; e2 {v.R}
.

hoare-csq
⊢ P1 ⇒ P2 {P2} e {v.Q2} ⊢ ∀v,Q2(v)⇒ Q1(v)

{P1} e {v.Q1}
4



The assertion logic

The assertion logic has all the usual logical connectives,
∀, ∃,∧,∨, . . ., and additionally:

• separating conjuction ∗

• the Emp assertion (unit for the separating conjunction).

These satisfy (in particular) the following axioms:

P ∗ Emp ⊣⊢ P P ∗ Q ⊣⊢ Q ∗ P P ∗ (Q ∗ R) ⊣⊢ (P ∗ Q) ∗ R

P ∗ (Q ∨ R) ⊣⊢ P ∗ Q ∨ P ∗ R
· · ·

5



Affine logic

The weakening axiom
A separation logic is affine if for all assertions P,Q we have

P ∗ Q ⊢ P.

One can think of “forgetting” the resource Q, e.g.,

ℓ1 ↪→ 1 ∗ ℓ2 ↪→ 2 ⊢ ℓ1 ↪→ 1

can be seen as forgetting that the heap contains location ℓ2.

6



On weakening

• Weakening allows us to “leak resources”, i.e., we can prove
specifications such as

{ℓ ↪→ 1} skip {_.Emp}

by using
ℓ ↪→ 1 ⊢ Emp ∗ ℓ ↪→ 1 ⊢ Emp.

• As a consequence the triple

{Emp} e {_.Emp}

cannot guarantee that the program does not leak memory,
e.g.,

{Emp} ref(3); skip {_.Emp}

• It is sometimes useful to have weakening when we do not
want to reason about resources precisely.

7



On weakening

Originally two variants of separation logic.

• Affine (“intuitionistic”) for reasoning about garbage
collected languages.

• Linear (“classical”) for reasoning about languages with
explicit memory reclamation.

• In a linear separation logic

{Emp} e {_.Emp}

typically guarantees that all allocated memory is freed
before the program terminates.

8



On weakening

• Recent concurrent separation logics for reasoning about
fork-style concurrency are all affine.

• The main reason is it is unclear how to have general
enough sharing mechanisms in a linear logic.

• Existing sharing mechanisms can leak resources.

9



In this talk

• We show how to ensure memory reclamation in an affine
separation logic.

• The solution extends to ensuring that a program which
delegates memory reclamation to a background thread
does not leak memory.

10



Two models, and a third



The modelM1: assertion logic

• Assertions are modelled as arbitrary subsets of heap
fragments, JPK ∈ P(H)

• The points-to assertion denotes the singleton set.

Jℓ ↪→ vK = {h | dom(h) = {ℓ} and h(ℓ) = v}

• The Emp assertion contains only the empty heap fragment.

JEmpK = {h | dom(h) = ∅} .

• Separating conjunction combines the heap fragments.

JP ∗ QK = {h | ∃h1 ∈ JPK ,h2 ∈ JQK ,h = h1 · h2}

• This model does not validate weakening since

Jℓ ↪→ 1K ̸⊆ JEmpK .
11



The modelM1: specification logic

The meaning of the specification {P} e {v.Q} is approximately

• for any heap fragment h ∈ JPK and any disjoint heap
fragment h′

• running e in the heap h · h′ is safe and

• if the program terminates with value v and heap h1 then
h1 = h′1 · h′ for some h′1 ∈ JQ(v)K.

Thus the meaning of the specification

{Emp} e {_.Emp}

is that if the program starts in heap h′ then

• it does not fault (is safe) and

• if it terminates the end heap is h′.
12



Properties ofM1

This variant of the logic is very good for reasoning about a
language with explicit memory management.

But it is sometimes too precise

• for a garbage collected language

• or when we don’t care about specifying memory
management, but only care about functional correctness

• or when there are other resources (e.g., ghost state).

In a garbage collected language we would like

{ℓ ↪→ v} skip {_.Emp}

so we can “forget” ownership of locations.

13



The modelM2: assertion logic

• Assertions are modelled as upwards closed subsets of
heap fragments, JPK ∈ P↑ (H)

• Upwards closure is with respect to extension order.

h1 ≤ h2 ⇐⇒ ∃hf,h1 · hf = h2.

• The points-to assertion now denotes the set of all heaps
containing that particular location.

Jℓ ↪→ vK = {h | dom(h) ⊇ {ℓ} and h(ℓ) = v}

• The Emp assertion contains not only the empty heap
fragment, but all heap fragments.

JEmpK = H = JTrueK
• Separating conjunction as before. 14



The modelM2: weakening

• This model validates weakening since if h ∈ JP ∗ QK then
there exist

• h1 ∈ JPK and
• h2 ∈ JQK such that

• h = h1 · h2.

Hence h1 ≤ h and thus h ∈ JPK.
• There is no assertion satisfied only by the empty heap
fragment ε.

• Indeed, any heap fragment h′ satisfies ε ≤ h′.

• Thus if ε ∈ JPK then JPK = H.
15



The modelM2: specification logic

The meaning of the specification {P} e {v.Q} is as before.

• for any heap fragment h ∈ JPK and any disjoint heap
fragment h′

• running e in the heap h · h′ is safe and

• if the program terminates with value v and heap h1 then
h1 = h′1 · h′ for some h′1 ∈ JQ(v)K.

However now the specification

{Emp} e {_.Emp}

means simply that if e starts in some heap h · hf

• it does not fault (is safe) and

• if it terminates the end heap is h′ · hf for some h′
16



The modelM3: a more precise affine model

• For the simple sequential language there is no need for
the extension we are about to describe.

• However it is easiest to understand the extension in this
simplified setting.

• The model (and the corresponding logic) we construct is
affine.

• And it can still be used to guarantee that memory is
correctly managed.

• It achieves this with only a modicum of additional
bookkeeping.

17



The logic ofM3

• The new assertions ℓ ↪→π v and eπ satisfy:
emp-split
eπ1 ∗ eπ2 ⊣⊢ eπ1+π2

pt-split
ℓ ↪→π1 v ∗ eπ2 ⊣⊢ ℓ ↪→π1+π2 v

pt-disj
ℓ1 ↪→π1 v1 ∗ ℓ2 ↪→π2 v2 ⊢ ℓ1 ̸= ℓ2

• eπ can be thought of as “permission” to allocate.

• And the specifications of the basic operations are

hoare-alloc
{eπ} ref(v) {ℓ. ℓ ↪→π v}

hoare-free
{ℓ ↪→π v} free(ℓ) {eπ}

hoare-load
{ℓ ↪→π v} ! ℓ {w.w = v ∧ ℓ ↪→π v}

hoare-store
{ℓ ↪→π v} ℓ← u {ℓ ↪→π u}

18



The logic ofM3

• The splitting properties emp-split and pt-split allow us to,
e.g., derive

{eπ} (ref(v1), ref(v2)) {(ℓ1, ℓ2).ℓ1 ↪→π
2
v1 ∗ ℓ2 ↪→π

2
v2}

• The fraction is used to keep track of weakening.

• In this logic the following triple is derivable for any π.

{ℓ ↪→π v} skip {_.Emp}

• However if we forget a points-to like this then this will be
visible in the specification.

19



Examples and nonexamples

• The following specification is not possible

{eπ} ref(3); skip {_.eπ}.

• We can only show

{eπ} ref(3); skip {_.eπ′}.

for some (in fact all) π′ < π.

• However if we free the allocated location then we get back
the full eπ .

{eπ} let ℓ = ref (3) in free(ℓ) {_.eπ}

Is derivable.

20



The modelM3

Let M be the partial commutative monoid with carrier

{ε}+ (0, 1]×H.

ε is defined to be the unit, and otherwise the operation is

(π1,h1) · (π2,h2) = (π1 + π2,h1 · h2)

if π1 + π2 ≤ 1 and h1 · h2 are both defined.

• Assertions are modelled as upwards closed subsets of M,

JPK ∈ P↑ (M)

• Upwards closure is again with respect to extension order.

m1 ≤ m2 ⇐⇒ ∃mf,m1 ·mf = m2.

21



The modelM3

• The points-to assertion is modelled as the up-closure of
the set

Jℓ ↪→π vK = ↑{(π,h) | dom(h) = {ℓ} and h(ℓ) = v}.

• Concretely

Jℓ ↪→1 vK = {(1,h) | dom(h) = {ℓ} and h(ℓ) = v}

is the singleton set.

• For π < 1 the set Jℓ ↪→π vK also contains pairs (π′,h) with
π′ > π, dom(h) ⊇ {ℓ} and h(ℓ) = v.

22



The modelM3

• The eπ assertion is modelled as.

JeπK = ↑{(π, ε)}
• Concretely Je1K = {(1, ε)}
• For π < 1 the assertion JeπK also contains all pairs (π′,h)
with π′ > π.

23



The modelM3

The Emp and separating conjunction are modelled as inM2.

• The Emp assertion contains all elements of the monoid
(this enables weakening).

JEmpK = M = JTrueK
• Separating conjunction combines the elements as before.

JP ∗ QK = {m | ∃m1 ∈ JPK ,m2 ∈ JQK ,m = m1 ·m2}

24



The specification logic ofM3

The meaning of the specification {P} e {v.Q} needs to take into
account the fractions. It is approximately:

• for any (π,h) ∈ JPK and any disjoint element m ∈M.
Suppose (π,h) ·m = (π′,h′).

• running e in the heap h′ is safe and

• if the program terminates with value v and heap h1 then
there exists m′ ∈ JQ(v)K and a fraction π1 such that
m′ ·m = (π1,h1).

25



The specification logic ofM3

In particular from the specification

{eπ} e {_.eπ}

we can derive that if we run e in heap h then

• e does not fault and

• if it terminates the end heap is h.

The crucial ingredient in this proof is the fact that the fraction
π in the pre- and post-conditions is the same.

26



Recap

• In a linear logic we can reason about resources very
precisely.

• Admitting weakening we lose this ability. We can no longer
guarantee absence of resources.

• However adding a small amount of annotations to keep
track of weakening we regain the ability to reason about
resources precisely.

27



Concurrent separation logic



Concurrent separation logic

• We are interested in reasoning in a language with
concurrency.

• In particular fork {} concurrency.

• Now a program is a set of threads running in parallel.

• Threads communicate through shared memory.

• The fork {e} construct creates a new thread which
executes the program e.

28



Example

let flag = ref (false) in
fork {flag← true} ;
if ! flag then 0 else 1

The result of this program can be either 0 or 1, depending on
the scheduler.

29



Thread local reasoning

• In the logic we want to reason locally.

• In the triple
{P} e {v.Q}

e is a single term.

• This enables modular specifications (we don’t need to
know how many or what other threads are running).

• Separating conjunction is used to split resources between
threads, e.g.,

{P1} e1 {_.Emp} {P2} e2 {v.Q2}

{P1 ∗ P2} fork {e1} ; e2 {v.Q2}

30



Sharing

• However simply splitting resources is not enough.

• Sometimes it is necessary to share resources, e.g., in

let flag = ref (false) in
fork {flag← true} ;
if ! flag then 0 else 1

the location flag is shared.

• This is achieved with invariants.

• These are special assertions P which can be duplicated.

• Their downside is that they can only be used in a
restricted way.

31



Invariants

• Invariants are duplicable

R ∗ R ⊣⊢ R

• Any assertion can be made into an invariant.

R ⊢ {P} e {w.Q}
{P ∗ R} e {w.Q}

• The assertion in the invariant can be accessed in a
restricted way.

atomic(e) {P ∗ R} e {w.Q ∗ R}
R ⊢ {P} e {w.Q}

32



Example

To specify the program

let flag = ref (false) in
fork {flag← true} ;
if ! flag then 0 else 1

We would use the invariant

flag ↪→ true ∨ flag ↪→ false .

to give the specification

{Emp} e {v.v = 0 ∨ v = 1}.

Note that the invariant is needed because flag ↪→ b cannot be
split so that both threads can use the location.

33



Invariants allow us to leak resources

The following derivation is valid.

ℓ ↪→ v ⊢ {Emp} skip {_.Emp}
{ℓ ↪→ v} skip {_.Emp}

Hence the following triple is derivable

{ℓ ↪→ v} skip {_.Emp}.

Observation
None of the existing logics for reasoning about languages
with fork can guarantee correct memory management.

34



Iron



Iron

• Iron is a an extension of the Iris program logic that
ensures precise resource management.

• Iris is a state of the art program logic for reasoning about
imperative, concurrent, higher-order programs.

• It is an affine logic.

• It supports very general invariants.

• Used for verification of sophisticated fine-grained
concurrent algorithms.

• And as a meta-language for studies of type systems, etc.

• But unclear how to manage resources (e.g., memory)
precisely.

35



Iron

Key points
In Iron we can reason about resources precisely using the
same idea as inM3.

At the same time we retain all the reasoning facilities of Iris,
including impredicative and higher-order invariants.

• The key idea is that if we transfer, e.g., a points-to to an
invariant we lose a degree of knowledge of it (i.e., lose a
fraction of π).

• Thus if we wish to guarantee there are no memory leaks
some thread must be in charge of disposing allocated
memory.

36



Meaning of specifications in Iron

In Iron the meaning of the specification

{eπ} e {_.eπ}

is approximately: if e starts in heap h then

• it is safe and

• if all the threads (that e spawns) have terminated, then
the resulting heap is h.

37



Example

The following example program can be given the specification

{eπ} ... {_.eπ}

let channel = ref (None) in
let rec receive() = match ! channel with

None ⇒ receive()

| Some data⇒ free(data); free(channel)
end in

fork {receive()} ;
let data = ref (57) in
channel← Some data

38



A more abstract view



Lifting the logic

• The Iron logic is expressive.

• And can be used to verify many intricate examples,
guaranteeing correct resource management.

• However the fraction accounting can be tedious.

• However for a lot of examples it can be abstracted away in
a uniform way.

• The key idea is that if B is a model of the assertion logic
then the set of all functions [0, 1]→ B is also a model of
the assertion logic.

39



Lifting the logical connectives

• Standard propositional connectives lift pointwise, e.g.,

(P ⇒̂ Q)(π) = P(π)⇒ Q(π).

• Separating conjunction also splits the fractions.

(P ∗̂ Q)(π) =
∨

π1+π2=π

P(π1) ∗ Q(π2).

• The points-to connective can be lifted (almost) pointwise.

(ℓ ↪̂→ v)(π) =

False if π = 0
ℓ ↪→π v otherwise

• The Emp assertion guarantees that the fraction is 0.

Êmp(π) =

Emp if π = 0
False otherwise

40



Lifting the specification logic

The Hoare triples can also be lifted “pointwise”.

{P} e {v.Q} =
∧
π

{P(π)} e {v.Q(π)}.

Theorem
Applying this construction toM3 we recover all the rules and
guarantees ofM1.

Moreover there is a large class of invariants which can be used
in the lifted logic.

Thus most of the examples in Iron can be done in the lifted
logic, without any fraction accounting.

41



Formalization in Coq

42



Conclusion

• We showed how to reason about resources precisely in
presence of the weakening rule.

• The Iron logic is the first which is able to guarantee
absence of memory leaks in presence of fork {}.

• The idea of annotating assertions with fractions can also
be applied to other resources.

• For instance it can be used to guarantee correct lock
management, i.e., that they are released.

• For details see
Iron: Managing Obligations in Higher-Order Concurrent

Separation Logic
https://iris-project.org/pdfs/2018-iron.pdf

43

https://iris-project.org/pdfs/2018-iron.pdf

	A primer on separation logic
	Two models, and a third
	Concurrent separation logic
	Iron
	A more abstract view

