
Search-Order Independent State Caching!

Sami Evangelista1,2 and Lars Michael Kristensen3

1 Computer Science Department, Aarhus University, Denmark
2 LIPN, Université Paris 13, France

sami.evangelista@lipn.univ-paris13.fr
3 Department of Computer Engineering, Bergen University College, Norway

lmkr@hib.no

Abstract. State caching is a memory reduction technique used by mo-
del checkers to alleviate the state explosion problem. It has traditionally
been coupled with a depth-first search to ensure termination. We propose
and experimentally evaluate an extension of the state caching method
for general state exploring algorithms that are independent of the search
order (i.e., search algorithms that partition the state space into closed
(visited) states, open (to visit) states and unmet states).

1 Introduction

Model checking is one of the techniques used to detect defects in system designs.
Its principle is to perform an exhaustive exploration of all system states to track
erroneous behaviors. Although it provides some advantages compared to other
verification methods, its practical use is sometimes prohibited by the well-known
state explosion problem: the state space of the system may be far too large to
be explored with the available computing resources.

The literature is replete with examples of techniques designed to tackle, or at
least postpone, the state explosion problem. While some techniques, like partial
order reduction [12], reduce the part of the state space that must be explored
while still guaranteeing soundness and completeness, more pragmatic approaches
make a better use of available resources to extend the range of systems that
can be analyzed. State compression [16], external memory algorithms [1], and
distributed algorithms [24] are examples of such techniques. In this paper we
focus on the state caching method first proposed by Holzmann in [14].

State caching is based on the idea that, in depth-first search (DFS), only the
states on the current search path need to be in memory to detect cycles. All
states that have been visited but have left the DFS stack can thus be deleted
from memory without endangering the termination of the search. This comes at
the cost of potentially revisiting states and for many state spaces, time becomes
the main limiting factor.

The state caching method has been developed and mostly studied in the
context of depth-first search since this search order makes it easy to guarantee

! Supported by the Danish Research Council for Technology and Production.

219

termination. In this paper we propose an extension of state space caching to
General State Exploring Algorithms (GSEA). Following the definition of [5], we
put in this family all algorithms that partition the state space into three sets:
the set of open states that have been seen but not yet expanded (i.e., some of
their successors may not have been generated); the set of closed states that have
been seen and expanded; and the set of unseen states. DFS, BFS, and directed
search algorithms [8] like Best-First Search and A! are examples of such general
state exploring algorithms.

The principle of our extension is to detect cycles and guarantee termination
by maintaining a tree rooted in the initial state and covering all open states.
States that are part of that tree may not be removed from the cache, while others
are candidates for replacement. Hence, any state that is not an ancestor in the
search tree of an unprocessed state can be removed from memory. This tree is
implicitly constructed by the state caching algorithm in DFS, since DFS always
maintains a path from the initial state to the current state, while for GSEA it
has to be explicitly built. However, our experimental results demonstrate that
the overhead both in time and memory of this explicit construction is negligible.

The generalized state caching reduction is implemented in our model checker
ASAP [26]. We report on the results of experiments made to assess the benefits of
the reduction in combination with different search orders: BFS, DFS, and several
variations and combinations of these two; and with the sweep-line method [20]
which we show is compatible with our generalized state caching reduction. The
general conclusions we draw from these experiments are that (1) the memory
reduction is usually better with DFS than with BFS although we never really
experienced with BFS a time explosion; (2) BFS is to be preferred for some
classes of state spaces; (3) a combination of BFS and DFS often outperforms DFS
with respect to both time and memory; (4) state caching can further enhance
the memory reduction provided by the sweep-line method.

Structure of the paper. Section 2 presents the principle of a general state
exploring algorithm, and Section 3 describes our state caching mechanism for
the general algorithm. In Section 4 we put our generalized state caching method
into context by discussing its compatibility with related reduction techniques.
Section 5 reports on the results of experiments made with the implementation
of the new algorithm. Finally, Section 6 concludes this paper.

Definitions and notations. From now on we assume to be given a universe of
system states S, an initial state s0 ∈ S, a set of events E , an enabling function
en : S → 2E and a successor function succ : S × E → S; and that we want to
explore the state space implied by these parameters, i.e., visit all its states. A
state space is a triple (S, T, s0) such that S ⊆ S is the set of reachable states
and T ⊆ S × S is the set of transitions defined by:

S = {s0} ∪ { s ∈ S | ∃s1, . . . , sn ∈ S with s = sn ∧ s1 = s0 ∧
∀i ∈ {1, . . . , n − 1} : ∃ei ∈ en(si) with succ(si, ei) = si+1}

T = {(s, s′) ∈ S × S | ∃e ∈ en(s) with succ(s, e) = s′}

220

Related work. The principle of state caching dates back to an article of Holz-
mann [14] in 1985. He noted that, in DFS, cycles always eventually reach a state
on the stack and, hence, keeping in memory the states on the current search path
ensures termination. Forgetting other states comes at the cost of potentially re-
exploring them. In the worst case, if any state leaving the stack is removed from
memory, a state will be visited once for each path connecting it to the initial
state leading to a potential explosion in run-time. Hence, depending on available
memory, a set of states that have left the stack are cached in memory.

The question of the strategy to be used for replacing cached states has been
addressed in several papers: [11,14,15,17,18,23]. States can be chosen according
to various criteria (e.g., in- and out-degree, visit frequency, stack entry time) or
in a purely random way. The experiments reported in [23] stress that no strategy
works well on all models and that strategies are, to some extent, complementary.

The sleep-set reduction technique [12] is fully compatible with state caching
[13]. This reduction eliminates most “useless” interleavings by exploiting the
so-called diamond property of independent transitions: whatever their execution
order they lead to the same state. This has the natural consequence to limit
revisits of states removed from the cache. For some protocols (e.g., AT&T’s
Universal Receiver Protocol, MULOG’s mutual exclusion protocol), the result
of this combination is impressive: at a reasonable cost in time, the cache size can
be reduced to less than 3% of the state space.

All the related work discussed above are coupled with depth-first search. To
the best of our knowledge, the only work exploring the combination of state
caching with BFS is [21] which is more closely related to our work. Termination
in [21] is ensured by taking snapshots of the state space, i.e., memorizing full
BFS levels. By increasing the period between two snapshots it is guaranteed
that cycles will eventually reach a “pictured” state. This approach is in general
incomparable with the present work. The algorithm of [21] has to keep full levels
in memory while ours stores some states of each level. Besides this algorithm, [21]
also introduces some hierarchical caching strategies and learning mechanisms.

Some other reduction techniques share the philosophy of state caching: only
store a subset of the state space while still guaranteeing termination. Examples
include the “to-store-or-not” method [3] and the sweep-line method [20]. The
compatibility of our algorithm with these two works is discussed in Section 4.

2 General State Exploring Algorithm

A general state exploring algorithm is presented in Fig. 1. It operates on two
data structures. The set of open states, O, contains all states that have been
reached so far, but for which some successor(s) have not yet been computed.
Once all these successors have been computed, the state is moved from O to
the set of closed states C. Initially, the closed set is empty, and the open set
only contains the initial state. A set of events evts is associated with each open
state. It consists of its enabled events that have not been executed so far. In each
iteration, the algorithm selects an open state s (l. 3), picks one of its executable

221

1: C := ∅ ; O := {s0} ; s0.evts := en(s0)
2: while O "= ∅ do
3: s := choose from O
4: if there exists e ∈ s.evts then

5: s.evts := s.evts \ {e}
6: s′ := succ(s, e)
7: if s′ /∈ C ∪O then
8: O := O ∪ {s′}
9: s′.evts := en(s′)

10: if s.evts = ∅ then
11: C := C ∪ {s} ; O := O \ {s}

Fig. 1. A general state exploring algorithm

events e (if any, since the state may
be a terminal state) and removes it
from the set of events to execute
s.evts (ll. 4–5). The successor state
s′ of s reached via the execution of
e is computed, and if it is neither
in the closed nor in the open set (ll.
7–9), it is put in O to be later vis-
ited and its enabled events are com-
puted. Once the successor is com-
puted, we check if all the enabled
events of s have been executed (ll.
10–11), in which case we move s
from O to the closed set C.

In the rest of this paper we shall
use the following terminology. Ex-
panding a state s consists of executing one of its enabled events and putting
its successor in the open set if needed (ll. 6–9). A state s will be characterized
as expanded if all its successor states have been computed, i.e., s.evts = ∅, and
it has been moved to the closed set; and as partially expanded if some of its
successors have been computed, but s is still in the open set. A state s generates
state s′ if succ(s, e) = s′ for some e ∈ en(s) and s′ /∈ C ∪O when expanding s.
In this case, the transition (s, s′) is said to be the generating transition.

The algorithm in Fig. 1 differs slightly from explicit state space search algo-
rithms usually found in the literature, e.g., like the GSEA of [5]. In an iteration,
the algorithm only executes one event rather than all executable events of a
state. This variation is more flexible as it allows us to have open states that
are partially expanded. Hence, it naturally caters for search order independence.
Depending on the implementation of the open set, the search strategy can be,
for instance, depth-first (with a stack), breadth-first (with a queue), or best-first
(with a priority queue). Since each search order has its pros and cons, it is of
interest to design reduction techniques working directly on the generic search
order independent template, e.g., like the partial order reduction proposed in
[5], rather than on a specific instance.

3 State Caching for GSEA

The key principle of state caching for depth-first search is that cycles always
eventually reach a state on the DFS stack. Hence, it is only necessary to keep
this stack in memory to ensure termination of the algorithm. In breadth-first
search, or more generally for a GSEA, we do not have such a structure to rely
on in order to detect cycles. Hence, a BFS naively combined with state caching
may never terminate.

To overcome this limitation, we propose to equip GSEA with a mechanism
that allows it to avoid reentering cycles of states and thereby ensures termination.

222

The principle of this modification is to maintain, as the search progresses, a so-
called termination detection tree (TD-tree). The TD-tree is rooted in the initial
state s0 and keeps track of unprocessed states of the open set as explained below.
To formulate the requirements of the TD-tree we shall use the term search tree.
The search tree is the sub-graph of the state space which at any moment during
the execution of GSEA covers all open and closed states, and contains only
generating transitions. In other words, it consists of the state space explored so
far from which we remove transitions of which the exploration led to an already
seen state, i.e., in the set C ∪O.

The three following invariants related to TD-tree must be maintained during
the state space search:

I1 The TD-tree is a sub-tree of the search tree;
I2 All open states are covered by the TD-tree;
I3 All the leaves of the TD-tree are open states.

A sufficient condition for the modified GSEA to terminate is that we always
keep in memory the states belonging to the TD-tree. Intuitively, when expanding
a state s picked from the open set, we are sure (provided invariants I1 and I2 are
valid) that any cycle covering s will at some point contain a state s′ belonging
to the TD-tree. States that can be deleted from memory are all closed states
that are not part of the TD-tree: their presence is not required to detect cycles.
Note that only the two first invariants are required for termination. Invariant I3
just specifies that the TD-tree is not unnecessarily large, i.e., it does not contain
states we do not need to keep in the closed set to detect cycles. To sum up, all
the states that may not be removed from the cache are (besides open states)
all closed states that generated (directly or indirectly through a sequence of
generating transitions) a state in the open set.

As an example, let us see see how a BFS extended with this mechanism will
explore the state space of Fig. 2(top left). Each state is inscribed with a state
number that coincides with the (standard) BFS search order. The TD-tree has
been drawn in the right box for several steps of the algorithm. The legend for
this box is shown in the bottom left box of the figure. Note that these graphical
conventions are used throughout the paper. Some reference counters used to
maintain the TD-tree appear next to the states. They will not be discussed now.
Their use will become clear after the presentation of the algorithm.

After the expansion of the initial state 0, the queue contains its two successor
states 1 and 2 and the TD-tree is equivalent to the search tree (see Step 1). At
the next level, we expand open states 1 and 2. State 1 first generates states 3
and 4. As state 4 is already in the open set when state 2 is expanded, this one
does not generate any new states, which means that at Step 2, state 2 does not
have any successors in the search tree. It is deleted from the TD-tree, and we
assume that the algorithm also removes it from the closed set. The expansion of
open states 3 and 4 at the next level generates the three states 5, 6 and 7. At
Step 3 all the states that were expanded at level 2 generated at least one (new)
state. Hence, no state is deleted from the TD-tree. Level 3 is then processed.

223

2

0

3

5
0

6
0

3
0

6 75

4

1

0 1

11

21
3

1

2

closed state candidate for
replacement in the cache
and removed from the !tree

closed state not candidate
for replacement in the cache

0

1 2

3

65

4

7

4

0

1 2

Step 4Step 3

2

1 1

1 1

1

02

1

1 1

4

1

0

2

1

1

7

open state

Step 1 Step 2

1

TD

Fig. 2. A state space (top left), the TD-tree at three different stages of a BFS
(right) and the legend for the right box (bottom left). Step 1: after the expansion
of state 0. Step 2: after the expansion of states 1 and 2. Step 3: after the expansion
of states 3 and 4. Step 4: after the expansion of states 5, 6 and 7.

States 5 and 6 do not have any successors and state 7 has a single successor,
state 2, which has been visited but deleted from memory. Hence, it is put in the
open set. States 5 and 6 can be deleted from the TD-tree at Step 4 since they are
terminal states and do not have any successors in the TD-tree. After the deletion
of state 5, state 3 is in the same situation and becomes a leaf of the TD-tree.
It is thus also deleted. The queue now only contains state 2 that had already
been previously expanded. Its only successor, state 4, belongs to the TD-tree and,
hence, is present in memory. The algorithm thus detects the cycle 2→4→7→2.
After this last expansion, the queue is empty and algorithm terminates.

The operation of our algorithm is similar to the basic state caching reduction
for DFS with the difference that the TD-tree is implicitly maintained by the DFS
state caching algorithm: it consists of all the open states located on the DFS
stack. Closed states have left the stack so they have not generated the states
currently on the stack and do not need anymore to be part of the TD-tree.

We now introduce the algorithm of Fig. 3, a GSEA extended with the state
caching mechanism we described above. The main procedure (on the left column)
works basically as the algorithm of Fig. 1 except that we inserted the lines
preceded by a ! to manage the state cache. Apart from the closed set C and
open set O, the algorithm also uses a set D ⊆ C that contains all states candidate
for deletion if memory becomes scarce, i.e., all the states that left the TD-tree.
Hence, the TD-tree is composed of the states in (C ∪O) \ D.

224

1: C := ∅ ; O := {s0} ; s0.evts := en(s0)
2: ! D := ∅ ; s0.refs := 1 ; s0.pred := nil

3: while O "= ∅ do

4: s := choose from O
5: if there exists e ∈ s.evts then

6: s.evts := s.evts \ {e}
7: s′ := succ(s, e)
8: if s′ /∈ C ∪O then

9: O := O ∪ {s′}
10: s′.evts := en(s′)
11: ! s.refs := s.refs + 1
12: ! s′.refs := 1 ; s′.pred := s
13: ! garbageCollection()
14: if s.evts = ∅ then

15: C := C ∪ {s} ; O := O \ {s}
16: ! unref (s)

17: procedure unref(s) is

18: s.refs := s.refs − 1
19: if s.refs = 0 then

20: D := D ∪ {s}
21: if s.pred "= nil then

22: unref (s.pred)
23:

24: procedure garbageCollection() is

25: if |O| + |C| > MaxMemory then

26: if D = ∅ then

27: report “out of memory”
28: else

29: s := choose from D
30: C := C \ {s}
31: D := D \ {s}

Fig. 3. A general state exploring algorithm combined with state caching

After each state expansion, the algorithm calls the garbageCollection proce-
dure (l. 13) that checks if the number of states kept in memory exceeds some
user-defined limit MaxMemory. In that case, one of the candidates for replacement
is selected from D according to a replacement strategy and deleted from both C
and D (ll. 29–31) to make room for the state newly inserted in O. If there is no
candidate (ll. 26–27), the algorithm terminates with a failure: the TD-tree is too
large to fit within user-defined available memory.

In order to maintain the TD-tree, two additional attributes are associated with
states. The first one, pred , identifies the predecessor of the state that previously
generated it, i.e., its predecessor in the search tree. It is set at l. 12 when a new
state s′ is generated from s. The second attribute, refs , is a reference counter
used by the garbageCollection procedure to determine when a closed state leaves
the TD-tree and can become a candidate for replacement. The following invariant
is maintained by the algorithm for any s ∈ C ∪O:

I4 s.refs = |{s′ ∈ C ∪O with s′.pred = s ∧ s′.refs > 0}| +

{

0 if s /∈ O
1 if s ∈ O

In other words, s.refs records the number of successors of s in the TD-tree in-
cremented by 1 if s is an open state. It directly follows from invariant I4 that
any state s with s.refs = 0 must be moved to D and deleted from the TD-tree in
order to satisfy invariant I3. This is the purpose of procedure unref called each
time a state s leaves the open set (ll. 15–16). Its counter is decremented by 1,
and if it reaches 0 (ll. 19–22), s is put in the candidate set and the procedure is
recursively called on its predecessor in the TD-tree (if any).

Let us consider again the TD-trees depicted in Fig.2(right). Reference counters
are given next to the states. At Step 4, after the expansion of states 5, 6, and
7 of level 3, the reference counter of 5 and 6 reaches 0: they have left the open

225

set and have no successors in the search tree, i.e., they did not generate any
new state. They can therefore be put in the candidate set and leave the TD-tree.
unref is then also recursively called on states 3 and state 4 and their counters are
decremented to 0 and 1, respectively. Hence, state 3 is also put in the candidate
set. This finally causes unref to decrement the reference counter of state 1 to 1.

Lemma 1. The algorithm of Fig.3 terminates after visiting all states.

Proof. Let T be the (only) sub-tree of the search tree that satisfies invariants
I1, I2 and I3 and assume that the states belonging to T always remain in set
C∪O. Let s1, . . . , sn ∈ S be a cycle of states with ∀i ∈ {1, . . . , n} : succ(si, ei) =
si mod n+1, and such that s1 is its first state to enter O. This cycle is necessarily
detected, i.e, during the search we reach some si ∈ C ∪ O. Let us suppose the
contrary. Then, each state si ∈ {s1, . . . , sn−1} generates the state sj = si+1, i.e.,
sj /∈ C ∪O when event ei is executed from si. Hence, after the execution of en−1

by the algorithm it holds from invariants I1 and I2 that {s1, . . . , sn} ⊆ T since
sn ∈ O and each sj ∈ {s2, . . . , sn} was generated by sj−1. Thus, s1 ∈ C ∪ O
when event en is executed from sn, which contradicts our initial assumption.

It is straightforward to see from invariant I4 that s.refs > 0 ⇔ s ∈ T . After
an iteration of the algorithm (ll.3–16), invariant I4 is trivially ensured. This
implies that any s ∈ C with s.refs = 0 (⇔ s ∈ D) can be deleted from C.

The modified GSEA of Fig. 3 consumes slightly more memory per state to
represent the pred and refs attributes. In our implementation pred is encoded
with a 4 byte pointer and refs using a single byte. Nevertheless, these 5 bytes are
usually negligible compared to the size of the bit vector used to encode states.

4 Compatibility with Other Reduction Techniques

We discuss in this section several aspects of our algorithm and its combination
with some selected reduction techniques.

4.1 Single-Successor States Chain Reduction

Closely related to state caching, the idea of [3] is to use a boolean function
that, given a state, determines if the state should be kept in the closed set or
not. The paper proposes functions that guarantee the termination of the search.
One is to only store states having several successors. The motivation is that the
revisit of single-successor and deadlock states is cheap. It consists of reexecuting
a sequence until reaching a branching state (which has several successors and
which is therefore stored). To avoid entering cycles of single-successor states, the
kth state of these sequences is systematically stored.

In order to combine this reduction of [3] with our state caching mechanism we
have to carefully reduce chains that are part of the TD-tree. First we notice that
we do not have to worry about cycles of single-successor states: they will eventu-
ally reach a state of the TD-tree and all their states will immediately leave the TD-
tree becoming candidates for replacement. To reduce chains of single-successor

226

states we associate with each open state s an attribute ancestor that points to
the branching state that generated the first state of the chain which s belongs
to, or is equal to nil if s is a branching state. The following piece of code specifies
how this attribute is used to remove such chains from the TD-tree. It must be
inserted after the generation of state s′ from s at line 12.

s′.ancestor :=

if |en(s′)| = 1 and s.ancestor = nil then s
if |en(s′)| = 1 and s.ancestor != nil then s.ancestor
else nil

if s′.ancestor = nil and s.ancestor != nil then

a := s.ancestor ; s′.pred := a ; a.refs := a.refs + 1 ; unref (s)

ancestor is first set when a single-successor state is generated from a branching
state and then propagated later along all the states of the chain. If s′ is a
branching state and s.ancestor points to some state, this means that we just left
a chain. The reduction is done by directly linking s′ to s.ancestor and removing
all the states of the chain from the TD-tree, by unreferencing s.

Step 2

Step 1
s1

s1

a sn

a sn s

Fig. 4. Reduction of a single-
successor state chain

Fig. 4 shows an example of this reduc-
tion. Dotted arcs graphically represent the pred
pointer of each state in the TD-tree. At Step
1, s1, . . . , sn form a reducible chain of single-
successor states. All their ancestor field points
to a, the branching state that generated the first
state of the chain. State sn then generates s
that has several successors (see Step 2). Hence
s.ancestor = nil != sn.ancestor and a reducible
chain is detected. The consequence is to break
the link from s to sn and make s.pred directly
point to sn.ancestor = a. The chain is then re-
moved from the TD-tree by invoking unref (sn).

4.2 Distributed Memory Algorithms

Most works in the field of distributed verification follow the seminal work of Stern
and Dill [24]. Their algorithm partitions the state space upon several processes
using a partition function mapping states to processes. Each process involved in
the verification is responsible of storing and exploring the states it is assigned
by this function. Whenever a process p generates a state owned by process q != p
it has to pack it into a message and send it to q that, upon reception, will store
it in its open state and expand it later.

Our reduction is compatible with this algorithm. The only issue is raised by
the unref procedure, used to maintain the TD-tree. This one has to access the
ancestors of the unreferenced state — ancestors that may be located on another
process — hence generating communications. A possible way to overcome this
problem is to only call that procedure when memory becomes scarce. Processes
then enter a garbage collection phase where they clean the TD-tree and delete
states from memory. Thus, if the aggregated memory is large enough to solve the

227

process 13

0 1

1

0 1 1

1process 0

t0
t2

t1

s0

s
′

s

Fig. 5. A distributed TD-tree

problem without any reduction then there
is no time overhead. This might also help
to group states sent to the same owner and
thereby reduce communication.

Another solution is to associate with each
new state s received from another process a
reference number of 2 (rather than 1) to en-
sure it will never leave the TD-tree (and that
no communication will occur). It is then not
necessary that the source state of the transi-
tion that generated the message keeps a ref-
erence to s. An example of a TD-tree (actually a forest) distributed over two
processes can be seen in Fig 5. Dashed transitions are not part of the TD-tree.
The reference counter of state s is set to 3 whereas it is closed and only has 2
successors. The reason is, it has been first discovered upon its reception by pro-
cess 1. Hence, it will never leave the TD-tree guaranteeing that the cycle t0.t1.t2
will be detected whatever order states are visited. Another difference with a “se-
quential” TD-tree is that the counter of s0 is set to 1 instead of 2 since it only has
one successor in the TD-tree on the same process. Hence, although s will remain
in the memory of process 1, s0 will eventually be allowed to leave the cache.

Both solutions should benefit from a partitioning exhibiting few cross tran-
sitions linking states belonging to different processes. This will limit communi-
cations for the first solution and enhance the reduction in the second case.

4.3 Reductions Based on State Reconstruction

Our GSEA is also compatible with the reduction techniques proposed in [10]
and [27]. Instead of keeping full state vectors in the closed and open sets, their
principle is to represent a state s as a pair (pred , e) where pred is a pointer to
the state s′ that generated s during the search, and e is the event such that
succ(s′, e) = s. States can be reconstructed from this compressed representation
by reexecuting the sequence of events that generated it. At a reasonable cost
in time, it allows each state to be encoded by 12–16 bytes whatever the system
being analyzed. This reduction fits nicely with the algorithm of this paper. The
TD-tree can be compactly stored using this representation of states and, actually,
both methods store with each state a pointer to its generating predecessor. The
only states that have to be fully stored in memory are those who left the TD-tree
since their generating predecessor may not be present anymore in memory.

4.4 The Sweep-Line Method

A sweep-line based algorithm alternates between exploration phases where states
are visited and their successor(s) generated; with garbage collection phases where
states are removed from memory. A key feature of the method is the progress
measure ψ mapping states to (ordered) progress values. It is used to estimate
“how far” states are from the initial states and guides the garbage collection

228

procedure: if the minimal progress value found in the set of open states is αmin =
mins∈O ψ(s) then all closed states s with ψ(s) < αmin can be deleted from
memory. The underlying idea is that if the progress mapping is monotonic, i.e.,
all transitions (s, s′) are such that ψ(s) ≤ ψ(s′), then a visited state s with a
progress ψ(s) < αmin will not be visited again. In [20] the method is extended
to support progress measures with regress transitions, i.e., transitions (s, s′)
with ψ(s) > ψ(s′), that with the basic method of [6] cause the algorithm to
not terminate. The principle of this extension is to mark destination of regress
transitions as persistent to prevent the garbage collector from deleting them.

The sweep-line method can also be used in conjunction with our reduction.
This stems from the fact that the algorithm of [20] is also an instance of the
GSEA of Fig. 1 that keeps open states in a priority queue (priority being given
to states having the lowest progression). However, one has to proceed carefully
when combining both methods: the unref procedure of our algorithm may not
put in the set D of candidates for replacement an unreferenced state (i.e., with
s.refs = 0) that has been marked as persistent by the sweep-line reduction. Note
that the predecessor of a persistent state may however be unreferenced.

Running the sweep-line algorithm in combination with our state caching
algorithm causes the deletion of non-persistent states stored in the TD-tree. This
means that we only store the parts of the TD-tree corresponding to the states
determined to be in memory by the sweep-line method. The role of the TD-tree
(which now becomes a forest) is to ensure termination of each of the phases of
the sweep-line method, while the overall termination of the combined search is
guaranteed by the persistent states stored by the sweep-line method.

5 Experiments

The technique proposed in this paper has been implemented in the ASAP veri-
fication tool [26]. ASAP can load models written in DVE [7], the input language
of the DiVinE verification tool [2]. This allowed us to perform numerous exper-
iments with models from the BEEM (BEnchmarks for Explicit Model check-
ers) database [22] although “Puzzles” and “Planning and scheduling” problems
were not considered. These are mostly toy examples having few characteristics
in common with real-life models. We performed two experiments, studying the
performance of our reduction in combination with basic search algorithms for
the first one; and with the sweep-line method for the second one. Due to lack of
space, some data has been left out in this section but may be found in [9].

5.1 Experiment 1: State Caching with Basic Search Strategies

State caching is a rather unpredictable technique in the sense that its perfor-
mance depends on a large range of parameters, e.g., the size and replacement
strategy for the cache, the characteristics of the state space. It is usually hard to
guess which configuration should be used before running the model checker. State
caching must therefore be experimented with in a wide range of settings and with

229

BFSDFS

BFS

BFS

DFS

DFS

Alt(2, 2) BBFS(3)

Fig. 6. Snapshot of the search trees with different search strategies.

many different state spaces in order to get a good insight into its behavior. In
this experiment we performed more than 1,000,000 runs using different search
algorithms, caching strategies, cache sizes, and state space reduction techniques.

Experimentation context

Search strategies. Several preliminary experiments revealed important variations
of our state caching reduction when combined with DFS or BFS. Therefore, it
seemed interesting to combine both algorithms to observe is such a combination
could improve on pure breadth- or depth-first searches. Thus, in addition to DFS
and BFS, we also experimented with the two following variations of these search
strategies devised for the sake of our experimentation.

– Alternation of breadth- and depth-first search. This search strategy is para-
metrized by two integers b and d. It starts breadth-first on the b first levels.
Then for the states at level b the search switches to a DFS until the depth
b + d is reached. At that point, the algorithm mutates back to a BFS and so
on. This search will be denoted by Alt(b, d) in the following.

– Bounded-width breadth-first search. This search strategy, denoted BBFS(w),
proceeds as a BFS except that the queue at each level may not contain more
than w states (the width of the search). Open states of previous levels are
kept in a stack to be expanded later when all next levels have been processed.

Note that DFS and BFS are special instances of these search strategies since
it holds that DFS ≡ BBFS(1) ≡ Alt(0, ∞) and BFS ≡ BBFS(∞) ≡ Alt(∞, 0).

A snapshot of the search trees of different state spaces induced by these
different strategies can be seen in Fig. 6. With DFS (left), all states outside the
stack are candidates for replacement in the cache. With BFS (second left), any
ancestor in the search tree of an open state must remain in the cache while others
may be replaced. Open states, with algorithm Alt(2, 2) (second right) are those

230

still present in the stacks and queues used to perform “local” DFSs and BFSs.
At last, the tree of BBFS(3) (right) is a BFS tree where each level can contain
at most 3 states. Unlike BFS, some previous levels may contain open states as
is the case here with the penultimate level.

All these algorithms are implemented using the generic template of Fig. 3
and parametrized by the type of the O data structure. BFS is implemented with
a queue, DFS with a stack, BBFS(w) with a stack of arrays of size w, and Alt(b,
d) with a stack containing single states for DFS levels and queues for BFS levels.

Cache replacement strategies. We implemented various strategies from the lit-
erature. The garbage collector can select states according to their in- and out-
degree, their distance from the initial state (i.e., the depth at which the state has
been generated), or in a purely random fashion. Stratified caching [11] has also
been implemented. Due to a lack of space, we will not compare these strategies
here. For DFS, the reader may consult the large body of work on that subject,
e.g., [11,23]. With BFS, distance seems to be criterion with most impact.

State space reduction. Sleep-set reduction has been shown in [13] to drastically
reduce the state revisits when using state caching. Rather than sleep-sets, we
implemented the reduction of [4] which proposes a sleep-set like technique for
both DFS and BFS that has two advantages over it: it does not require any
memory overhead whereas the algorithm of [13] associates a set of transitions
(the sleep set) with each closed and open set; and it is easier to implement.

We also implemented and experimented with the single-successor state chain
reduction of [3] which is compatible with our algorithm as explained in Sec-
tion 4.1. This reduction will be denoted by CR in the following.

Table 1 summarizes the different parameters and instances we experimented
with. Unlike the reduction of [4] which was always turned on, the reduction of
[3] was a parameter of each run. A run ended in one of three situations:

success The search could finish within allocated resources.
out of memory The cache was two small to contain the TD-tree.
out of time The algorithm visited more states than the specified threshold.

Experimental results

Experimental data is reported in Table 2. Due to space constraints, the table
only contains data for 25 selected instances although the average on all instances
experimented with is reported on the last line. Under each instance name, we
give its number of states |S| and its average degree d as the ratio of transitions
over states. All tests performed for each instance were divided into 8 groups
according to the search algorithm they used (columns DFS, BFS, BBFS, and
Alt) and according to whether or not they used the chain compression reduction
(column CR). We then ordered, within each group, all successful runs first by

231

Table 1. Instances and parameters used during Experiment 1

Selected instances 135 instances with { 1,000, . . . , 1,000,000 } states
Maximal state visits 5 · |S| (where |S| is the state space size)

Cache size
{ 5, 10, 15, 20, . . . } (as a % of the state space size)
until a successful run could be found

Cache replacement 60 caching strategies selected after experimentation
strategy with a small sample of 10 instances

Search strategy
DFS, BFS, BBFS(w) for w ∈ {4, 16, 256}, Alt(b, d)
for b, d ∈ {1, 4, 8}

Reductions used Reduction of [4] for all runs and CR for some runs

ascending cache size (i.e., memory) and then by ascending number of state visits
(i.e., time). Each cell of the table contains data for the best run according to
that order: the number of stored states, i.e., the cache size, (column S) and
visited states (column V) both expressed as a percentage of the state space.
Additionally, for algorithms Alt and BBFS, columns (b, d) and w specify the
parameters of the search that the best run used.

State caching apparently provides a better memory reduction when coupled
with DFS than with BFS. The size of the TD-tree, with BFS, is lower bounded
by the width of the state space, i.e., the size of the largest level, which can be
high for some models. The DFS stack can also contain a large proportion of the
state space but the reduction of [4] not only reduces interleavings but also the
stack size, whereas it is not helpful in BFS.

We still found some models for which BFS outperformed DFS with re-
spect to both time and memory. This is the case for instances extinction.3,
firewire tree.4 and leader election.4. We will see later why BFS is to be
preferred for these models.

Some instances like cambridge.5 have typical characteristics that make state
caching inadequate: many cycles and a high degree. This inevitably leads to a
time explosion with DFS even using partial order reduction. BFS seems to be
more resilient with respect to these instances. We found a couple of similar
instances during our experiments.

Although state caching is generally more memory efficient when coupled with
DFS, BFS still provides a notable advantage: it is less subject to a time explosion.
Even in cases where the cache size was close to its lower bound, i.e., the maximal
size of the TD-tree, the time brutally increased in very few cases. With BFS, the
distribution of run failures is the following: 98% are “out of memory”, and 2%
are “out of time”. With DFS, these percentages become respectively 61% and
39%. Even in cases where BFS “timed out”, increasing the maximal number of
state visits from 5 · |S| to 20 · |S| could turn all these runs into successes. This is,
from the user point of view, an appreciable property. With DFS, when the user
selects a small cache size, and the search lasts for long, he/she can not know if
it is due to a high rate of state revisits or if it is because the state space is very
large and state caching is efficient. This situation never occurred with BFS.

232

Table 2. Summary of data for Experiment 1

Model CR DFS BFS BBFS Alt
S V S V S V w S V (b,d)

at.2 no 35 228 40 130 30 369 4 30 219 (8,4)
|S|=49,443 d=2.9 yes 30 428 40 130 30 373 4 30 222 (8,4)

bakery.4 no 20 271 25 216 25 173 4 20 185 (8,4)
|S|=157,003 d=2.6 yes 20 271 25 149 25 168 4 20 185 (8,4)

bopdp.2 no 15 215 30 149 15 246 4 15 213 (1,8)
|S|=25,685 d=2.8 yes 10 437 25 162 10 398 4 10 406 (1,8)

brp.3 no 5 235 15 112 5 163 256 5 160 (8,8)
|S|=996,627 d=2.0 yes 5 152 10 116 5 168 256 5 153 (8,8)

brp2.5 no 5 141 30 112 5 130 4 5 135 (8,1)
|S|=298,111 d=1.4 yes 5 140 20 103 5 131 4 5 137 (8,1)

cambridge.5 no 45 285 35 121 45 203 4 45 232 (8,4)
|S|=698,912 d=4.5 yes 45 287 35 120 45 200 16 45 233 (8,8)

collision.3 no 10 484 30 119 10 487 16 10 239 (8,1)
|S|=434,530 d=2.3 yes 10 338 25 169 10 412 16 10 286 (8,1)

extinction.3 no 10 185 10 100 10 186 4 10 176 (4,4)
|S|=751,930 d=3.5 yes 10 184 10 100 10 187 4 10 176 (4,4)

firewire link.7 no 5 327 25 101 5 278 256 5 214 (8,1)
|S|=399,598 d=2.7 yes 5 321 20 101 5 348 256 5 230 (8,1)

firewire tree.4 no 10 337 10 100 15 190 4 10 313 (4,4)
|S|=169,992 d=3.7 yes 10 345 10 100 15 191 4 10 311 (4,4)

gear.2 no 15 109 10 100 10 100 256 10 102 (4,4)
|S|=16,689 d=1.3 yes 15 106 5 102 5 101 256 10 101 (4,4)

iprotocol.2 no 5 359 20 132 5 250 4 5 296 (8,1)
|S|=29,994 d=3.3 yes 5 364 20 132 5 245 16 5 294 (1,1)

lamport nonatomic.3 no 45 398 50 120 45 257 4 45 237 (8,8)
|S|=36,983 d=3.3 yes 45 366 50 119 45 260 4 45 232 (8,1)

leader election.4 no 15 450 10 100 15 456 16 15 273 (4,1)
|S|=746,240 d=5.0 yes 15 316 10 100 15 453 16 15 275 (4,1)

lifts.6 no 5 123 15 123 5 125 4 5 124 (1,1)
|S|=333,649 d=2.1 yes 5 124 15 112 5 132 4 5 124 (1,1)

lup.2 no 30 478 30 142 40 369 4 15 429 (8,8)
|S|=495,720 d=1.8 yes 30 294 30 142 35 324 4 15 428 (8,8)

needham.3 no 5 412 30 100 5 409 256 5 435 (1,1)
|S|=206,925 d=2.7 yes 5 415 30 100 5 417 256 5 435 (1,1)

peterson.3 no 25 345 35 142 25 374 4 25 329 (1,8)
|S|=170,156 d=3.1 yes 25 331 35 136 25 356 4 25 320 (8,8)

pgm protocol.7 no 10 152 10 106 5 360 16 5 493 (8,1)
|S|=322,585 d=2.5 yes 10 152 5 112 5 392 4 10 145 (4,1)

plc.2 no 5 100 30 100 10 101 4 5 100 (1,8)
|S|=130,777 d=1.6 yes 5 100 10 100 5 113 4 5 101 (8,8)

production cell.4 no 10 176 10 100 10 162 4 10 157 (8,1)
|S|=340,685 d=2.8 yes 10 175 10 100 10 162 4 10 158 (8,1)

rether.3 no 30 118 40 104 35 132 256 25 113 (8,1)
|S|=305,334 d=1.0 yes 25 152 15 111 15 117 256 15 128 (8,1)

synapse.6 no 5 148 30 111 5 133 16 5 129 (8,8)
|S|=625,175 d=1.9 yes 5 118 25 296 5 136 16 5 129 (8,8)

telephony.3 no 30 394 50 124 25 482 256 25 368 (8,1)
|S|=765,379 d=4.1 yes 25 491 50 123 25 470 16 25 388 (8,1)

train-gate.5 no 10 114 20 100 10 110 4 10 102 (4,1)
|S|=803,458 d=2.1 yes 10 114 20 100 10 105 256 10 102 (4,1)

Average on no 18.5 259 30.1 131 19.4 236 16.4 239
135 models yes 17.7 251 26.3 143 17.4 241 15.5 249

233

In general, we found out that BFS is far less sensitive to the caching strategy
than DFS. For a specific cache size, it was not unusual, with DFS, that only one
or two replacement strategies could make the run successful. Whereas, with BFS,
once a successful run could be found with some strategy, it usually meant that
many other runs using different strategies (and with the same cache size) could
also terminate successfully. On an average made on all models we calculated
that, with DFS and for the smallest cache size for which at least a run turned
out to be successful, only 25% of all runs were successful. With BFS, this same
percentage goes up to 66%.

These observations are in line with a remark made in [21], p. 226: “Com-
pared to BFSWS [BFS With Snapshots], the success of DFS setups differs a lot
from one case to another.” One of our conclusions is indeed that BFS has the
advantage to exhibit more predictable performance.

The effect of reduction CR is more evident in the case of BFS. The cache
size could be further reduced by an average of 4–5% for a marginal cost in time,
whereas with DFS the reduction achieved is negligible. On some instances, BFS
could, with the help of this reduction, significantly outperform DFS with respect
to memory consumption. This is for instance the case for rether.3 which has a
majority of single-successor states.

Lastly, we notice that Alt and BBFS sometimes cumulate the advantages of
both BFS (w.r.t. time) and DFS (w.r.t. memory) and perform better than these,
e.g., at.2, bakery.4, firewire link.7 and lup.2. Search Alt also seems to be
more successful than BBFS. It could on average reduce the cache size from 17
to 15% of the state space, when compared to DFS.

Influence of the State Space Structure in BFS. We previously noticed that the
width of the graph is a lower bound of the TD-tree in BFS. More generally, there is
a clear link between the shape of the BFS level graph and the memory reduction
in BFS. Figure 7 depicts this graph for several instances that are of particular
interest to illustrate our purpose. For each BFS level, the value plotted specifies
the number of states (as a percentage of the full state space) belonging to a
specific level. For instances telephony.3 and synapse.6, a large proportion of
states is gathered on a few neighbor levels. The algorithm will thus have to store
most states of these levels and it is not surprising to observe on Table 2 that state
caching is not efficient in these cases. Instances pgm protocol.7 or gear.2 have
the opposite characteristic: the distribution of states upon BFS levels is rather
homogeneous and there is no sequence of neighbor levels containing many states.
This explains the good memory reduction observed with BFS on these examples.

With DFS, the time increase is closely related to the average degree of the
state space. This factor has a lesser impact with BFS: the proportion of backward
transitions1 plays a more important role. Indeed, the search order of BFS implies
the destination state of a forward transition to necessarily be in the open set.
Hence, only backward transitions may be followed by state revisits. Instances

1 (s, s′) is a backward transition if the BFS levels d and d′ of s and s′ are such that
d ≥ d′. The length of (s, s′) is the difference d − d′.

234

 0

 1

 2

 3

 4

 5

 6

 7

 8
synapse.6
70 levels

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

telephony.3
62 levels

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
pgm_protocol.7
434 levels

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3
gear.2
603 levels

Fig. 7. BFS level graph of some instances.

extinction.3 and firewire tree.4 have rather high (3–5) degrees but few or
no backward transitions, which led to very few state revisits with BFS; whereas
using DFS we often experienced a time explosion with these instances. The fact
that state spaces of real-world problems often have few backward transitions [25]
may explain the small state revisit factors usually observed with BFS.

5.2 Experiment 2: State Caching with the Sweep-Line Method

In a second experiment we studied how our state caching algorithm combines in
practice with the sweep-line method, as described in Section 4.4. We analyzed
the same instances used in the first experiment. We automatically derived from
their full state spaces several progress measures identified by a level ranging
from 0 to 5. The higher the level, the more precise the progress mapping and
the more aggressive the reduction. Our progress measures are abstractions in
that they project states to some components of the underlying system. At level
0, the progress mapping is guaranteed to not generate any regress transition
since we only consider components having a monotonic progression, e.g., an
increasing sequence number; and as the level progresses, the mapping is refined
by including in it more and more components in order to multiply the different
progress values possible and increase the potential of the reduction (while also
introducing more regress transitions). Progress values are then fixed-size vectors

235

Table 3. Summary of data for Experiment 2

Model |S| PM SL SL + SC
S V P L S V

bopdp.2 25,685 3 52.4 231 0.5 51.9 20.4 498
4 26.8 242 0.8 26.0 14.9 480
5 13.7 259 1.9 8.3 12.7 482

brp.3 996,627 2 13.3 145 0.1 8.3 4.9 203
3 10.6 126 0.5 2.9 9.7 154
4 10.0 122 2.4 0.3 9.9 120
5 8.1 124 3.8 0.1 8.2 119

collision.3 434,530 4 24.1 100 0.0 24.1 13.5 482
5 21.1 232 9.0 12.2 16.0 337

iprotocol.1 6,814 5 50.4 100 0.0 47.3 21.0 416
lifts.4 112,792 5 33.3 100 0.0 33.3 8.5 489
needham.3 206,925 5 20.9 100 0.0 0.1 21.0 101

pgm protocol.3 195,015 3 2.4 144 1.1 0.0 2.1 129
4 3.2 110 3.1 0.0 3.1 110
5 9.0 110 8.9 0.0 9.0 108

plc.2 130,777 3 1.8 100 0.0 1.7 0.6 102
4 1.2 105 1.2 0.0 1.3 105
5 1.2 105 1.2 0.0 1.3 105

production cell.4 340,685 4 27.7 100 0.0 22.7 14.1 485
5 11.1 100 2.0 6.9 5.5 438

rether.3 305,334 4 25.3 161 3.9 21.8 5.0 200
5 6.3 152 6.0 0.6 6.1 144

synapse.6 625,175 3 26.6 100 0.0 26.6 7.4 477
4 27.4 316 2.7 16.4 17.2 477
5 18.1 150 10.8 2.9 17.4 136

of (selected) components that can be compared via a lexical ordering. Each level
corresponds to an estimation of the upper bound of the proportion of regress
transitions: level 0 → no regress transition, level 1 → at most 1% of regress
transitions, level 2 → 2%, level 3 → 5%, level 4 → 10% and level 5 →20%.

Table 3 summarizes the data collected during this experiment for some se-
lected instances and progress measures. For each instance (column Model) and
progress measure (of which the level appears in column PM) we performed a first
run with the sweep-line algorithm of [20] (column SL) and then several runs with
the same algorithm extended with our state caching reduction (column SL + SC)
using different cache sizes. We used a variation of the stratified caching strategy
[11] that revealed to be the most efficient one during the first experiment. As in
the first experiment we only kept, for algorithm SL + SC, the “best” run, that
is, the one that used the smallest amount of memory with a state visit factor
less than 5. For these two runs columns S and V provide the number of stored
and visited states. Additionally, for algorithm SL the table gives in column P
the number of persistent states at the end of the search ; and in column L the
size of the largest class of states sharing the same progress value and present

236

in memory at the same time (before being garbage collected). All these values
are expressed as a percentage of the state space size given in column |S|. The
data of the run that provided the best memory reduction for a model has been
highlighted using a gray background.

To have a better understanding of these results it seems necessary to briefly
recall the principle of algorithm SL. At each step the algorithm explores a class
of states sharing a common progress value ψ. All their successors are put in
the priority queue implementing the open set, and once this expansion step is
finished, i.e., no state with progress value ψ is in the queue, the algorithm deletes
from memory all expanded states. It then reiterates this process with the next
progress value found in the queue until it is empty. The size of the largest class
of states with the same progress value given in column L is thus a lower bound
on the memory consumption of the algorithm. By implementing state caching
on top of this algorithm we can hope to reduce only the class of states the
algorithm is currently working on. Indeed if we note ψ the progress value of
this class then all the states with a progress value ψ′ < ψ have been garbage
collected by the sweep-line reduction and states with a progress value ψ′ > ψ
present in memory are necessarily in the open set and hence can not be removed
from the cache. The potential of the state caching reduction is thus given by
the ratio L

S
(in column SL). It is therefore not surprising that the gain of using

state caching depends on the size L of this largest class. Instances brp.3, plc.2
and pgm protocol.3 are the typical examples of models for which the sweep-line
method is well suited: they have long state spaces with a clear progression which
enables progress mappings to be defined that divide the state space into many
small classes. Hence, the sweep-line method used solely can provide a very good
reduction that can not be significantly enhanced by state caching.

Increasing the PM level has three noteworthy consequences.

First, for most models, the peak number of states stored by SL decreases
although this is not always the case: by refining the progress mapping we usually
increase the proportion of regress transitions generating persistent states that
will never be garbage collected. Instance pgm protocol.3 is a good illustration.

Second, by multiplying progress values we naturally decrease the effect of
state caching since, as we previously saw, state caching is helpful to reduce
classes of states sharing the same progress value. We indeed observe that the
values in column L decrease as we increase the PM level, with the consequence
that numbers converge to the same values with both algorithms.

A last observation is that, regarding the number of states stored, SL and SL
+ SC often follow opposite behaviors. For instances brp.3, collision.3, plc.2,
rether.3 and synapse.6, SL consumes less memory when we refine the progress
measure whereas SL + SC needs a larger cache. More generally, we observed that
the average ratio of the number of states stored by SL over the number of states
stored by SL + SC is maximal at level 3 (2.93) and then decreases to 1.97 at level
5. This is an interesting property from a user perspective. This indeed means
that he/she does not necessarily have to provide a very fine tuned progress
mapping to the model checker. In many cases, a basic mapping that extracts

237

some monotonic component(s) from the model will be sufficient: the state caching
reduction will then fully complement the sweep-line reduction flaws and provide
an even better reduction compared to a very precise progress mapping that will
cancel the benefits of state caching.

6 Conclusion

In this paper we have proposed an extension of state caching to general state
exploring algorithms. Termination is guaranteed by maintaining, as the search
progresses, a tree rooted in the initial state that covers all open states. This en-
sures that any cycle will eventually reach a state of the tree. Closed states that
have left the tree can therefore be deleted from memory without endangering
the termination of the algorithm. Extensive experimentation with models from
the BEEM database has revealed that state caching can reduce the memory
requirements of a BFS by a factor of approximately 4. Although this is usually
not as good as the reduction observed with DFS, BFS offers an advantage in
that the reduction comes almost for free: the average increase in run-time that
we observed with BFS was usually around 30–40%, and we observed very few
cases of time explosion, whereas this is quite common with DFS even when using
partial order reduction. Combining both search strategies can also bring advan-
tages: in some cases, we found that state caching coupled with a combination
of BFS and DFS could bring the same (or an even better) reduction as with
DFS while limiting the run-time explosion that could occur with this one. Last
but not least, our experiments revealed that our reduction can also enhance the
sweep-line method as the algorithm it relies on is also an instance of the GSEA.

The algorithm we proposed is fully language-independent in that it only re-
lies on a successor function to explore the state space. Nevertheless, it should be
worth experimenting it with other formalisms than DVE and especially Colored
Petri Nets (CPN) [19]. It is possible that the high level constructs provided by
CPN to express the successor function may impact the structural characteristics
of state spaces that, as previous works on state caching and our own experi-
ments revealed, are tightly linked to the performance of state caching. Such an
experimentation is therefore the next research direction we focus on.

References

1. T. Bao and M. Jones. Time-Efficient Model Checking with Magnetic Disk. In
TACAS’2005, vol. 3440 of LNCS, pp. 526–540. Springer, 2005.

2. J. Barnat, L. Brim, I. Cerná, P. Moravec, P. Rockai, and P. Simecek. DiVinE - A
Tool for Distributed Verification. In T. Ball and R.B. Jones, editors, CAV’2006,
vol. 4144 of LNCS, pp. 278–281. Springer, 2006.

3. G. Behrmann, K.G. Larsen, and R. Pelánek. To Store or Not to Store. In
CAV’2003, vol. 2725 of LNCS, pp. 433–445. Springer, 2003.

4. D. Bosnacki, E. Elkind, B. Genest, and D. Peled. On Commutativity Based Edge
Lean Search. In ICALP’2007, vol. 4596 of LNCS, pp. 158–170. Springer, 2007.

238

5. D. Bosnacki, S. Leue, and A. Lluch-Lafuente. Partial-Order Reduction for Gen-
eral State Exploring Algorithms. In SPIN’2006, vol. 3925 of LNCS, pp. 271–287.
Springer, 2006.

6. S. Christensen, L.M. Kristensen, and T. Mailund. A Sweep-Line Method for State
Space Exploration. In TACAS’2001, vol. 2031 of LNCS, pp. 450–464. Springer,
2001.

7. DVE Language. http://divine.fi.muni.cz/page.php?page=language.
8. S. Edelkamp, S. Leue, and A. Lluch-Lafuente. Directed Explicit-State Model

Checking in the Validation of Communication Protocols. STTT, 5:247–267, 2004.
9. S. Evangelista and L.M. Kristensen. Search-Order Independent State Caching.

Technical report, 2009. http://daimi.au.dk/~evangeli/doc/caching.pdf.
10. S. Evangelista and J.-F. Pradat-Peyre. Memory Efficient State Space Storage in

Explicit Software Model Checking. In SPIN’2005, vol. 3639 of LNCS, pp. 43–57.
Springer, 2005.

11. J. Geldenhuys. State Caching Reconsidered. In SPIN’2004, vol. 2989 of LNCS,
pp. 23–38. Springer, 2004.

12. P. Godefroid. Partial-Order Methods for the Verification of Concurrent Systems,
vol. 1032 of LNCS. Springer, 1996.

13. P. Godefroid, G.J. Holzmann, and D. Pirottin. State-Space Caching Revisited. In
CAV’1992, vol. 663 of LNCS, pp. 178–191. Springer, 1992.

14. G.J. Holzmann. Tracing Protocols. AT&T Technical J., 64(10):2413–2434, 1985.
15. G.J. Holzmann. Automated Protocol Validation in Argos: Assertion Proving and

Scatter Searching. IEEE Trans. Software Eng., 13(6):683–696, 1987.
16. G.J. Holzmann. State Compression in Spin: Recursive Indexing and Compression

Training Runs. In SPIN’1997, 1997.
17. C. Jard and T. Jéron. On-Line Model Checking for Finite Linear Temporal Logic

Specifications. In Automatic Verification Methods for Finite State Systems, vol.
407 of LNCS, pp. 189–196. Springer, 1989.

18. C. Jard and T. Jéron. Bounded-memory Algorithms for Verification On-the-fly.
In CAV’1991, vol. 575 of LNCS, pp. 192–202. Springer, 1991.

19. K. Jensen and L.M. Kristensen. Coloured Petri Nets — Modeling and Validation
of Concurrent Systems. Springer, 2009.

20. L.M. Kristensen and T. Mailund. A Generalised Sweep-Line Method for Safety
Properties. In FME’2002, vol. 2391 of LNCS, pp. 549–567. Springer, 2002.

21. R. Mateescu and A. Wijs. Hierarchical Adapatative State Space Caching Based on
Level Sampling. In TACAS’2009, vol. 5505 of LNCS, pp. 215–229. Springer, 2009.

22. R. Pelánek. BEEM: Benchmarks for Explicit Model Checkers. In SPIN’2007, vol.
4595 of LNCS, pp. 263–267. Springer, 2007.

23. R. Pelánek, V. Rosecký, and J. Sedenka. Evaluation of State Caching and State
Compression Techniques. Technical report, Masaryk University, Brno, 2008.

24. U. Stern and D. L. Dill. Parallelizing the Murphi Verifier. In CAV’1997, vol. 1254
of LNCS, pp. 256–278. Springer, 1997.

25. E. Tronci, G. Della Penna, B. Intrigila, and M. Venturini Zilli. Exploiting Tran-
sition Locality in Automatic Verification. In CHARME’2001, vol. 2144 of LNCS,
pp. 259–274. Springer, 2001.

26. M. Westergaard, S. Evangelista, and L.M. Kristensen. ASAP: An Extensible Plat-
form for State Space Analysis. In ATPN’2009, vol. 5606 of LNCS, pp. 303–312.
Springer, 2009.

27. M. Westergaard, L.M. Kristensen, G. Stølting Brodal, and L. Arge. The Comback
Method - Extending Hash Compaction with Backtracking. In ATPN’2007, vol.
4546 of LNCS, pp. 445–464. Springer, 2007.

239

http://divine.fi.muni.cz/page.php?page=language
http://daimi.au.dk/~evangeli/doc/caching.pdf

