Towards Formal Modeling and Analysis of
BitTorrent using Coloured Petri Nets

Jing LIU"?, Xinming YE?, Tao SUN?

! Institute of Computing Technology, Chinese Academy of Sciences, China
% College of Computer Science, Inner Mongolia University, Hohhot, China
3 Graduate University of Chinese Academy of Sciences, China
livjing@ict.ac.cn, {xmy, cssunt} @imu.edu.cn

Abstract. BitTorrent is widely adopted in P2P applications, such as file sharing
and video streaming. As intricate communication and concurrency are charac-
teristics of BitTorrent, it is difficult to formally and effectively model its func-
tional behaviors in peer-level. In this paper, a coloured Petri Nets based hierar-
chical modeling architecture and detailed model instances of BitTorrent are
proposed. Then simulation, state spaces analysis and model checking technolo-
gies are utilized combinatively to validate the formal models and verify the
functional properties of BitTorrent. The proposed formal model could not only
be served as an unambiguous and visual formal specification, but also facilitate
the behaviors simulation and properties verification where it relieves the noto-
rious state space explosion problem.

Keywords: BitTorrent, coloured Petri Nets, simulation, state space analysis

1 Introduction

Various peer-to-peer (P2P) applications have become prodigiously popular on the
Internet. BitTorrent [1] accounts for more than a half traffic of all P2P traffic in most
countries, so it is widely recognized as a more popular P2P content distribution pro-
tocol. The advantages of BitTorrent are high scalability, stable distribution perform-
ance and easy deployment, all of which result from the basic idea of BitTorrent, that
is, individual peers could effectively utilize their incoming access link bandwidth.
Peers participate in an application level overlay network and behave as both client and
server. They download and upload file pieces mutually at the same time. This kind of
cooperative behavior makes the file sharing more effective and more efficient. How-
ever, it also introduces more intricate communication and concurrence, making the
functional behaviors modeling and analysis of BitTorrent more difficult.

In recent years, there are many notable studies concerning about different aspects
of BitTorrent, such as system design, traffic measurement, performance analysis and
key algorithms optimization. As for the modeling of BitTorrent, most researches fo-
cus on the performance modeling and analysis. [2] utilizes a simple fluid model to
describe and analyze the dynamic behaviors of the BitTorrent systems. [3] utilizes a
Markov model to analyze the freerider phenomenon, where a peer just downloads
from others without uploading its contents as expected. [4] extends the fluid model

159

mentioned in [2] to perform extensive measurement and trace analysis of a sin-
gle-torrent system. [5] adopts a simple mathematical model to characterize the
group-level properties of BitTorrent system execution and perform a complex ob-
served performance analysis. [6] models the whole downloading process as several
consequent phases using a three-dimension Markov chain, which is suitable for cap-
turing the peer downloading behaviors compared with real world traces. It also
launches notable analysis of the stability of BitTorrent. [7] uses a stochastic fluid
model to characterize the behavior of on-demand stored media content delivery based
on BitTorrent. It provides insight into transient and steady-state system behavior for
its performance evaluation.

To summarize, most of the studies adopt various mathematical models to analyze
the performance of BitTorrent, and they usually focus on the aggregate properties,
such as average downloading or uploading rates, network utilization and cost, etc.
Few studies focus on the functional behavior modeling in peer level, which aims to
construct a formal function model of BitTorrent and validate its soundness.

Therefore in this paper, a coloured Petri Nets based function model of BitTorrent
system is proposed and effectively validated. Coloured Petri Nets are quite suitable
for modeling and validating the system in which concurrence, communication and
synchronization play a major role. Using coloured Petri Nets to model BitTorrent
system is absolutely a good choice, because these models not only specify the func-
tional details hierarchically and unambiguously, but also present visible execution of
the concurrent behaviors of BitTorrent. Our contributions are listed as follows:

+ A modeling architecture of BitTorrent is proposed. It presents significant
guidance about model hierarchy, data abstraction and model refinement. It
also applies to modeling other protocols with intricate communication and
concurrence as their behavior characteristic like BitTorrent.

+ A coloured Petri Nets based hierarchical model of BitTorrent is constructed.
To the best of our knowledge, it is the first time to present a function model
of BitTorrent in peer level. It could not only be served as an unambiguous
and visual formal specification for different system implementations, but also
facilitate the behaviors simulation and properties verification of BitTorrent.

+ An effective model validation and analysis method is presented. Taking full
advantage of CPN Tools, an integrated validation and analysis method is
performed, combining simulation, state space analysis and model checking
technologies. They are used towards different abstract levels of above models
to validate the model soundness and effectiveness, and check whether those
models satisfy the key requirement properties of BitTorrent system, such as
no out-of-orders executions, or random downloading behaviors, etc.

The rest of this paper is organized as follows. As the background of our studies,
section 2 presents an overview of BitTorrent system and coloured Petri Nets with
CPN Tools. Then, section 3 describes the modeling architecture as a general guid-
ance, and specific model instances are constructed and explained in section 4, to-
gether with some modeling assumptions and data modeling. Section 5 focuses on
model validation and analysis, which is used to confirm the validity of formal models
proposed in section 4. Finally, section 6 concludes the paper and sketches our future
research issues.

160

2 Background

2.1 BitTorrent Overview

BitTorrent aims to facilitate fast downloading of popular files. According to the in-
formal specification of BitTorrent [1], a sharing file is divided into several pieces of
fixed size (e.g. 256 KB each), which are basic sharing units during file distribution. A
special torrent file, as the uniform identification of the source file, is made to record
the information and data hash of these pieces. All participating peers that download or
upload the same file will form a random and temporary mesh network, and they
download different pieces from different peers. If there are numerous simultaneous
peers sharing the same file, downloading an entire copy will become faster.

In a BitTorrent distribution network, there are two kinds of peers: leecher, who
downloads its lack and uploads its having at the same time, and seed, who has entire
file and just uploads for other leechers. Besides, there is a tracker to keep tracking
information (e.g. peer positions and their downloading progress) of all the participat-
ing peers dealing with the same file. It stores and maintains such information, and
uses them to organize the peer list, which helps a new leecher find peer candidates to
connect. As illustrated in figure 1, a leecher firstly asks the tracker for the peer list.
Then it establishes connections to those peers in the list which are sharing the same
file, and records which pieces they have through bitmap messages. Finally, this
leecher requests pieces from other connecting peers, leechers or seeds, and continues
the file sharing until it becomes a seed. Many protocols and algorithms play a signifi-
cant part in above procedures.

peer list
maintenance
L\ algorithm

&

tracker
A A
report
peer list| [peer | download
request list status
cyclically
¢ handshake > ¢ handshake >
¢ send bitmap ¢ send bitmap
¢« Dicce request ¢« Dicce request O
piece sending ¢—Dicce sharing %
Leecher
seeds control packet control packet leechers
| (choke/interested) | | (choke/interested) | 4

peer selection
algorithm

Fig. 1: The major components of a BitTorrent system.

choking algorithm

There are two specific protocols in BitTorrent. One protocol specifies the commu-
nication between a peer and a tracker, called tracker protocol; the other specifies the
interaction behaviors between peers, called peer protocol. The tracker protocol de-
scribes the functionalities including peer list request and response, and peer
downloading status cyclical report. It is much simpler compared with the peer proto-

161

col. The peer protocol describes various interactions during file sharing between a
leecher and a seed, or between leechers. It consists of handshake procedure, bitmap
exchange, piece request and sending, piece having announcement, and other control
communication used to achieve incentive mechanism [1] in BitTorrent.

Besides, there are several key algorithms to promote the efficiency of file sharing,
including peer list maintenance algorithm implemented in trackers, and piece selec-
tion algorithm and choking algorithm implemented in peers. As described in [1], there
are four default piece selection algorithms, i.e. strict priority, rarest first, random first
piece and endgame mode. They work collaboratively to improve the whole distribu-
tion performance of a BitTorrent system. Choking algorithm is designed to guarantee
reasonable and fair downloading speed for every leecher, and put some positive feed-
back to freeriders.

In practice, a BitTorrent system is very complicated. A peer usually participates in
different file downloading and uploading procedures. Learning from the good model-
ing exercise, we tradeoff between the sufficiency and validity of formal models and
simplicity and feasibility of the model analysis. We make full use of hierarchical
modeling capability of coloured Petri Nets to model the BitTorrent protocol in several
abstract levels, which does not lost the necessary functional details of BitTorrent, to-
gether with a modest size of the model for practical analysis.

2.2 CPN and CPN Tools

Coloured Petri Nets (CPN) [8] is always adopted to model and validate systems with
high concurrence and complex communication. In recent years, there are many suc-
cessful projects [11, 12, 13, 14]. CPN has many strong capabilities used to facilitate
modeling complex systems, i.e. token colors with abundant data types and operations;
hierarchical modeling using substitution transitions, page instances and fusion sets;
flexible functional programming language to specify control and data constrains. Such
techniques facilitate modeling the BitTorrent into several abstract layers, and ex-
pressing data type and functional behaviors accurately and flexibly.

These are several CPN based modeling tools for researcher to do experiments. As
far as well known, CPN Tools [9, 10] is the most powerful one. Regarded as indus-
trial-strength software for modeling and analysis CPN models, CPN Tools gains more
than 8000 users from nearly 140 countries, and widely adopted in many significant
projects [10]. In the paper, we take full advantage of editing, simulation, and state
space analysis capabilities of CPN Tools to construct and validate BitTorrent models.

3 Modeling Architecture

The informal specification of BitTorrent [1] just covers the fundamental and neces-
sary parts, such as systems deployment, key data structures, core algorithms, and
main flow of contents publishing and files distribution. From the point of view of
functional modeling, there are two major hurdles in constructing an accurate and ap-
propriate model based on such specification. On the one hand, some sections in the
specification do not need to be modeled, such as system deployment procedure or

162

some data collection behaviors for user layer displaying. Modeling these behaviors
contributes few to system functional analysis, and to make matters worse, introduces
incogitable but unnecessary state space explosion. How to distinguish such kind of
functionalities from other indispensable parts is a really challenge. On the other hand,
some detailed algorithms or message interactions in the specification are not ex-
plained clearly or even not mentioned at all. Take the choking and interesting mes-
sages for example, the trigger time and orders of such messages interaction are not
mentioned clearly. It needs further consideration and complementarities from the per-
spective of design or implementation phases.

functional transactions

communication interactions

node behaviors

algorithms

data declaration

network topology

Fig. 2: The modeling architecture of BitTorrent.

In this paper, we propose a non-trivial modeling architecture to cope with above
two challenges. As illustrated in figure 2, the modeling architecture contains four lay-
ers, which represent different modeling levels, together with data declaration and al-
gorithms layers throughout. We could firstly mode the network topology, and then
refine the node behaviors and other upper layer issues, as this paper demonstrated.
With the equivalent effects, we could also model detail algorithms and specific func-
tionalities of peer entities firstly, and then compose them to form communication in-
teractions and construct node and network layers. Each layer focuses on certain as-
pects of system functional behaviors, and the tradeoff between the model size in one
layer and the function sufficiency in that layer should be paid more attentions.

Network topology layer focuses on the modeling of entire network environments,
including the participating entities and their relationship from the network topology
point of view. Especially, the number of different types of entities and their position
in the network environments should be considered carefully. Redundant entities or
incorrect relations not only introduce a potential huge state space, but also could not
give prominence to the key properties of the system.

Node behaviors layer focuses on the execution states and their transfer relation in
a specific entity, such as a tracker or a peer node. As for network protocols, sending
requests and receiving responses, together with some connectivity control actions are
usually modeled in this layer.

Communication interactions layer focuses on messages interactions between pro-
tocol entities. As for network protocols, collecting property data, generating requests,
parsing response and switching to subsequent processing are major modeling issues in
this layer. The logical relationship of such behaviors needs careful consideration.

Transactions and algorithms layer focuses on the detailed functionalities, for ex-
ample, the control flows, maintenance of key data structures, sampling the required
data, and core algorithms. The redundant or inaccurate modeling in this layer will lead
to notorious state space explosion, especially when the high concurrence and complex
communications exist. Therefore, we should iteratively refine the models to construct
an optimum model with modest sizes and functional descriptions in different layers.

163

The model size of this layer is often bigger than that of other layers, so we could di-
vide transaction layer into several sub-layers for legible modeling.

To sum up, taking full advantage of hierarchical abstraction methodology, above
modeling architecture facilitates modeling system functionalities into several abstract
layers, and expressing behavior details accurately and flexibly. It is quite suitable and
feasible for guiding complex system modeling. According to different modeling and
analysis purposes, we could adjust the modeling scale inter-layer and inner-layer, and
perform efficient analysis in suitable layers. CPN is considered to be an effective ac-
tualization of above modeling architecture, and the following sections demonstrate the
validity of such actualization.

4 CPN Modeling of BitTorrent

Guided by the modeling architecture in above section, we construct an entire BitTor-
rent CPN model with 44 page instances (24 if replicated page instances are not
counted), as shown in figure 3. This model assumes the absence of exceptions, that is,
communication infrastructure is reliable, and there are no vulnerabilities during the
protocol execution. Section 4.1 discusses some function related assumptions in mod-
eling. Key date types are modeled as different color sets in section 4.2. From section
4.3 to 4.7, we present BitTorrent CPN models in different layers respectively. Six
specific page instances are presented as a representative. They cover all modeling
layers, and the most significant functionalities of BitTorrent.

m'lwm'k‘ node | interaction | transaction pages descriptions
layer ! Iu.]'g’- ! [gy@r ! layer top describe the entire network topology
i ! ! ! Tracker describe the genaral behavior of a tracker
! ! updaterec ! updaterec update tracking information
| Tracker ‘{ ! generate generate and send response packet with required peer list
! | -generate | Seed describe the genaral behavior of a seed peer
! ! sending ! sending send ication packets of peer protocols
! ! { L handleBM recving receive and phrase communication packets
: Seed : recving : checkREQ handleBM describe hehaviors as receiving hitnlm.p message
i i ‘ updates checkREQ generate a new piece packet as receiving request packet
top < i i ~ sending | updates describe behaviors as receiving choking related
handleBM Leecher describe the genaral behavior of a leecher peer
! ! ! checkBM sending send communication packets of tracker or peer protocols
: : : updates {updateRS recving receive and phrase communication packets
updateBM handleBM | describe behaviors as receiving bitmap message
: : : checkREQ updates describe behaviors as receiving choking related
i recving i updateBM checkBM look up the required peer bitmap information
| Leecher | i updateHS generate a new request packet
i i i updatePIC checkBM updateBM update bitmap information
i i i pdateRS checkREQ generate a new piece packet as receiving request packet
i i i sendHM updatePIC | describe consequent behaviors as receiving piece packet
; 1 i-updateBM updateHS record the required piece have been stored
T T T T T T T T T T T T T T T T T sendHM generate and send have packets
aigorithm choking choking implement choking algorithm
layer \- rarestselction rarestselection | implement the rarest piece selection algorithm

Fig. 3: The entire CPN model of BitTorrent.
4.1 Modeling Assumptions

As discussed in section 3, modeling all aspects specified in original BitTorrent speci-
fication [1] will definitely fell into the state space explosion embarrassment. There-

164

fore, some function related modeling assumptions should be made at first, that is,
some complex behaviors should be simplified and some inconsiderable parts should
be omitted directly. According to the modeling architecture, we discard the dross and
select the essential, so detailed modeling assumptions are listed as follows.

+ Some inconsiderable functionality is omitted. Firstly, web server related
processing is beyond the core BitTorrent functionalities, and not worth while
to analysis. Then, some over-detailed methods, such as Bencoding and Hash
checking [1], are modeled just as a transition under the reasonable assump-
tion that they go wrong in a very small probability. At last, the hash value of
torrent file is used to indentify each sharing file instead of using the whole
torrent file. The generating and parsing of torrent file are omitted together.

+ Only single file sharing is considered. The single file sharing scenario covers
all functionalities of BitTorrent, and is more feasible for analysis, so without
losing the generality, we carry out simulation and state space analysis based
on single file sharing configuration in BitTorrent executing.

+ File piece is the basic sharing unit. According to the original specification,
the basic request unit of a file is slice [1], and a piece is composed of several
slices. Taking into account the similar processing behaviors, we adopt piece
as basic sharing unit for simpler analysis.

+ Some less important mechanisms are simplified. Endgame mode [1] is just a
piece selection optimized method in the end phase of file downloading. Not
modeling its behaviors does not affect the main functionalities of BitTorrent,
and avoid introducing huge concurrent state space. Besides, as for the chok-
ing algorithm, we just model the fundamental part without optimistic
unchoking and anti-snubbing [1], which are used for improving the perform-
ance and fairness of BitTorrent.

To sum up, above modeling assumptions are necessary to focus our modeling is-
sues on the most significant parts of BitTorrent, and control the size of CPN models
for effective and efficient behaviors analysis.

4.2 Data Modeling

The major data types used in BitTorrent are modeled as different color sets, shown in
figure 4. We utilize simple color sets (unit, integer, and string) and compound color
sets (product, record, union, and list) together to model property fields (e.g. infohash,
peerid, and some flags), communication packets (e.g. handshake packets, choking
packets, bitmap packets, request packets, piece packets, have packets) and key data
structures (e.g. peer bitmap, piece request set, piece having set) of BitTorrent system.

It is well-known that complex color sets will possibly result in more difficult
analysis work. We hold the following principle in data modeling: capturing the indis-
pensable data elements and organizing them using suitable color sets to achieve both
clear representation and easy operation. For example, the fields in communication
packets used in tracker protocol and peer protocol are less than the original BitTorrent
specification, because only necessary fields are picked up, and organized with suitable
color sets as simple as possible.

165

¥Declarations

» Standard declarations

¥ETP declarations
¥oolset STATS = with success | fail | go;
¥ oolset INFOHASH = int with 1..10;
¥oolset PEERID = with p1 | p2 | p3 | pch;
¥ oolset EVENTS = with started | stopped | completed | isempty;
¥colset TS_REQ = product INFOHASH * PEERID * EVENTS;
¥oolset INTERVAL = int with 180..180;
¥oolset INDEXES = product INFOHASH * PEERID;
¥ colset PEERSET = list INDEXES with 0..10;
¥oolset TS_REP = product INTERVAL * PEERSET;
¥oolset PPTYPE = string with "a".. "z" and 1..15;
¥oolset BITMAP = list INT with 0..20;
¥ colset UPRATE = int with 0..1000;
¥ colset HDSK_MSG = product INFOHASH * PEERID;
¥ colset TRANS_MSG = product PPTYPE * INFOHASH *BITMAP * UPRATE;
¥oolset COMM_MSG = product PPTYPE * INFOHASH;
¥colset MSG = union HDSKMSG: HDSK_MSG + TRANSMSG: TRANS_MSG + COMMMSG: COMM_MSG;
¥ colset PACKET = product MSG * PEERID * PEERID;
¥ oolset ISCHOKE = with chokes | unchokes;
¥ oolset BMENTRY = record file: INFOHASH * peer:PEERID * bitrmaps:BITMAP * uprates:UPRATE * choking:ISCHOKE;
¥ colset BMSET = list BMENTRY with 0..30;
¥ colset PEERENTRY = record file:INFOHASH * bitmaps:BITMAP;
¥ colset HAVESET = list PEERENTRY with 0..10;
¥ colset REQSET = list PEERENTRY with 0..10;
¥ oolset MOLIKE = list PEERID with 0..5;
¥ colset UPDATEREC = product INFOHASH * PEERID * BITMAP;

Fig. 4: The color sets in CPN model of BitTorrent.

HSDK_MSG stands for main data fields of handshake messages. TRANS_MSG
stands for main data fields of bitmap, request, piece and have messages. COMM_
MSG stands for choke, unchoke, interested and uninterested messages. Union type is
used to uniformly model such messages, and combined with source peerid and desti-
nation peerid to compose the entire communication packets. Besides, there are three
significant data structure: BMSET, representing the piece distribution information of
other peers, HAVESET, representing the index of pieces that have been downloaded,
REQSET, representing the index of pieces that have been requested but not
downloaded. They all modeled as list type for easy data retrieval and update. Fur-
thermore, corresponding variables are named almost the same with its host color sets
except for spelling with lowercase, so we do not list them for limited space.

4.3 Network-layer Modeling

Figure 5 indicates the top page of BitTorrent CPN models. It describes the network
topology of the BitTorrent system for our analysis. There are one tracker (Tracker),
one seed (Seed), and two leechers (Leecherl and Leecher2). Leecherl acts as a new
joining peer, and Leecher2 acts as an existing leecher with part file. Because they
have same behaviors, the subpages derived from the substitution transitions Leecherl
and Leecher?2 in the top page are the same. We only assign different initial markings
of BMSET to identify that Leecher! has empty file and Leecher2 has part file, and
Leecherl could download the file from both Seed and Leecher2. The underlying
transmission network is model as several places with color set PACKET. These four
entities compose a least topology set which could cover the whole desired functional-
ities of BitTorrent, and the protocol executions among these entities are already very
complicated for feasible and effective model analysis processing.

166

PEERSET PEERSET

PACKET
Leecher]] [Ceecher2

PACKET

PACKET PACKET

Fig. 5: The network topology model.

4.4 Node-layer Modeling

We choose the leecher model as a representative of node layer models because the
tracker model is simpler and the seed model is just a bridged edition of leecher model
without piece requesting related functionalities. Figure 6 indicates the specific behav-
iors of a leecher. The key aspect of modeling in this layer is to outline the protocol
execution flows as a whole. For example, the main body of leecher behaviors is vari-
ous communications involved in the tracker protocol and the peer protocol, together
with their temporal orders. According to this principle, we model four kinds of
leecher behaviors: peer list request, peer list parsing, packets generation and sending
of the peer protocol, packets receiving and parsing of the peer protocol. These behav-
iors interact causally and cooperatively.

m Out TS In| TR1

STATS TS_REQ PEERSET
(#1 indexes, #2 indexes, started) peerset
success indexes -
Tracker_req pid recv_peers
INDEXES eerset
packet
send_ms recv
if (#2 packet)=p3 PACKET

PACKET then 1 packet peerset PEERSET

else empty

net51)«
-O‘ if (#2 packet)<>p3

PACKET then 1" packet
else empty

PACKET

sending

sendingl

(HDSKMSG(indexes2),
#2 indexes, pch)

forward
PACKET

{| recving

recvingl

PACKET

167

rmall (hd peerset) peerset

init_shake | [(length peerset)>0]

hd peerset
indexes2

shake

INDEXES
indexes

send_shake

chokingl

Fig. 6: The model of a leecher.

4.5 Interaction-layer Modeling

Modeling in the interaction layer focuses on the processing of protocol packets. As
for the tracker protocol and peer protocol in BitTorrent, generating requests from data
fields, parsing responses and switching to subsequent processing respectively are ma-
jor modeling issues. As a typical example, figure 7 presents the behaviors when a
leecher receives different packets from other connected peers. It is actually a subpage
of substitution transitions receive in figure 6. On receiving handshake packets, the
leecher will generate the corresponding bitmap message after successful handshake
verification. On receiving (un)choke or (un)interested packets, the leecher will con-
tinue subsequent steps, which are modeled as another substitution transitions updates
in detail. On receiving bitmap, request, piece or have packets, the leecher will carry
out respective processing actions modeled as different substitution transitions.

if MSG.of_HDSKMSG(#1 packet)

then 1' (#1 packet) [(#1 hmsg)=infohash] (HDSKMSG(hmsg),
else empty peerid, #2 hmsg)
@ hashverify
HDSKMS!
MSG (hmsg) (infohash, peerid) o
if MSG.of_COMMMSG(#1 packet) > PID
then 17 (#3 packet)
else empty INDEXES
A PEERID PACKET A
if MSG.of _COMMMSG(#1 packet)
then 1° (#1 packet)
else empty
COMMMSG cmsg
MSG (cmsg) COMM_MSG
if MSG.of_TRANSMSG(#1 packet)
then 1° (#3 packet)
else empty
>e2) 3
if MSG.of_TRANSMSG(#1 packet) PEERID
then 1' (#1 packet) [#1 tmsg="bitmap"]
else empty
packet tmsg
t
@ o
PACKET TRANSMSG[#1 tmsg="request"]

(tmsg)
tmsg

TRANSMSG [#1 tmsg="piece"]
(tmsg)

tmsg

TRANSMSG [#1 tmsg="have"]
(tmsg)

Fig. 7: The receiving behavior model of a leecher.

Detailed processing of choking and interesting related messages (COMM_MSG)
is modeled with an identical substitution transition, because processing methods to
these messages are similar and simple. But detailed processing of bitmap, request,
piece and have messages (TRANS_MSG) is modeled with respective substitution
transitions, because processing methods to these messages are more complex and dif-
ferent with each other. So adjusting the model scale inter-layer and inner-layer is
quite helpful to obtain the modest model size for feasible analysis.

168

4.6 Transaction-layer Modeling

Transaction layer are fundamental page instances to model specific functionalities of
BitTorrent. Modeling in this layer requires many tradeoffs to pursue the golden sec-
tion of modest model size, so iterative model refinement is indispensable and signifi-
cant. Two kinds of transaction pages are exemplified as follows. Figure 8 presents the
behaviors when a leecher receives choking or interesting packets. It contains some
substitution transitions to describe more detailed behaviors, while figure 9 is an abso-
lute leaf page instance with no substitution transitions. It indicates the behaviors that a
leecher firstly checks and calculates which piece should be requested and then gener-
ates request message with available data.

if #1 cmsg="interested"
then 1 (#2 cmsg,peerid) (COMMMSG("unchoke", #1 indexes),

else empty ndexes #2 indexes, pch)
INDEXES PACKET
if #1 cmsg="unchoke"
then 1° (#2 cmsg,peerid)
else empty
b2
COMM_MSG INDEXES UPDATEREC
if #1 cmsg="choke" ("choke",
cmsg then 1" cmsg (#2 cmsg),
else empty (1, 0) updateBM1
>—>Ecv update_BM
COMM_MSG TRANS_MSG
if #1 cmsg="choke" - -
peerid then 1" success
else empty
if #1 "ghoke" STATS
i cmsg="dhoke
then 1" peerid success
else empty peerid
[In]opid2 storepid >
PEERID peerid PEERID STATS

Fig. 8: The transaction behavior model of a leecher.

The size of page instances in this layer tends to be large, and any redundant or in-
accurate behaviors modeling will lead to serious state space explosion. Based on our
experience, two kinds of problems are worth notice. One is about concurrent opera-
tions semantics. There often exist some seeming concurrent actions, which could be
modeled sequentially without any harm to protocol functionalities. For example,
when a leecher has received a piece, it should update HAVESET structure and request
a new piece. These two behaviors are independent, and could execute concurrently or
sequentially. If model them as concurrently execution, many unnecessary concurrent
states will be introduced, so we coercively arrange the execution order of these ac-
tions, that is, a control place is added to make corresponding transitions fired sequen-
tially. The other problem is about the balance between the complexity of the net
structure and the data inscriptions. It is wheezy but vital. Considering CPN Tools
provides powerful ML programming language for describing constrains, we prefer
specifying ML inscriptions to introducing new places or transitions when modeling
some exception behaviors. Taking retrieving list data as an example, transition guard
inscription is used to model null-list checking instead of making a new transition. The
former does no harm to protocol functionalities, and reduces much redundant states.

169

ins_new regset N
{file=(#file pentry),
bitmaps=(ins_new
(#bitmaps pentry)
(hd bitmap))}

storebm

£ess

STATS
reaset e (#1 uprec)=
uprec (#file (hd regset)) pentry success
then nil
else rmall (hd regset)
regset

if (#1 uprec)
= (#file (hd regset))
then 1" (hd regset)

else empty

UPDATEREC
uprec

PEERENTRY

delhave

if (#1 uprec)=(#file (hd regset))
then 1" (listsub (#3 uprec)
(intersect (#3 uprec)
(#bitmaps (hd regset))))

else empty

[not (List.nul| regset) andalso
contains (#bitmaps (hd regset))
(#3 uprec)]

pentry regset

;’Jadd

success

[not (List.null bitmap)]

newentry

BITMAP success bitmap

(TRANSMSG
("noreq"”,1,[],

0), pch, pch) (TRANSMSG("request”, #1 uprec, STATS

(hd bitmap)::[], 0), #2 uprec, pch)

PACKET

Fig. 9: The transaction behavior model of a leecher.

4.7 Algorithm-layer Modeling

There are several algorithms implemented in BitTorrent. Choking algorithm and piece
selection algorithms are most important.

INT
if (#uprates (hd bmset)) > (#uprates (hd bmsetrult))

andalso n<(length bmset)+1 andalso
(#uprates (hd bmset)) < (#uprates (hd (rev bmsetrult)))
then n+1 else if List.null bmset then 0 else 1

if (#uprates (hd bmset)) > (#uprates (hd bmsetrult))
andalso n<(length bmset)+1 andalso

(#uprates (hd bmset)) < (#uprates (hd (rev bmsetrult)))
then bmset

else rm (hd bmset) bmset

n

[not (List.null bmset) andalso (m=0 orelse m=99)]

sort

<

<
bmsettmp) if (#uprates (hd bmset))>

(#uprates (hd bmsetrult)) andalso

(#uprates (hd bmset))<

(#uprates (hd (rev bmsetrult)))

andalso m=0 then 99

else if (#uprates (hd bmset))<

(#uprates (hd bmsetrult))

andalso m=99 then 100 else m

if (#uprates (hd bmset))>
(#uprates (hd bmsetrult))
andalso

(#uprates (hd bmset))<
(#uprates (hd (rev
bmsetrult)))

then ins bmsettmp

(hd bmset)

else empty

if n=0 orelse n-1=(length bmset)
orelse (#uprates (hd bmset)) >=
(#uprates (hd (rev bmsetrult)))
then ins bmsetrult (hd bmset)
else if (#uprates (hd bmset))

<= (#uprates (hd bmsetrult))
then (hd bmset)::bmsetrult

else List.drop(bmsetrult, 1)

bmsetrult INT

0

m

bmset [m=100] bmsettmp
resort [+ o partset
nil BMSET
bmsettmp”~ ~bmset

if List.null bmset rm (hd bmset) bmset

then 11 [not (List.null bmset) andalso m>0]

else empty

- forward

if m<5

then (COMMMSG("unchoke", PACKET
#file (hd bmset)), #peer (hd bmset), pch)
else (COMMMSG("choke", #file (hd bmset)),
#peer (hd bmset), pch)

Fig. 10: The choking algorithm model of a peer.

170

BitTorrent has no central resource allocation, and each peer tries to maximize its
own download rate based on local conditions. A peer uploads pieces to certain leech-
ers according to the download rate they obtain from such leechers. It is a variant of
tit-for-tat. In order to achieve better performance, a peer usually chokes some
non-active peers temporarily, and readjusts the choking peer list periodically. The
choking algorithm specified in BitTorrent is composed of three parts: the basic chok-
ing algorithm, the optimistic unchoking algorithm and anti-snubbing algorithm. In our
CPN models, only the basic choking algorithms are modeled. As shown in figure 10,
the main behavior in the algorithm is to order the entries in BMSET according to the
download rates. The first four are considered as unchoking peers and others as chok-
ing peers, and corresponding choke or unchoke packets are sent respectively.

Piece selection algorithms focus on selecting pieces to download with modest or-
ders for better performance. There are four piece selection algorithms. Strict Priority
is concerned about slice downloading, that is, once a slice has requested from one
peer, the remaining slices in that piece are also requested from the same peer. We do
not model this algorithm because we just model the piece level behaviors as explained
in section 4.1. Rarest First is the core algorithm in piece selection. Considering all
connecting peers with a certain peer, if a piece has least copies storing among these
peers, this piece should be downloaded firstly. This algorithm guarantees that the rar-
est pieces could be distributed as quickly and early as possible. Similar to choking
algorithm, the main behavior of rarest first algorithm is to order the entries in BMSET
according to the number of each piece storing in other connecting peers, and the least
pieces are put forward. Because of behavior similarity to choking algorithm, models
of this algorithm are not presented for space limitation. Random First Piece is used
when downloading starts for obtaining a complete piece as soon as possible. We util-
ize a random initial marking to model this algorithm. At last, Endgame Mode is used
to conquer the problem where the last piece is usually hard to get. As mentioned in
section 4.1, this algorithm is not modeled because of serious concurrent behaviors.

In our constructed CPN models, we trigger the choking algorithm at the time that
piece request starts. Also, we consider the executing of algorithm as atomic events,
that is, the piece request procedure will never start unless the choking algorithm is
over. Without losing the generality, this simplification could reduce huge concurrent
behaviors and make protocol analysis more practicable. But in fact, the choking algo-
rithm are essentially time-driven, that is, it works periodically and independently, so
we will try to utilize time modeling capability provided by CPN Tools to refine algo-
rithm models in further research issues.

S Analysis of BitTorrent CPN Models

Having constructed the CPN models of BitTorrent, we should make further analysis
to validate and revise the model, that is, to validate the effectiveness of models, and
check whether those models satisfy the key requirement properties of BitTorrent sys-
tem, such as no out-of-orders executions, or random downloading behaviors, etc. Un-
fortunately, as concurrence and intricate communication are essential characteristics
of BitTorrent systems, the constructed models are so large that the direct state spaces

171

analysis becomes infeasible because of the notorious state space explosion problem.
In order to launch practical analysis, and make it as complete and reliable as possible,
we introduce an integrated method which combines CPN Tools supported simulation,
state space analysis and model checking technologies, and uses them towards differ-
ent profiles of the models.

system | system model checking
properties properties
state space analysis
function function functi

units | units wits | (simuiation)

Fig. 11: The analysis framework of BitTorrent models.

As shown in figure 11, our analysis work is composed of two aspects. In the bot-
tom, function unit is a basic functional flow of the protocol execution, for example, a
leecher asks the peer list of the sharing the file, or a leecher downloads a piece from
another peer. Based on the same models, different specific initial marking assign-
ments can form different function units, that is, different initial marking will result in
different executions of the protocol. Several function units could execute sequentially
or concurrently to form a more complex functionality. We adopt simulation to vali-
date the function unit, together with some state spaces analysis to check basic proper-
ties of them, such as boundedness, liveness, or deadlock checking. Just like the rela-
tionship between unit testing and system testing, based on the correct function unit,
some higher properties of the protocol system should be verified, such as no out-of-
orders executions, or a peer downloads pieces randomly, etc. Such properties are usu-
ally described as some temporal logics and verified using model checking technolo-
gies. In this paper, we use ASKCTL [18], provided by the CPN Tools, to describe
such properties, and exemplify some key properties verification processes based on
abstract models. From the point of view of model validation, function units simulation
and analysis help validate the effectiveness of protocol detailed behaviors, and higher
properties checking help verify the satisfiability to protocol requirements.

5.1 Function Units Validation

During the process of model construction, simulation is frequently performed to
check whether the model behaves as expected. Because the simulation has immediate
visual feedbacks, it is quite useful in finding modeling errors. Especially, the sin-
gle-stepping through the simulation is very helpful to understand the details of origi-
nal protocol specification, and make necessary refinement to CPN models. It is a good
way to modify the model immediately when such simulation is performing.
According to sufficient simulations of BitTorrent CPN models, we find that most
of concurrent behaviors existed in the model could be serialized. For example, when a
piece packet is received, the BMSET should be updated and some new piece requests
should be sent. These two behaviors execute independently, and if we model them as
two independent substitution transitions, they will introduce concurrence in protocol
running, together with large state space. In fact, those concurrent behaviors are not

172

intrinsically concurrent, and they could be serialized by assigning an execution order
in the model manually. As discussed in section 4.6, we coercively arrange the execu-
tion order of these behaviors to effectively reduce much unnecessary state space.

Unfortunately, there are still some true concurrent behaviors happened in BitTor-
rent CPN models. For example, when a leecher receives a peer list from the tracker
with at least two peer candidates, it will connect to both concurrently for different
piece requests. As shown in figure 12, the left trace (nodes 11->12->15->19->24->30
->37->45...) and the right trace (11->13->16->20->25->31->38->46...) respectively
indicate that a leecher request pieces from two different peers, and the other traces all
present the interleaving executions between these two behaviors. In fact, most of such
traces are meaningless for analysis because they are too detailed. Some conflict access
of significant data is worthy of consideration, and simulation related capabilities in
CPN Tools are strong enough to validate such behaviors because of the visual feed-
backs to check whether conflicts really happen. According to such observations and
inferences, we generate several function units based on both functionality of protocol
and true concurrent behaviors, that is, each function unit represents a relatively inde-
pendent functional flow of protocol executions with no or controllable true concurrent
behaviors. These function units should cover all paths of the model, and their sequen-
tially or concurrently executions form all feasible functionalities of original specifica-
tion. Towards each function unit, we perform both simulation and state spaces based
static analysis to validate the reliable execution of such function unit.

Fig. 12: The example state spaces of BitTorrent CPN models.

In our analysis, four function units are designed:

(1) Leecherl firstly asks Tracker for peer list of the sharing file (supposed to
composed of two pieces), then Tracker replies with list containing Leecher2
and Seed, where Leecher2 has one piece and Seed has entire file.

(2) Leecherl connects to Leecher2, and download one piece without further
pieces requests.

173

(3) Leecherl connects to Seed, downloads two pieces, and announces Leecher2
that it has the entire file using piece having packet.

(4) Leecherl executes the rarest first piece selection algorithm, and Seed exe-
cutes choking algorithm when receiving piece request from Leecherl.

Function unit (2) and (3) can execute concurrently after (1) has finished, and (4)
can execute sequentially before (3). These four function units cover all paths of CPN
models and major functionalities of BitTorrent systems according to the original
specifications. After such function units division, it is simple but representative for
model analysis. Firstly, we perform sufficient simulation towards these function units
to remove unnecessary concurrence and refine models. The refinement process in-
cludes two aspects, correcting the inaccurate behaviors modeling and abstracting the
redundant behaviors without meaningless details. Then, based on these function units,
automatic state spaces analysis provided by CPN Tools is performed to check basic
properties of such function units. The analysis results of above four function units are
overviewed in table 1.

Table 1: State space analysis result of four function units.

function | state space home dead live
X nodes arcs boundness . s .
units status markings markings transitions
1 full 10 9 normal*® last marking” | last marking none
2 full 100 99 normal last marking | last marking none
3 full 4910 8978 normal none last marking none
4 full 18 17 normal none none all
14243 partial® 60358 111126 — — — —

* “normal” indicates no exceptions existing in boundness checking.
* “last marking” indicates the state in models where function unit executes successfully and terminates.
#* “partial” indicates it can not generate full state spaces under the time limitation of 1000 seconds.

5.2 Model Checking of System Properties

After above validation procedures, function units are verified thoroughly. Each func-
tion unit execution starts from a specific initial marking and with no or controllable
concurrent behaviors, therefore, the state space generated for this function unit only
contains the states that could be reached from that initial marking, and the size of such
state space is usually not too large to analysis. However, if we focus on checking
higher system properties, such as mutual relationship among function units or system
level requirements, we need full state space to enumerate every possible execution of
protocol systems. Unfortunately, based on BitTorrent CPN models constructed in
section 4, the state space explosion happens that we can not utilize advanced state
spaces queries [17] or model checking technologies [18] to verify such properties.

In this paper, instead of considering the concrete full state space generated from
original CPN models constructed in section 4, we check higher properties over a finite
abstraction. According to modeling architecture mentioned in section 3, the abstract
models only cover network, node and interaction layers. More specifically, the net-
work and node layers in abstract models remain the same as the original models, and
the interaction layers in abstract models are modeled as leaf page instances without

174

substitution transitions, that is, replacing the substitution transitions in original models
with ordinary transitions. Besides, the abstract models contain some new places rep-
resenting key data structures, the same as that appeared in original models. Such ab-
straction takes effect just because on one hand the functionalities of original transac-
tion layer or algorithm layer model have been validated, the ordinary transitions could
represent equal and valid functionalities as original substitution transitions, and on the
other hand, original transaction layer models are always independent in functionalities
with each other except for accessing the common data structures, so we reserve these
data structures in new abstract models to keep the interaction relationship between
corresponding behaviors. The abstract models could effectively relieves the notorious
state space explosion, and make model checking feasible. This kind of abstraction
could be considered as a kind of over-approximation. On checking higher properties
on the abstract models, if the property passes verification, it also holds in original
detailed models. Otherwise, simulation is utilized to find out the reason of failed veri-
fication: modeling error, protocol defects, or inaccurate abstraction.

(infohash, peerid)
@ INDEXES

[(#1 hmsg)=infohash]
hashverify

if MSG.of_HDSKMSG(#1 packet)
then 1° (#1 packet)
else empty

HDSKMSG
(hmsg)

HDSKMSG(hms eerid, #2 hms
((hmsg), p 9)@
& packeT

MSG
if MSG.of_COMMMSG(#1 packet) then 1' (#3 packet) else empty

s »{(pid) PEERID

if MSG.of _COMMMSG(#1 packet) peerid

then 1° (#1 packet) [#1 cmsg="interested"] (COMMMSG("unchoke",
else empty cmsg #2 cmsg), peerid,pch)

COMMMSG(cmsg) MSG (TRANSMSG("request”,

#2 cmsg,(hd bitmap)::[],
0), peerid, pch)

tl bitma)
Fusion 1]

BITMAP

[#1 cmsg="unchoke"]

COMMMSG(cmsg)

if MSG.of_TRANSMSG(#1 packet) then 1" (#3 packet) else empty
I
if MSG.of_TRANSMSG(#1 packet)
then 1 (#1 packet) [#1 tmsg="bitmap"]
else empty

PEERID

(COMMMSG("interested",
#2 tmsg), peerid, pch)

TRANSMSG(tmsg)
[#1 tmsg="request"]

i (TRANSMSG("piece",
peerid #2 tmsg, #3 tmsg, 0),

eerid, pch
BITMAP

TRANS_MSG peerid

[not (List.null bitmap)]

TRANSMSG(tmsg)

if peerid<>p2

then 1 (TRANSMSG
("have",#2 tmsg,
#3 tmsg, 0),p2, pch)
else empty

TRANS| MSG

J
(TRANSMSG("request",
#2 tmsg, bitmap, 0), peerid, pch)

[#1 tmsg="piece"]
tm:

extract3
TRANSMSG(tmsg)

BITMAP

PACKET

tl bitmap

Fig. 13: The abstract receiving behavior model of a leecher.

As a representative, figure 13 presents packet receiving behaviors of a leecher in
abstract models. Compared with figure 7, it has no substitution transitions, and only
focuses on protocol communication behaviors. The newly constructed abstract model
has 10 page instances in total. We assign different initial markings to conduct differ-
ent execution flows. The rationality of such assignments has been validated in func-
tion unit analysis. As an example, we consider the concurrent execution of function
units (2) and (3) defined in section 5.1. The full state space contains 9180 states and
22546 arcs. There are no home markings, no live transitions and 16 dead markings.

175

Using “State Space to Sim” tool in CPN Tools, we could clearly observe the color
tokens in certain places, which proves that those dead markings exactly correspond to
different concurrent execution results. Based on full state space, we also perform
higher properties verification using ASKCTL based model checking. For example,
considering a situation that a peer receives a piece without having received a unchoke
message before, we specify BTFormula to check such situation never happens. Be-
cause ASKCTL has no definition of formula like “A— B”, we use its equivalent form
as “OR(NOT A, B)” instead. Figure 14 presents the property description and checking
result. This kind of properties usually referred as safety properties, and hard to simu-
late manually. Its successful verification (val it = true: bool) indicates that both ab-
stract and detailed models behave accurately according to the property. Many other
safety properties could be checked effectively and efficiently in the same way.
use (ogpath”"/ASKCTL/ASKCTLloader.sml")

fun IsUnchoke a =
(Bind.receivesl'sendc2 (1, {peerid=p2, cmsg=("unchoke",1), bitmap=[1,2]}) = ArcToBE a);

fun IsRecvPiece a =
(Bind.receivesl'sendt3 (1, {peerid=p2, tmsg=("piece", 1, [1], 0), bitmap=[]}) = ArcToBE a);

val BTFormula =
INV(OR(MODAL(AF("Unchoke", IsUnchoke)), NOT(MODAL(AF("ReceivePiece", IsRecvPiece)))));

eval_node BTFormula InitNode;

val IsUnchoke = fn : Arc -> bool
val IsRecvPiece = fn : Arc -> boal
val ETFormula =
NOT
[EXIST_UNTIL
NOT
(OR
(MODAL (AF ["Unchake" fn)),
NOT (MODAL (&F ("ReceivePieca”,n)))))) : &
val it = true : bool

Fig. 14: The ASKCTL based model checking of higher properties.

From above property verification process, it is clear that this abstraction guided
checking method not only takes full advantage of sufficient validation to function
units, but also makes higher properties checking practical and effective. According to
our limited experience on network protocols modeling and analysis, this method is
always regarded as a cost-efficient choice.

6 Conclusion and Future Research Issues

BitTorrent is one of the most popular protocols used in P2P applications providing
fast file distribution and effective file sharing. It has complex communications and
concurrent behaviors, which are major hurdles for formal functional modeling and
validation. In this paper, towards such complex protocol system, a hierarchical mod-
eling architecture is proposed to facilitate modeling system functionalities into several
abstract layers, and expressing behavior details accurately and flexibly. Then, we
utilize CPN as an effective actualization of above modeling architecture to construct
BitTorrent CPN models, taking full advantage of the industrial-strength modeling
capabilities of CPN. Several exemplified CPN pages are presented, and corresponding

176

modeling techniques are discussed at the same time. To the best of our knowledge, it
is the first time to present a functional formal model of BitTorrent in peer level. It
could not only be served as an unambiguous and visual formal specification for dif-
ferent system implementations, but also facilitate the behaviors simulation and prop-
erties verification of BitTorrent. At last, taking full advantage of strong analysis capa-
bilities in CPN Tools, efficient and sufficient BitTorrent models validation is per-
formed in both function unit level and system requirement level using simulation,
state space analysis and model checking technologies together. They are used towards
different abstract levels of above models to validate the effectiveness of models, and
check whether these models satisfy the requirement properties of BitTorrent.

As for the future research, time factors will be introduces into current CPN mod-
els, because the choking algorithm and some peer selection algorithms are essentially
time-driven. Besides, continuous improvements of making our BitTorrent CPN mod-
els more complete and more efficient need inevitably further studies.

Acknowledgments: This work was supported by the National Natural Science Foun-
dation of China under Grant No. 60863015, the Key Program of Natural Science
Foundation of Inner Mongolia of China under Grant No. 20080404ZD20, and the
ChunHui Program of the Ministry of Education of China under Grand No.
Z72007-1-01042.

References

1. Bram Cohen. Incentives Build Robustness in BitTorrent. In Proceedings of the 1st Work-
shop on Economics of Peer-to-Peer Systems, page 5, Jun. 2003

2. D. Qiu and R. Srikant. Modeling and Performance Analysis of BitTorrent-Like
Peer-to-Peer Networks. In Proceedings of the ACM SIGCOMM’04, pages 367~378, Aug.
2004

3. M. Barbera, A. Lombardo, G. Schembra, etc. A Markov Model of a Freerider in a BitTor-
rent P2P Network. In Proceedings of the IEEE Globecom’05, pages 985~989, Nov. 2005

4. Lei Guo, Songqging Chen, Zhen Xiao, etc. A Performance Study of BitTorrent-like
Peer-to-Peer Systems. IEEE Journal on Selected Areas in Communications, Vol. 25, No.
1:155~169, Jan. 2007

5. Amir H. Rasti and Reza Rejaie. Understanding Peer-level Performance in BitTorrent: A
Measurement Study. In Proceedings of the 16th International Conference on Computer
Communications and Networks (ICCCN 2007), pages 109~114, Aug. 2007

6. Vivek Rai, Swaminathan Sivasubramanian, Sandjai Bhulai, etc. A Multiphased Approach
for Modeling and Analysis of the BitTorrent Protocol. In Proceedings of the 27th Interna-
tional Conference on Distributed Computing Systems (ICDCS 2007), page 10, Jun. 2007

7. K.N. Parvez, C. Williamson, Anirban Mahanti, etc. Analysis of BitTorrent-like Protocols
for On-Demand Stored Media Streaming. In Proceedings of ACM SIGMETRICS’08, pages
301~312, Jun. 2008

8. Kurt Jensen. Coloured Petri Nets: Basic Concepts, Analysis Methods and Practical Use.
Springer-Verlag, 2nd edition, Vol. 1~3, 1997.

9. Kurt Jensen, Lars Michael Kristensen and Lisa Wells. Coloured Petri Nets and CPN Tools
for Modeling and Validation of Concurrent Systems. International Journal on Software
Tools for Technology Transfer, Vol. 9, No. 3-4: 213-254, Springer Verlag, Jun. 2007

10. CPN Tools. Online: http://wiki.daimi.au.dk/cpntools/cpntools.wiki.

177

11.

12.

13.

14.

15.

16

17.

18.

19.

20.

Jonathan Billington and Amar Kumar Gupta. Effectiveness of Coloured Petri nets for Mod-
eling and Analyzing the Contract Net Protocol. In Proceedings of the 8th CPN Workshop,
pages 49~64, Oct. 2007

Marko Bago, Nedjeljko Peric and Sinisa Marijan. Modeling Bus Communication Protocols
Using Timed Colored Petri Nets - The Controller Area Network Example. In Proceedings
of the 9th CPN Workshop, pages 103~122, Oct. 2008

Jing Liu, Xinming Ye, Jun Zhang, etc. Security Verification of 802.11i 4-way Handshake
Protocol. In Proceedings of the IEEE International Conference on Communications (ICC
2008), pages 1642~1647, May. 2008

Panagiotis Katsaros. A Roadmap to Electronic Payment Transaction Guarantees and a Col-
ored Petri Net Model Checking Approach. Information and Software Technology archive.
Vol. 51, No. 2: 235-257, Feb. 2009

Yanlan Ding and Guiping Su. A Reduction method for Verification of Security Protocol
through CPN. In Proceedings of IEEE International Conference on Networking, Sensing
and Control (ICNSC 2008), pages 73~77, Apr. 2008

. Jinan Yi-xin, Lin Chuang, Qu Yang. Research on Model-Checking Based on Petri Nets.

Journal of Software, Vol. 15, No. 9:1265-1276, Sep. 2004 (in Chinese)

Kurt Jensen, Soren Christensen and Lars M. Kristensen. CPN Tools State Space Manual.
Jan. 2006

Allan Cheng, Soren Christensen and Kjeld H. Mortensen. Model Checking Coloured Petri
Nets Exploiting Strongly Connected Components. Technical Report of Computer Science
Department, Aarhus University, Denmark, Mar. 1997

Timo Latvala. Model Checking LTL Properties of High-Level Petri Nets with Fairness
Constraints. In Proceedings of the 22nd International Conference on Application and The-
ory of Petri Nets ICATPN 2001), pages 242~262, Jun. 2001

Lisa Wells. Performance Analysis using CPN Tools. In Proceedings of the 1st International
Conference on Performance evaluation Methodologies and Tools (ValueTools 2006), page
10, Oct. 2006

178

