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Abstract. A vital step in formal protocol verification is the comparison of the externally visible
behaviour exhibited by a protocol (the protocol language) with that allowed by its service (the
service language). Sometimes, it is sufficient to check for language inclusion, which verifies that
the protocol language is contained within the service language, i.e. the protocol does not exhibit
behaviour that is not in its service. This is a specific instance of model checking a safety property,
where the service language becomes the safety property to check. However, it is important
to know also if all behaviour allowed by the service is exhibited by the protocol. Thus, the
problem becomes one of checking language equivalence, which cannot be formulated as safety
property. The Sweep-line method, designed to alleviate the problem of state explosion, was
recently extended to allow on-the-fly checking of language inclusion (safety properties). This
paper presents the genesis of a further extension to allow on-the-fly verification of language
equivalence.
Keywords: Language Equivalence, Sweep-line Method, State Space Explosion.

1 Introduction

This paper is motivated by the area of protocol verification [3]. Protocols should satisfy a set
of properties that encapsulate their desired behaviour, including the service that the protocol
should provide to its users. This is known as a service specification. Protocol verification in-
volves proving that a protocol does satisfy its specification. [3] provides a protocol verification
methodology that uses Coloured Petri Nets [16] for the specification of protocol behaviour.
The ‘verification’ part of protocol verification can be broken into two main activities. One
involves checking that a number of general properties hold for the protocol, such as verifying
the absence of undesired terminal states, dead transitions and livelocks. The other, which is
of interest to us here, involves checking that all sequences of user-observable actions of the
protocol conform to those given in the service specification. Here, the user-observable actions
are called service primitives, the set of allowable sequences of service primitives as given in
the service specification is called the service language, LS, and the set of sequences of service
primitives exhibited by the protocol is called the protocol language, LP .

Comparing the protocol and service languages implies a notion of language equivalence. As
an aside, as pointed out in [3], many notions of equivalence exist (van Glabbeek [13] pointed
out 155 in 1993), such as Valmari’s Chaos-Free Failures Divergences (CFFD) equivalence [24],
that take into account branching behaviour, which allow deadlock and livelock properties to
be preserved. However, these properties can be determined from the protocol’s Reachability
Graph, without reference to another specification. This is normally done first, as they are
fundamental to good protocol design. Once these basic properties are proved, then we con-
sider the more specific property of correct sequencing of service primitives. Hence language
equivalence is sufficient, as it is precisely the property of interest.
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We would like to ensure that both languages are equivalent, i.e. that they capture the same
set of sequences of user-observable events. This implies that all user-observable behaviour
exhibited by the protocol is allowed by the service (LP ⊆ LS) and that all behaviour defined
by the service is actually implemented in the protocol (LS ⊆ LP ). There are situations in
which the weaker notion of Language Inclusion (that LP ⊆ LS) is sufficient for protocol
verification, e.g. the Internet Open Trading Protocol [4] implemented an acceptable subset
of its service [22, 23], however the key in that situation was knowing what sequences in the
service language were missing from the protocol language, and determining what constituted
an acceptable subset of behaviour for the protocol.

Languages can be represented by automata. A common approach (e.g. [14,22]) for checking
LP = LS has involved representing the protocol and service languages as deterministic Finite
State Automata (FSA) [1] and using language comparison tools such as the FSM Library of
AT&T [8]. The protocol language FSA and service language FSA must both be ε-free and
deterministic in order to use the fsmequiv tool of [8]. We denote these DFSAP and DFSAS

respectively. DFSAP can be extracted from the Reachability Graph (RG) of the CPN model
of the protocol, by firstly defining a mapping from binding elements (arc labels) to service
primitives or epsilon (ε, the empty move), defining an initial state (usually the initial state of
the CPN model), and defining halt states (usually the terminal markings, as a minimum) [3].
ε removal and determinisation procedures [1,15] are then used to obtain a deterministic, ε-free
representation of the protocol language. Unless the service specification is exceedingly simple,
a CPN is often constructed in order to produce DFSAS in the same way.

The downside of this approach is that it requires the complete protocol RG to be generated
and in memory at one time. This can be problematic due to the well-known state explosion

problem [24]. Fortunately, it is usually possible to perform determinisation of automata on-
the-fly, e.g. [17,18] and is certainly possible for Finite State Automata.

The Sweep-line method [6,20] is a state space exploration technique that uses a notion of
progress within the system being modelled. The successful application of this method usually
involves defining a sensible progress mapping, ψ : M → V , a mapping from states to progress

values, V , that reflects the notion of progress within the system being modelled. The Sweep-
line’s algorithm explores states in a least-progress-first manner. The exploration algorithm
uses the progress mapping to determine when it is likely that particular states (those with
smaller progress values) will not be visited again in the future, and hence can usually be
safely deleted from memory. However, it is possible that the notion of progress captured by
the progress mapping may be violated, i.e. an arc in the reachability graph moves the system
from a state with a higher progress value to one with a lower progress value. This phenomenon
is known as regress, and the offending edge as a regress edge. The generalised algorithm given
in [20] is able to cope with this situation, at the cost of potentially exploring parts of the
state space more than once.

In [12] we extended the Sweep-line method with the ability to check safety properties on-
the-fly by performing an on-the-fly parallel composition of DFSAS (known a priori) and the
protocol RG, by mapping the RG to a FSA on-the-fly. (This was originally presented in [11] in
the context of protocol verification, for on-the-fly language inclusion checking.) In this paper
we present some preliminary steps toward extending the Sweep-line method for language
equivalence checking. Primarily, the contribution of this paper is to show how to combine the
Sweep-line method with on-the-fly determinisation, which may also have significance generally
in the model checking world beyond our intial application of language equivalence checking.
Section 2 gives some further motivation and background details of the extension of Sweep-line
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Fig. 1. Finite State Automata depicting (a) DFSAS, representing the service language, LS ; (b) DFSAS ,
representing the complement of LS ; (c) FSAP , representing the corresponding protocol language, LP ; and (d)
the parallel composition of DFSAS and FSAP .

to checking safety properties on-the-fly. Section 3 states our preliminary ideas for extending
this to language equivalence. Finally, Section 4 outlines areas of future work.

Due to length restrictions, we assume that the reader is familiar with the workings of the
Sweep-line method. Details can be found in [6,20].

2 Language Inclusion Checking with the Sweep-line Method

Model checking of safety properties is well known, e.g. [2,7,21,25]. All of these techniques use
automata to represent both the system and the safety property to check. Safety properties
deal only with finite behaviours [24], hence it was reasoned in [12] that Finite State Automata
(FSAs) [1] were adequate for this purpose. To verify a safety property on-the-fly with the
Sweep-line method, the method adopted in [12] was to compose [5,19] the FSA representations
of the system and the complement of the safety property.

For the sake of continuity with the ideas presented in Section 3, we shall use language
inclusion checking as an example of on-the-fly checking of a safety property. We give such an
example in Figure 1. Figure 1 (a) presents a simple service language comprising two sequences:
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LS = {Send Receive, Send Abort}. The deterministic FSA in Figure 1 (a) is DFSAS and the
set of service primitives is Send, Receive and Abort. The initial state is indicated by a bold
circle and the halt state by a double circle. Figure 1 (c) presents a FSA produced by applying
an appropriate mapping to the binding elements of the RG of an (erroneous) protocol, and
identifying the initial state (state 0) and halt states (in this case state 5). We denote this
FSA FSAP , representing the protocol language LP . Note that FSAP does not need to be
deterministic for language inclusion checking.

To check that language inclusion holds, we can check that no sequences in the protocol
language are contained in the complement of the service language, i.e. LS ∩ LP = ∅. Hence,
we derive the the FSA representation of the complement of the service language, DFSAS , as
shown in Figure 1 (b). The process of complementation relies on DFSAS being deterministic.
This complement is then composed (parallel composition) with FSAP (Figure 1 (c)) with the
result shown in Figure 1 (d), to obtain LS ∩LP . Essentially, the Sweep-line in [12] sweeps the
FSA in Figure 1 (d), so it is possible (likely) that not all of Figure 1 (d) will be in memory
at one time.

The parallel composition has an accepting state containing the Trap state of the service,
indicating erroneous behaviour on the part of the protocol. Hence LS ∩ LP #= ∅ and we have
detected that our protocol is erroneous. However, we have only checked LP ⊆ LS . Note that
the protocol does not exhibit the behaviour corresponding to the sequence Send Abort, so the
protocol may be erroneous in this sense also. This cannot be detected by checking language
inclusion only.

3 Toward On-the-Fly Language Equivalence Checking with the Sweep-line
Method

One solution to performing the additional check of LS ⊆ LP to verify language equivalence is
to compose the service language FSA with the complement of the deterministic protocol lan-
guage FSA. However, obtaining DFSAP from the RG of the protocol is not straightforward,
as often the RG is prohibitively large (hence our desire to apply the Sweep-line method). We
can overcome this by extending the Sweep-line method with on-the-fly determinisation and
complementation capabilities.

As a first step, we consider the situation in which progress increases monotonically, i.e.
there are no regress edges. The ability to cope with regress is discussed in Section 3.3. The ap-
proach we propose below is based on the Sweep-line exploration algorithm having explored all
states with a given (minimum) progress value and this fragment of RG having been mapped
to a FSA (easily done) before the process of determinisation, complementation and parallel
composition are undertaken for that fragment of FSA. Mapping the fragment of RG to a FSA,
complementation and parallel composition are not discussed below, as they are straightfor-
ward processes that can be applied on a state-by-state and arc-by-arc basis once we know
that the outgoing arcs of the states involved are deterministic. We hence limit our discussion
to the most critical step - on-the-fly determinisation. [1] advocates a two-step method for
determinisation: removing empty cycles and empty moves, then eliminating the remaining
nondeterminism. This technique is much more suited to on-the-fly determinisation than the
subset (power set) construction technique of [15], which requires power sets of states to be
generated - a procedure that is counterproductive to state space reduction. However, we dis-
cuss the possibility of applying subset construction with lazy subset evaluation in Section 4.
We illustrate our proposal with a series of RG snapshots.
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Fig. 2. (a) Epsilon cycles and empty moves within one progress level; and (b) after epsilon removal.

3.1 Removing Empty Moves

Figure 2 (a) presents two scenarios that are straightforwardly dealt with by the algorithms
in [1]. On the left is an empty cycle (states M1, M2, M3 and M4) and on the right is an
empty move from M to M ′ that is not part of a cycle. As is shown in Figure 2 (b), the states
forming the cycle are merged into Mm and the other empty move is eliminated by adding
appropriately labelled arcs from M to the successors of M ′ and deleting M ′. Although not
explicitly pictured in Figure 2, the algorithms in [1] cater for chains of ε-moves of arbitrary
length, and for situations in which a merged state has predecessors that were not directly
involved in the ε-removal process. The remaining examples in this paper can be extended in
a similar way.

Figure 3 (a) illustrates two situations in which empty moves involve states in two ‘progress
levels’. On the left is a situation in which the removal of the empty move originating at state
M1 results in a new arc being added that spans two progress values. Given that the successors
of M ′

1 would have already been calculated, M ′′

1 will be in memory, and hence removal of this
ε-move causes no problems. On the right is a less benign situation: the empty move from
state M2 corresponds to an increase in progress. In the normal course of events, the Sweep-line
method should delete all states with progress value x (once all such states have been explored).
However, this is not possible, as at this stage we cannot yet eliminate this ε move as we do
not know the successors of M ′

2. We would like to retain M2 in memory until the successors of
M ′

2 have been calculated. To do this, we introduce the notion of transient states: states that
should not be deleted immediately. Unlike the notion of a persistent state introduced in [20]
to cope with regress edges, a transient state need only be retained in memory until the ε-move
originating from it can be eliminated - it can be safely deleted at some point in the future.
The result of both of these situations is shown in Figure 3 (b), where the transient state is
indicated by a shaded circle. Transient states can be used for multiple successive ε-moves in
a chain spanning any number of progress levels.

3.2 Determinisation of Non-Empty Moves

When all ε-moves have been eliminated, with the exception of situations such as that depicted
at the right of Figure 3 (a), determinisation of the remaining non-ε moves can proceed.
Following the procedures of [1], this is done by the merging of states. Figure 4 (a) shows
two situations that are handled straightforwardly by these procedures. On the left is the
situation where two states, M ′

1 and M ′′

1 , are to be merged within the same progress level
as the originator, M1. On the right is the situation where two states, M ′

2 and M ′′

2 , are to be
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Fig. 5. (a) Nondeterminism of non-ε actions across two progress levels; and (b) marking states as transient to
allow this nondeterminism to be removed once successors of M2 are known.

merged in the same progress level, but which have a higher progress value than the originator,
M2. The result is shown in Figure 4 (b).

Figure 5 depicts a situation where merging of states occurs across two progress levels. In
Figure 5 (a) ψ(M1) = x but ψ(M2) = x + c. In this situation, it is not possible to merge M1

and M2 yet, as M2 has yet to be explored (the dashed arcs and nodes in Figure 5 (a)). Our
proposed solution is to mark M , M1 and all successors of M1 as transient, until the successors
of M2 have been calculated. At this point, the merging can occur, and we propose to give the
merged state the progress value min(ψ(M1),ψ(M2)) = x, as illustrated in Figure 5 (b). The
reason for this is simple: we wish to avoid regress edges in order to minimise the potential
for re-exploration of parts of the state space. This can be generalised to the merging of any
number of states in a straightforward manner.

3.3 Coping with Regress

Regress edges complicate matters in two ways. The first is that empty cycles may now exist
that span multiple progress levels, as shown at the left of Figure 6 (a), and that ε-moves may
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Fig. 7. (a) Two persistent states, M1 and M2, to be merged; (b) merging of M1 and M2 to Mm on a subsequent
sweep; and (c) rediscovery of M1 and M2.

correspond to regress edges, as shown at the right of Figure 6 (a). The Sweep-line has marked
M4 and M6 as persistent (solid circles). Our proposed method for ε-removal from Section 3.1
has marked M1, M2, M3 and M5 as transient. The second complication is that determinisation
may require a persistent state to be deleted. For example, the existence of an empty cycle
across multiple progress levels implies that at least one state in that cycle has been marked as
persistent (in this case M4). Determinisation will also require M6 to be deleted (following the
algorithm in [1]) as it is the destination of an ε-move and has no successors. We propose to
treat these two complications by merging the empty cycle as before, but to assign the merged
state the minimum progress value over all the states being merged (holding to the heuristic
of minimising the number of regress edges) and to mark the merged state as persistent, as
shown in Figure 6 (b), in the same way that merged states become halt states if any of their
component states are halt states [1]. To eliminate the ε-move at the right of Figure 6 (a) it
is a matter of exploring the successors of M6. The only additional step in our proposal is to
mark the successors of M6 as persistent because M6 was persistent, in the same way that the
successors of M6 would become halt states if M6 were a halt state [1]. The same procedure
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should be applied when merging/deleting persistent states as a result of determinisation of
non-empty moves.

As a consequence of our method of coping with regress and the deletion of persistent
states, we must consider what will happen if a merged/deleted persistent state is re-explored.
Consider Figure 7 (a), in which two regress edges from M induce two persistent states, M1

and M2. They cannot be merged until the successors of both are known. We propose that M

be marked as transient until such time as M1 and M2 can be merged into Mm, as shown in
Figure 7 (b). Then, re-exploration from the successors of Mm once again discovers the two
persistent states from Figure 7 (a), as shown in Figure 7 (c). Because Mm was marked as
persistent, we need to explore M1 and M2 again only as far as is necessary to merge them
and rediscover Mm. An implementation that would produce this effect would be to mark the
immediate successors (once ε-removal is complete) of the merged states as persistent, hence
re-exploration is limited only to the successor states (exploration is truncated at persistent
states visited for the second time).

4 Conclusions and Future Work

In this paper we have presented one possible genesis for an extension of the Sweep-line method
to handle language equivalence checking, an extension of importance to protocol verification.
However, substantial effort is required to bring this proposed extension to fruition. This work
must be formalised to produce an extended Sweep-line algorithm, implemented and evaluated
using a case study. There are also many avenues that remain to be investigated.

The discussion of determinisation presented in this paper is based on all states with the
minimum progress value having been explored before determinisation/complementation/par-
allel composition begins. However, it should be possible to interleave the exploration, de-
terminisation, complementation and parallel composition procedures. This may provide a
significant saving in the time taken to detect violations of the language equivalence property,
particularly if there are many states with identical progress values.

One aspect of this proposal that has not yet been discussed is the choice of progress
mapping. Although progress mappings may be arbitrary, previous experience (e.g. [9,10]) has
indicated that the choice of progress mapping plays a pivotal role in the performance of the
Sweep-line method. The author believes that there is no inherent problem with a progress
mapping that results in the merging of states with different progress values, as the progress
mapping may depend on internal protocol actions and changes of state within protocol entities
that are not part of the protocol’s user-observable behaviour.

Although we have used the two-step process of [1] for determinisation, it may be possible
to use the method of subset construction with lazy subset evaluation [15] for both epsilon
removal and determinisation in a single step. For each new state encountered, its transitive
closure comprising only empty moves is calculated. This subset of states becomes the state of
the deterministic FSA. However, such a subset may contain states of many different progress
values, hence the order of state exploration may violate the least-progress-first policy of the
Sweep-line method. This may be able to be overcome by delaying completion of the con-
struction of the subset using transient states in a similar way to the process described in this
paper. However, this will reduce the effectiveness of the Sweep-line method as a state space
reduction technique, as more transient states will remain in memory for longer.

In terms of simply detecting a violation of language equivalence, it may be possible to
take a more direct approach under some conditions. If the parallel composition of DFSAS
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and DFSAP (not its complement) is calculated on-the-fly, it may be possible to examine each
composed state to see what actions are allowed by the corresponding states in DFSAS and
DFSAP . If they don’t match, we have a violation of language equivalence. This approach
relies on knowing that livelocks do not exist in either the protocol or service specifications,
but would not require the complement of the protocol FSA to be calculated on-the-fly.
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