
A framework for the definition of variants of
high-level Petri nets

E. Kindler1 and L. Petrucci2

1 Informatics and Mathematical Modelling
Technical University of Denmark (DTU)

DK-2800 Lyngby, DENMARK
eki@imm.dtu.dk

2 LIPN, CNRS UMR 7030, Université Paris XIII
99, avenue Jean-Baptiste Clément
F-93430 Villetaneuse, FRANCE

laure.petrucci@lipn.univ-paris13.fr

Abstract. There exist many different variants of high-level Petri nets. Many differences between
these variants, however, do not concern the features of the particular versions of Petri nets, but
they concern the data types that can be defined and used in the different variants of high-level
nets. One famous example of a restricted version of high-level nets are well-formed nets (which
are currently standardised as symmetric nets in ISO/IEC 15909-1), which basically restrict the
data types to finite sets with a very limited set of operations on them. Due to these restrictions,
there exist some more powerful analysis algorithms for symmetric nets.
During the standardisation of high-level nets and some of their variations, it turned out that
defining the legal data types and the operations on them is the most difficult part. In particular,
these definitions become lengthy and mix Petri net specific issues with data-type specific issues,
which often blocks the view for the really relevant parts. Even worse, supposedly simpler versions
of high-level nets often are more difficult to define than high-level nets in general.
This paper introduces the concepts and the mathematical tools to ease the definition of new
variants and versions of high-level Petri nets: a framework for defining variants of high-level nets.
The main ingredient of this framework is the concept of generators, which we recently introduced
for formalising modular PNML, and the newly introduced concept of constructs.

Keywords: High-level Petri nets, variations, well-formed nets, symmetric nets.

1 Introduction

There exist many different variants of high-level Petri nets. Some of them have special concepts or are
different in the way they are formalised. However, in many cases, the differences between these versions
are not with the actual Petri net features, but they concern the data types that can be defined or are
built-in to the specific version of Petri nets. One example are well-formed nets [1], which are currently
standardised under the name symmetric nets in an addendum to ISO/IEC 15909-1. The main idea of
symmetric nets is to restrict the data types to finite sets with a very limited set of operations on them;
in turn, these restrictions results in some powerful analysis techniques.

The problem with the many variants of high-level Petri nets is that the formalisations are very
different, and the actual differences are blurred by mixing the conceptual differences with the standard
definitions on a very low level of abstraction. In this paper, we introduce a mathematical framework
for the definition of different versions of high-level Petri nets, which separates these issues and helps
defining the supported constructs on an adequate level of abstraction. In the end, it is possible to define
a specific version of high-level nets by three parameters, which can be defined independently from the
actual definition of high-level nets. The main ingredients of this framework are generators, which have
proven to be useful — if not necessary — for defining and using high-level Petri nets from modules
[2], and the new concept of constructs, which will be used for characterising the legal constructs in the
algebras.

121

In order to validate this framework, we give the definition of several versions of high-level Petri nets
known from the literature.

2 An example

In order to illustrate the concepts of high-level nets and to discuss some of the features in which the
various versions of high-level nets differ, we start with an example. The example is taken from [3, 4],
which models a distributed algorithm for computing the minimal distance of every node (agent) to
some distinguished root nodes in some communication network.

[(x,n)]

AGENT x nat
distances:
AGENT x nat

M(x,1)

[(x,d)]M(x,d+1)

[(x,d)]

[(x,d)]

[(x,d+1)]

messages:

M(x,d+1)

[x] [(x,0)]

x: AGENT
d: nat
n: nat

inneragents: AGENT

rootagents: AGENT

[x]

R

I

t1

t2

d<n

t3

Fig. 1. Example: Minimal distance algorithm

Figure 1 show the algebraic Petri net modelling this algorithm. We assume that there is a network
of agents; the agents could be represented by a set A and the network by a symmetric binary relation
N ⊆ A× A. Moreover, there is a distinguished set of root agents R ⊆ A. Initially, the root agents are
represented on place rootagents, whereas the other agents, which are called inner agents, are represented
on place inneragents. The algorithm is quite simple: Initially, every root agent sends a message to all
its neighbours and stores distance 0 as its own distance; for each neighbour, the message says that it
has a distance of at most 1 to some root node. The distance of an agent x is represented by a pair
(x, d) on place distances, where x represents the agent, and d its distance. A message to an agent y is
represented on the place messages by a pairs (y, d), where y represents the agent to which this message
is addressed, and d the tentative shortest distance. Sending these initial messages is represented by
transition t1, where M(x, 1) represents a set (resp. a multiset) of all the messages with value 1 to every
neighbour of agent x.

Initially, the inner agents cannot do anything. They just wait for a message from one of their neigh-
bours. Once a message arrives for an inner agent x with distance d, it takes that distance d and stores
it for itself (represented as pair (x, d) on place distances). Moreover, it sends a message to all its neigh-
bours with distance d+1, which is represented by M(x, d+1). This behaviour is modelled by transition
t2. But, the inner agents are not finished yet. It might be that later an inner agent receives a distance d
that is even shorter than its current distance n. In that case, it takes that shorter distance d as its new
distance, and again informs all its neighbours about that. This behaviour is modelled by transition t3.

Here, we will not discuss the algorithm further. But, we would like to point out some of the notations
and concepts used in the algebraic Petri net in Fig. 1. First and foremost, we would like to point out
that this is actually not an algebraic net; it is what we call an algebraic net scheme [3]. The reason is
that the set of agents A, and the way they are connected N , may vary. A can be any set, and N can
be any symmetric binary relation over A. This is why the set A is not directly used in the Petri net.

122

Instead, we use a sort symbol AGENT, which could be interpreted by different sets. Likewise the set
of root agents is represented by a constant symbol R and the set of inner agents is represented by the
symbol I, and the interpretation of these symbols might be different, depending on which are the root
nodes and which are not. Likewise, the structure of the network is represented by the interpretation of
the operation symbol M, which produces the messages for all the neighbours.

But, there is another interesting point here. The sort AGENT, the constants R and I, as well as
the operation M are specific to this model (actually, they are specific to a class of algorithms, which
we call network algorithms). Therefore, their syntax as well as as their legal interpretations need to
be defined by the modeller explicitly. In contrast to that, the sort nat does not need to be defined,
because it is a standard sort, and also the constants and operations on that sort are standard and have
a standard interpretation, which the modeller would not need to define. Actually, the classical approach
of algebraic Petri nets [5] forces a modeller to define these sorts and operators even though they are
standard. And a modeller would also be forced to explicitly define the pairs for sorts and the boolean
operations. In this paper, we will introduce a mechanism that helps avoiding this: Generators help to
define the standard sorts and operations of a specific class of high-level nets in a simple and flexible
way.

A third observation is that, for the sorts and operations that must be defined by the user, not all
possible interpretations are legal. Sometimes, we would like to restrict the interpretations to sorts with
a finite set, and also restrict the operations on them. In our example, AGENTS should be finite sets, and
the operation M should only be those functions that represent a network (resp. the sending of messages
in a network). To this end, this paper introduces the concept of constructs. Using this mechanism, we
can for example restrict the user defined sorts to the ones that are legal in symmetric nets.

3 Basic Definitions

In this section, we formalise algebraic Petri nets and all the pre-requisites. We introduce the standard
concepts of algebraic specifications [6] and of algebraic Petri nets [7–9, 5, 10]. The notation, however, is
slightly adjusted for easing the readability of the concepts; the presentation follows the lines of [2] —
streamlined a bit for the settings in this paper.

3.1 Basic notations

As usual, N stands for the set of natural numbers (including 0), and B stands for the set of booleans, i.e.,
B = {false, true}. For some set A, A+ denotes the set of all non-empty finite sequences over A. For some
function f : A → B and some set C, the restriction of f to C is defined as the function f |C : A∩C → B
with f |C(a) = f(a) for all a ∈ A ∩ C. For two functions f : A → B and g : C → D with disjoint
domains A and C, we define f ∪ g as the function (f ∪ g) : A ∪ C → B ∪D with (f ∪ g)(a) = f(a) for
all a ∈ A and (f ∪ g)(c) = g(c) for all c ∈ C.

For some set I, a set A together with a mapping i : A → I is an I-indexed set (A, i). The I-indexed
set (A, i) is finite if A is finite. When i is understood from the context, we often use A for denoting the
I-indexed set. For every j ∈ I, we define the set of all elements indexed by j: Aj = {a ∈ A | i(a) = j}.
By definition, all Aj are disjoint. For an I-indexed set (A, i) and some set B, we define (A, i) ∩ B =
(A ∩B, i|B).

For some set A, a mapping m : A → N is called a multiset over A if
�

a∈A m(a) is finite. The set
of all multisets over A is denoted by MS (A). For two multisets m1, m2 ∈ MS (A), the operation + is
defined pointwise: m = m1 + m2 is defined by m(a) = m1(a) + m2(a) for every a ∈ A. This way, the
addition operation + is lifted from the natural numbers to multisets. The empty multiset is denoted by
[] and defined by [](a) = 0 for all a ∈ A. This is in line with a special case of our notation that denotes a
multiset by enumerating all its elements: [a1, a2, . . . , an] (where the number of occurrences of the same
element is relevant).

123

3.2 Signatures and algebras

The idea of high-level nets is that there are different kinds of tokens, which are often called colours.

Mathematically, the tokens can come from some set which is associated with a place. Different functions

allow for manipulating them. In order to represent these sets and functions, some syntax must be

introduced. Here, we use the approach of algebraic nets, where we use signatures for the syntax, and

the associated algebras for the meaning.

Definition 1 (Signature). A signature SIG = (S, O) consists of a set of sort symbols S (often called
sorts for short) and an S+-indexed set of operation symbols O such that S and O are disjoint. The
set S ∪ O is called the set of symbols of SIG. For some signature SIG, we denote the set of its sorts
by SSIG and the set of its operations by OSIG .

Sometimes, we want to restrict some signature SIG = (S, (O, i)) to a subset of symbols A. This

is denoted by SIG |A. In the definition, we take care that all the operation symbols operating on an

eliminated sort are also eliminated: We define SIG |A = (S ∩ A, (O�, i�)) where O� = {x ∈ O | i(x) ∈
(S ∩A)+} and i� = i|O� .

Definition 2 (Signature extension). A signature SIG �
extends a signature SIG if, for some set A,

SIG �|A = SIG. This is denoted by SIG ⊆ SIG �. Let SIG = (S, O) and SIG � = (S�, O�) be two signatures
with a disjoint set of symbols, then we define the union SIG ∪ SIG � = (S ∪ S�, O ∪O�).

By definition, SIG ∪ SIG �
is a signature, which extends both SIG and SIG �

.

Definition 3 (Signature homomorphism). For two signatures SIG = (S, O) and SIG � = (S�, O�),
a mapping σ : S∪O → S�∪O� is called a signature homomorphism, if for every s ∈ S we have σ(s) ∈ S�

and for every o ∈ Os1...sn we have σ(o) ∈ O�
σ(s1)...σ(sn).

Definition 4 (Algebra). A SIG-algebra A assigns a carrier set to every sort of SIG and a function

to every operation of SIG.

Technically, an algebra A is a mapping such that, for every s ∈ S, A(s) is a set and, for every

o ∈ Os1...snsn+1 , A(o) is a function with A(o) : A(s1)× . . .×A(sn) → A(sn+1).

Definition 5 (Algebra extension). Let SIG and SIG � be two signatures with SIG ⊆ SIG �, and let
A be a SIG-algebra and A� be a SIG �-algebra. Algebra A�

extends algebra A, if A�|SSIG∪OSIG = A. If A�

extends A, we write A ⊆ A�.

3.3 Variables and terms

The operations of a signature can be used to construct terms, which will be discussed in this section.

We start with the definition of variables.

Definition 6 (Variables). Let SIG = (S, O) be a signature. An S-indexed set X is a set of SIG-
variables, if X is disjoint from O.

VSIG denotes the class of all SIG-variable sets.

From the set of operations O of the signature and a set of SIG-variables X, we can construct terms
of some sort s inductively.

Definition 7 (Terms). Let SIG = (S, O) be a signature and X be a set of SIG-variables. The set of
all SIG-terms of sort s over a set of variables X is denoted by TSIG

s (X). It is inductively defined as
follows:

– Xs ⊆ TSIG
s (X).

– For every operation symbol o ∈ Os1...snsn+1 , and, for every k with 1 ≤ k ≤ n, tk ∈ TSIG
sk

(X), we
have (o, t1, . . . , tn) ∈ TSIG

sn+1
(X).

124

When SIG is clear from the context, we also write Ts(X) instead of TSIG
s (X). The set of all terms

is TSIG(X) =
�

s∈S TSIG
s (X). Terms without variables are called ground terms and are defined by

TSIG = T(∅) and by TSIG
s = TSIG

s (∅).
Sometimes, we need to refer to some terms with variables, but without specifically mentioning the

set of variables. The set of such terms is denoted by TSIG
s (VSIG).

Note that, in practice, terms are often written o(t1, . . . , tn) to make clear that the operation is

applied to the arguments. In order to emphasise the syntactical nature of terms, we use the tuple

notation (o, t1, . . . , tn) in all our formal definitions.

3.4 Assignment and evaluation

Terms are a purely syntactical construct. In order to give them a meaning, they are evaluated in a

given algebra. In order to evaluate terms with variables, we need to bind their variables to some value,

which is called a binding or an assignment.

Definition 8 (Assignment and evaluation). Let SIG = (S, O) be a signature, A a SIG-algebra,
and X a set of SIG-variables. An assignment β of X in A is a mapping such that, for every s ∈ S and
every x ∈ Xs, we have β(x) ∈ A(s).

An assignment β of variables X in A can be inductively extended to a mapping β that applies to all
terms TSIG(X), which is called evaluation of terms in A:

– For every x ∈ X, we define β(x) = β(x).
– For every o ∈ Os1...sn+1 , and every i ∈ {1, . . . , n} and term ti ∈ TSIG

si
(X), we define

β((o, t1, . . . , tn)) = A(o)(β(t1), . . . ,β(tn)).

For an empty set of variables ∅, there is a unique assignment of ∅ to A, which we denote with �.
The extension � can be used to evaluate ground terms, and is called ground evaluation.

3.5 Generators

In high-level nets and high-level net modules [2] in particular, we often have some sorts provided, and

we need to construct other sorts from them in a standard way. For example, we would like to use the

product over some existing sorts (see the example in Sect. 2); and, for every sort s, we also need a sort

that represents the multiset sort over that sort, ms(s). Moreover, the sets associated with these new

sorts are defined based on the sets associated with the underlying sorts. For example, the set associated

with ms(s) is the set of all multisets over A(s), i. e. MS (A(s)).
For that purpose, we need a mechanism for constructing new sorts and operations from some

signature and a way to define their meaning. To this end, we introduce generators. A generator defines

which new sorts and operators can be constructed out of existing sorts, and once the associated sets are

known for every sort, what the meaning of the corresponding constructed sorts and operators should

be. Since generators are needed anyway, we can also use them for introducing the standard sorts along

with their operations (e. g. nat or bool in our example).

Definition 9 (Generator). A generator G = (GS ,GA) consists of

– a signature generator function GS that, for any given signature SIG = (S, O), returns a signature
GS (SIG) such that SIG ⊆ GS (SIG); the signature GS (SIG) is called the signature generated from
SIG by the generator G;

– an algebra generator function GA that, for any SIG-algebra A, returns a GS (SIG)-algebra such
that the algebra GA(A) extends algebra A.

In [2], we needed a single generator only, because we were dealing with a single version of Petri

nets only. Here, we need different generators for the different versions of high-level nets. Therefore, we

will define several generators and operators for constructing new generators out of the existing ones

later in the paper. In order to give a feeling for the purpose of a generator, we use the one from [2]

125

as a first example here; we will introduce other ones later. The basic idea of this example generator
G = (GS ,GA), is to include, in addition to the existing sorts of some algebra also the booleans,
the associated multiset sort ms(s) for every sort s, and all the product sorts. In order to emphasise
the syntactical nature, and to distinguish the newly constructed sorts from already existing ones, we
use the notation (bool), (ms, s) and (×, s1, . . . , sn) for these generated sorts. Likewise, the generator
will generate the boolean constants (true) and (false) and the standard operations on booleans, the
operation ([], s, n), which makes a multiset out of n elements, the tupling operation ((), s1, . . . , sn), and
the projection operation (pr, i, s1, . . . , sn) on the i-th element of a tuple.

Definition 10 (Sort generator). Let SIG = (S, O) be an arbitrary signature, then GS (SIG) =
(S�, O�) is defined as follows:

– S� is the least set for which the following conditions hold:
1. S ⊆ S�,
2. (bool) ∈ S�,
3. (ms, s) ∈ S� for every s ∈ S�, and
4. (×, s1, . . . , sn) ∈ S� for all sorts s1, . . . , sn ∈ S�.

– O� is the least S�-indexed set for which the following conditions hold:
1. O ⊆ O�,
2. (true), (false) ∈ O�

(bool),
3. (not) ∈ O�

(bool)(bool),
4. (and), (or) ∈ O�

(bool)(bool)(bool),
5. ([], s, n) ∈ O�

s...s(ms,s) for every sort s ∈ S� and n ∈ N, where the number of s elements in the
index of O� is n,

6. (+, s) ∈ O�
(ms,s)(ms,s)(ms,s) for every s ∈ S�,

7. ((), s1, . . . , sn) ∈ O�
s1...sn(×,s1,...,sn) for all s1, . . . , sn ∈ S�, and

8. for every 0 ≤ i ≤ n, (pr, i, s1, . . . , sn) ∈ O�
(×,s1,...,sn)si

.

Definition 11 (Algebra generator). Let A be a SIG-algebra with SIG = (S, O) and let GS (SIG) =
(S�, O�). Then we define GA(A) by:

– The mapping of the sorts of GA(A) is defined as follows:
1. GA(A)|S = A|S,
2. GA(A)((bool)) = B,
3. GA(A)((ms, s)) = MS (GA(A)(s)) for every sort s ∈ S�, and
4. GA(A)((×, s1, . . . , sn)) = GA(A)(s1)× . . .×GA(A)(sn) for all sorts s1, . . . , sn ∈ S�.

– The mapping of the operations of GA(A) is defined as follows:
1. GA(A)|O = A|O,
2. GA(A)((true)) = true and GA(A)((false)) = false,
3. GA(A)((not)) = ¬, where ¬ is the boolean negation function,
4. GA(A)((and)) = ∧ and GA(A)((or)) = ∨, where ∧ and ∨ are the boolean conjunction and

disjunction functions,
5. GA(A)(([], s, n))(a1, . . . , an) = [a1, . . . , an], for every n ∈ N and every sort s ∈ S� and all

a1, . . . , an ∈ GA(A)(s); i. e. the multiset over s containing exactly the elements a1, . . . , an,
6. GA(A)((+, s)) = + for every sort s ∈ S�, where + denotes the addition of two multisets over

GA(A)(s),
7. GA(A)(((), s1, . . . , sn))(a1, . . . , an) = (a1, . . . , an) for all s1, . . . , sn ∈ S� and

a1 ∈ GA(A)(s1), . . . , an ∈ GA(A)(sn), i. e., the usual tupling, and
8. GA(A)((pr, i, s1, . . . , sn))((a1, . . . , an)) = ai for every 0 ≤ i ≤ n and a1 ∈ GA(A)(s1), . . . , an ∈

GA(A)(sn); i. e., the usual projection function on the i-th component.

126

Note that we need to make sure that all the symbols used in a basic signature SIG and introduced
by the generators GS (SIG) are interpreted in the same way. In some cases, this might restrict the legal
signatures and algebras to which a generator can be applied. In order to avoid overly complex math-
ematics, we do not introduce an explicit mechanism for that; we rather construct and use generators
in a systematic way. For example, in many cases the symbols used in SIG are flat and unstructured,
whereas the symbols introduced in GS (SIG) are tuples — some of them, like (bool), are 1-tuples. Since
this is needed only for making the mathematics work, our examples will use bool for (bool) and ms(s)
for (ms, s). However, we stick to the technical notations (bool) and (ms, s) in all formal definitions.

Definition 12 (Generator homomorphism). A signature homomorphism σ from some signature
SIG to some signature SIG � carries over to a signature homomorphism σG from GS (SIG) to GS (SIG �)
in a canonical way for any given generator G. In the case of our example, it is defined as follows:

– 1. σG(s) = σ(s) for every s ∈ S,
2. σG((bool)) = (bool),
3. σG((ms, s)) = (ms, σG(s)) for every s ∈ S, and
4. σG((×, s1, . . . , sn)) = (×, σG(s1), . . . ,σG(sn)) for all s1, . . . , sn ∈ S.

– 1. σG(o) = σ(o) for every operation o ∈ O,
2. σG((true)) = (true) and σG((false)) = (false),
3. σG((not)) = (not),
4. σG((and)) = (and), and

σG((or)) = (or),
5. σG(([], s, n)) = ([], σG(s), n) for every sort s ∈ S and every n ∈ N,
6. σG((+, s)) = (+, σG(s)) for every sort s ∈ S,
7. σG(((), s1, . . . , sn)) = ((), σG(s1), . . . ,σG(sn)) for all s1, . . . , sn ∈ S, and
8. σG((pr, i, s1, . . . , sn)) = (pr, i, σG(s1), . . . ,σG(sn)) for every 0 ≤ i ≤ n and s1, . . . , sn ∈ S.

3.6 Nets

At last, we introduce the basic notion of Petri nets.

Definition 13 (Net). A net N = (P, T, F) consists of two disjoint sets P and T and a set of arcs
F ⊆ (P × T) ∪ (T × P).

4 Algebraic nets and their behaviour

Now we are prepared to give a first definition of algebraic nets. This definition will be refined later,
in order to make it more flexible for defining an algebraic net of a particular kind. In Sect. 4.1, we
define algebraic nets; in Sect. 4.2, we define their behaviour. Note that the focus of this paper is not
on behaviour; but for completeness sake, we do not want to introduce a formal definition of algebraic
nets without a definition of their behaviour.

4.1 Algebraic nets

For a clear separation between syntax and semantics, we distinguish between algebraic net schemes
and algebraic nets [3]. Later we will define different versions of high-level nets, where the generators
are one of the main defining factors of a version. For now, we just use the fixed generator G as defined
in Sect. 3.5.

By contrast to most classical definitions of algebraic Petri nets and by contrast to our example, we
formalise a version of high-level nets, where the scope of a variable is a transition (inspired by [11]).
Note that is not a fundamental change; we even have the impression that many people think of variables
in Petri nets in this way even when variables are declared globally. But since this more local scope of
variables is slightly more complicated to formalise and to use, most formal definitions do not take that
view. However, foreseeing some future extensions in the work of ISO/IEC 15909, we deam it necessary
to be prepared for this in our formal definition.

127

Definition 14 (Algebraic net scheme).
An algebraic net scheme is a tuple Σ = (N,SIG , sort, vars, l, c, i) consisting of:

1. a net N = (P, T, F),
2. a signature SIG,
3. a place sort mapping sort : P → SGS(SIG),
4. a transition variable mapping vars : T → VGS(SIG)

5. an arc label mapping l : F → TGS(SIG)(VGS(SIG)) such that:
– for all (p, t) ∈ F ∩ (P × T) : l((p, t)) ∈ TGS(SIG)

(ms,sort(p))(vars(t))

– for all (t, p) ∈ F ∩ (T × P) : l((t, p)) ∈ TGS(SIG)
(ms,sort(p))(vars(t)),

6. a transition condition mapping c : T → TGS(SIG)
(bool) (VGS(SIG)) such that c(t) ∈ TGS(SIG)

(bool) (vars(t)) for
every t ∈ T ,

7. an initial marking i : P → TGS(SIG) such that, i(p) ∈ TGS(SIG)
(ms,sort(p)) for every place p ∈ P .

The mapping sort assigns a sort to each place, which defines the type of its tokens. The mapping vars
defines for each transition the set of its variables. The annotations of all arcs attached to a transition
may use only these variables; the same applies for the transition condition. Condition 5 formulates this
restriction of the variables of the arc annotations as well as the restriction that the arc annotation must
denote a multiset over the attached place type. Condition 7 guarantees that the term for the inititial
marking denotes a multiset of the respective type.

Definition 15 (Algebraic net). An algebraic net is pair (Σ,A), where Σ is an algebraic net scheme
equipped with a SIG-algebra A.

4.2 Behaviour of algebraic nets

For defining the behaviour of an algebraic net, we first need to define markings.

Definition 16 (Marking).
Let (Σ,A) be an algebraic net with Σ = (N,SIG , sort, vars, l, c, i) and N = (P, T, F). A marking m of
(Σ,A) is a mapping such that for every place p ∈ P , we have m(p) ∈ MS (A(sort(p))).

The operation + on multisets can be lifted to markings by defining m = m1 + m2 by m(p) =
m1(p) + m2(p) for every place p ∈ P .

The firing mode of a transition is the set of assignments to its variables such that the transition
condition evaluates to true.

Definition 17 (Firing mode).
Let (Σ,A) be an algebraic net with Σ = (N,SIG , sort, vars, l, c, i) and N = (P, T, F).

For some transition t ∈ T , an assignment β of the variables vars(t) in A is called a transition mode
of transition t, if β(c(t)) = true.

For any transition t and any firing mode β of t, we define the markings −tβ and t+β of (Σ,A) as
follows: For every place p ∈ P

−tβ(p) =
�

β(l(p, t)) if (p, t) ∈ F
[] otherwise

and

t+β (p) =
�

β(l(t, p)) if (t, p) ∈ F
[] otherwise

Next, we define when and how two markings are reachable from each other by a transition in a
firing mode.

128

Definition 18 (Firing rule).
Let (Σ,A) be an algebraic net with Σ = (N,SIG , sort, vars, l, c, i) and N = (P, T, F). Moreover, let
t ∈ T be a transition of N , β a firing mode of t, and let m1 and m2 be two markings. We say that m2

is reachable from m1 by firing t in mode β if there exists a marking m� such that m1 = −tβ + m� and
m2 = m� + t

+
β . Then, we write m1

t,β−→ m2.

If there exists a sequence m1
t1,β1−→ m2 −→ . . . −→ mn

tn,βn−→ mn+1, we write m1
∗−→ mn+1 and say

that mn+1 is reachable from m1 in (Σ,A).

In many publications on Petri nets, m1
t,β−→ m2 would be formalised in a different way by m1 ≥ −tβ

and m2 = (m1 − −tβ) + t
+
β . But, this would require to define the comparision operator ≥ on markings

and the subtraction operation − first. With our definition, we could avoid that. The only operation
necessary for defining the firing rule of Petri nets is the addition operation on markings, +.

From these concepts, we can now define the reachability graph as the semantics of an algebraic net.

Definition 19 (Reachability graph).
Let (Σ,A) be an algebraic net with Σ = (N,SIG , sort, vars, l, c, i) and N = (P, T, F).

We define the initial marking m0 of (Σ,A) by m0(p) = �(i(p)) for each p ∈ P . We define the set of
reachable markings of (Σ,A) by M = {m | m0

∗−→ m}. The relation

R = {(m1, (t, β), m2) | m1, m2 ∈M, t ∈ T, and β a mode of t with m1
t,β−→ m2}

is called the reachability relation of (Σ,A).
Γ = (M, m0,R) is called the reachability graph of (Σ,A).

5 Generators

As pointed out earlier, different generators can be used for defining different classes of high-level Petri
nets. In order to define the respective generators, we define some basic generators and some operations
on generators for defining new generators out of existing ones.

5.1 Basic generators

We start with defining some of the basic generators. In these definitions, we assume that SIG = (S, O)
is some signature and A some SIG-algebra.

Identity For technical reasons, we start with introducing the simplest generator of all: the identity
generator ID , which does not add any new sorts or operators. This generator is defined by ID =
(IDSIG , IDALG), where IDSIG(SIG) = SIG for all signatures SIG . By definition (see Def. 9), IDALG is
then uniquely defined by: IDALG(A)(x) = A(x) for all SIG-algebras A and all symbols x of SIG .

Booleans The generator BOOL = (BOOLSIG ,BOOLALG) adds the booleans and their operations to an
existing signature: We define BOOLSIG(SIG) = (S�, O�) by S� = S∪ �S with �S = {(bool)} and O� = O∪ �O
with �O = {(true), (false), (not), (and), (or)} with (true), (false) ∈ O�

(bool), (not) ∈ O�
(bool)(bool), and

(and), (or) ∈ O�
(bool)(bool)(bool).

We define BOOLALG(A) by BOOLALG(A)(x) = A(x) for every symbol x of SIG \ (�S ∪ �O).
For the symbols x ∈ �S ∪ �O, we define: BOOLALG(A)((bool)) = B, BOOLALG(A)((true)) = true,
BOOLALG(A)((false)) = false, BOOLALG(A)((not)) = ¬, where ¬ is the boolean negation function,
BOOLALG(A)((and)) = ∧ and BOOLALG(A)((or)) = ∨, where ∧ and ∨ are the boolean conjunction
and disjunction functions.

Note that, for some signature SIG , a SIG-algebra A, and some symbol x of SIG , it could happen
that GA(A)(x) �= A(x). For example, if (bool) occured in SIG but with a completely different meaning.
This way, this generator would rule out this algebra as illegal; and we will use this mechanism for
enforcing that symbols defined by the generators will be used in this interpretation only.

129

Restricted booleans Sometimes, we do not even want the full power of booleans. This is for example
the case for Place/Transition nets in high-level net notation as defined in Part 2 of ISO/IEC 15909.
The syntactical definition, however, requires that the trivial transition conditions exist. Therefore, we
introduce a generator that introduces a restricted version of the booleans with sort bool and only the
constant true, which can be used in this setting. We thus call this generator TRUE . The generator
TRUE = (TRUESIG ,TRUEALG) is defined by TRUESIG(SIG) = (S�, O�) where S� = S ∪ �S with �S =
{(bool)} and O� = O ∪ �O with �O = {(true)} with (true) ∈ O�

(bool). We define TRUEALG(A)(x) = A(x)
for every symbol x of SIG \(�S∪ �O). For the other symbols x ∈ �S∪ �O, we define: BOOLALG(A)((bool)) =
B and BOOLALG(A)((true)) = true.

Black tokens For representing Place/Transition nets, we also need a sort that represents the black
tokens, which is often called dots. The generator DOT adds this sort and a single constant to a signature
and the respective algebra. We define the generator DOT = (DOTSIG ,DOTALG) by DOTSIG(SIG) =
(S�, O�) where S� = S ∪ �S with �S = {(dots)} and O� = O ∪ �O with �O = {(dot)} with (dot) ∈ O�

(dots).
We define DOTALG(A)(x) = A(x) for every symbol x of SIG \ (�S ∪ �O). For the other symbols, we
define: BOOLALG(A)((dots)) = {•} and BOOLALG(A)((dot)) = •.

Natural numbers The generator NAT = (NATSIG ,NATALG) defines the natural numbers.
NATSIG(SIG) = (S�, O�) is defined by S� = S ∪ �S with �S = {(nat)} and O� = O ∪ �O with �O =
{(0), (succ)} with (0) ∈ O�

(nat), and (succ) ∈ O�
(nat)(nat). We define NATALG(A) by NATALG(A)(x) =

A(x) for every symbol x of SIG \ (�S ∪ �O). For the other symbols, we define: NATALG(A)((nat)) = N,
NATALG(A)((0)) = 0 and NATALG(A)((succ)) = ++ where ++ is the successor operation.

Multisets All versions of high-level Petri nets need some way of denoting multisets. To this end, we define
a generator that adds the multisets over the given sorts to the signature and algebra: The generator
MULT = (MULTSIG ,MULTALG) adds the constructs that are needed for constructing the multisets
over the sorts of an algebra. Here, we confine ourselves to a minimal version. Later, we introduce a
generator with some more operations on multisets: We define MULTSIG(SIG) = (S�, O�); where S� =
S ∪ �S with �S = {(ms, s) | s ∈ S} and O� = O ∪ �O with �O = {([], s, n) | s ∈ S, n ∈ N}∪ {(+, s) | s ∈ S},
where ([], s, n) ∈ O�

s...s(ms,s) and (+, s) ∈ O�
(ms,s)(ms,s).

We define MULTALG(A) by MULTALG(A)(x) = A(x) for every symbol x of SIG \ (�S ∪ �O). For the
other symbols, we define: MULTALG(A)((ms, s)) = MS (A(s)), MULTALG(A)(([], s, n))(a1, . . . , an) =
[a1, . . . , an], and MULTALG(A)((+, s)) = +, where + is the addition operation on multisets MS (A(s)).

Extended multisets Some versions of high-level Petri nets have more powerful operations on multisets
and for constructing multisets. To this end, we could use a generator that adds these operations. We
denote this generator for extended multisets by MULTX = (MULTXSIG ,MULTXALG), but we leave
the definition open, since it is yet to be decided which operations should be in there. We just assume
that MULTSIG(SIG) ⊆ MULTXSIG(SIG) and MULTALG(A) ⊆ MULTXALG(A).

One special extension of the multisets, which we need later for defining symmetric nets with bags
is MULTB . This generator MULTB = (MULTBSIG ,MULTBALG) is defined by MULTBSIG(SIG) =
MULTSIG(SIG) ∪ (∅, {(card), (unique)}) where (card) ∈ O(ms,s)(nat), and (unique) ∈ O(ms,s)(bool).
We define MULTBALG(A) by MULTBALG(A)(x) = A(x) for every symbol x of MULTSIG . For the
other symbols, we define: MULTBALG(A)((card))([a1, . . . , an]) = n, i. e. the number of elements in the
multiset. MULTBALG(A)((unique))([a1, . . . , an]) is the operator checking that the multiset is actually
a set (i. e. there is at most one occurrence of each element).

Products The generator PROD = (PRODSIG ,PRODALG) adds all products of the existing sorts and
some operations on these products: We define PRODSIG(SIG) = (S�, O�); where S� = S ∪ �S with �S =
{(×, s1, . . . , sn) | n ∈ N, s1, . . . , sn ∈ S} and O� = O ∪ �O with �O = {((), s1, . . . , sn) | n ∈ N, s1, . . . , sn ∈

130

S}∪{(pr, i, s1, . . . , sn) | n ∈ N, i ∈ N, 1 ≤ i ≤ n, s1, . . . , sn ∈ S} with ((), s1, . . . , sn) ∈ O�
s1...sn(×,s1,...,sn)

and (pr, i, s1, . . . , sn) ∈ O�
(×,s1,...,sn)si

.
We define PRODALG(A) by PRODALG(A)(x) = A(x) for every symbol x of SIG \ (�S ∪

�O). For the other symbols, we define: PRODALG(A)((×, s1, . . . , sn)) = A(s1) × . . . × A(sn),
PRODALG(A)(((), s1, . . . , sn))(a1, . . . , an) = (a1, . . . , an) for all s1, . . . , sn ∈ S and a1 ∈ A(s1), . . . , an ∈
A(sn), and PRODALG(A)((pr, i, s1, . . . , sn))(a1, . . . , an) = ai.

Note that PROD defines only products of the sorts that exist in the input signature already. It does
not define products of products recursively. This recursive construction of products is not necessary
here, since we can achieve this by the closure construction on this generator, which will be defined later.

Other sorts and operations Note that there could be many other generators that add some of the
commonly used sorts and operators, such as the integers, strings, or even more generic sorts like queues
or lists over existing sorts. Since, this paper is more on the framework then on actually defining and
classifying all the existing versions of high-level nets, we do not need them here, and therefore do not
formally define them here.

5.2 Constructions on generators

From existing basic generators, we can now built more complex generators. The operations needed in
this paper are the composition ◦, the union ∪ and the closure construct ∗.

Sequential composition The sequential composition of two generators G1 = (GS 1,GA1) and G2 =
(GS 2,GA2) is defined as the function composition, i. e. G2 ◦ G1 = (GS 2 ◦ GS 1,GA2 ◦ GA1). For
some signature SIG and some SIG-algebra A, this means (GS 2 ◦ GS 1)(SIG) = GS 2(GS 1(SIG)) and
(GA2 ◦GA1)(A) = GA2(GA1(A)).

Union Likewise, the union ∪ is the union of the two mappings G1 ∪ G2 = (GS 1 ∪ GS 2,GA1 ∪ GA2).
Note that we do not require the two generators to add disjoint symbols; actually, the way generators
are defined, both generators will add the original symbols, which is why they are not disjoint. But, we
assume (resp. we use and combine generators only in such a way) that they both agree on the meaning
of these symbols, i. e. the generated algebras will assign the same meaning to these symbols.

Closure The closure of a generator applies the generator over and over again. Let G, be some generator.
We define G0 = ID and, for each i ∈ N, we define Gi+1 = G ◦Gi. Then we define G∗ =

�
i∈N Gi.

For example, we can now define the generator G from Sect. 3.5 from the basic generators above
using the following constructions: G = (MULT ∪ PROD)∗ ◦ BOOL.

6 Constructs

Some variants of high-level Petri nets differ in the data structures that may be used in the underlying
algebras. For example, symmetric nets allow for data types with finite domains and a very limited
set of operations only. It would be possible to use the concept of generators with some sophisticated
and parameterised sort definitions, for explicitly introducing these data types. This however, would
introduce much syntactical overhead. Due to this overhead, it would also be very tedious to check
whether the generators really do what they are supposed to do, and designing and validating such
generators would need much care and experience.

This can be alleviated, if we allow to directly provide the respective algebras in the definition of the
algebraic net. This however requires a systematic way to characterise the algebras that are legal for a
specific version of high-level Petri nets and those which are not. In this section, we will introduce the
concepts for doing so: We slightly extend the concept of signatures to define its syntactical part, along
with a set of legal algebras. We call them constructs. Then a variant of high-level Petri nets can be
defined by a set of such constructs.

131

6.1 Formal definition of constructs

As mentioned above, a construct is, basically, a signature defining the sorts and operators of the

construct. In addition to that, we need to identify the role of the sorts and operators, or in general

the role of symbols. One role could, for example, be that it is a standard symbol (which is defined

via some generator); for example the sort booleans or some of the standard operations on it, which

have a fixed meaning in all the algebras and may even occur in different constructs with that same

meaning. Another role can be that the symbol must not be used by or occur in other constructs, with

the same role, which we call disjoint ; i. e. these symbols of different constructs do not overlap with

other constructs. The precise meaning of these roles will be made clear later in Def. 21. For now, we

allow to make these roles explicit.

One of the tricky parts of this definition is that we need to take care that the symbols with a fixed

interpretation actually have a fixed interpretation. To this end, we exploit the generators again which

define the symbols with a fixed meaning. In this definition of constructs, we need to make sure that a

construct is compatible with the used generator.

Definition 20 (Construct).
Let G = (GS ,GA) be some generator. A construct CON = (SIG ,F ,D , A) consists of a signature SIG,
two subsets F and D of symbols of SIG and a class of SIG-algebras A, such that

1. GS (SIG |F) ⊇ SIG |F and
2. for every A ∈ A we have GA(A|F)|F = A|F ,

where F is the set of all symbols of SIG except the symbols of F . The symbols of F are called the fixed

symbols of CON and the symbols of D are called the disjoint symbols of CON .
The class of all constructs with respect to a generator G is denoted by CG.

Basically, a construct consists of a signature, and some algebras which give all the legal interpre-

tations. The disjoint symbols D define which symbols may not overlap with other constructs, which

will be defined in Def. 21. The fixed symbols F , are the symbols with a fixed meaning. Technically,

we require that the fixed symbols in the algebra are the ones which would be added by the genera-

tor (condition 1) and also have the same meaning in all algebras as they have in the generated parts

(condition 2). Note that we use ⊇, because the generator could introduce many more symbols than the

ones occuring in the signature (typically, there are infinitely many symbols in the generator but only

finitely many in a construct).

Now, a set of such constructs can be used for characterising some specific algebras as defined below.

Definition 21 (Construct mapping and legal algebras).
Let G = (GS ,GA) be some generator and C be a set of constructs, SIG

� be a signature, and A� be a
SIG

�-algebra.
A construct mapping H for C and SIG is a set of pairs (CON , h), where CON ∈ C is a construct

with CON = (SIG ,F ,D , A) and h : SIG → SIG
� is a signature homormorphism such that the following

conditions are met:

1. (h|F)G|F = h|F (i. e. the homomorphism respects the interpretation of the fixed symbols as defined
by the generator G).

2. For all signatures SIG
�� ⊆ SIG

� with SIG
� ⊆ GS (SIG

��), for all ((SIG ,F ,D , A), h) ∈ H, and for
all symbols x of SIG with h(x) in SIG

� but not in SIG
��, we have x ∈ F (i. e. symbols with an

interpretation that comes from a generator are a fixed symbol of the construct).
3. For all (CON 1, h1), (CON 2, h2) ∈ H and all symbols x ∈ D1 and y ∈ D2 with h1(x) = h2(y), we

have CON 1 = CON 2, h1 = h2 and x = y (i. e. disjoint symbols of two different constructs do not
overlap in SIG

�).
4. For all symbols x� of SIG

�, there exists a (CON , h) ∈ H and a symbol x ∈ SIG such that h(x) = x�

(i. e. all symbols in the signature SIG
� are part of at least one construct).

5. For every (CON , h) ∈ H, we have A� ◦ h ∈ A (i. e. the part of the algebra corresponding to this
construct is one allowed by this construct).

132

Then, the algebra A� is said to be a legally constructed algebra with respect to C and H. We also say
that H is a construct mapping from C to A�.

The main idea of this definition is that in a legal algebra A�, all parts come from some construct.
Condition 1 says that the interpretation of the fixed symbols of a construct is the one defined by the
generator if these symbols were not there. Condition 2 makes sure that symbols that have a fixed
interpretation according to a generator, have been defined as such in the construct. Condition 3 says
that the disjoint symbols of all constructs are mapped to different symbols in SIG

�, so the constructs
do not overlap on these symbols. Condition 4 says that all symbols of SIG

� result from one of the
constructs, i. e. there are no symbols of SIG

� that are not injected by any construct mapping to SIG
�.

At last, condition 5 says that the semantics of the symbols comes from the construct. Note that in
condition 5, h is a signature homomorphism from SIG to SIG

�; therefore, A� ◦ h is a SIG-algebra, and
exactly this ‘part’ of SIG must be an algebra allowed by the construct (i. e. an algebra from A).

6.2 Examples of constructs

In this section, we will define some examples of constructs, which will be used for defining symmetric
nets and some other versions of high-level nets in Sect. 7.2.

Unordered sets The construct of unordered sets UO is defined by UO = (UOSIG , ∅, {u}, Au), where
UOSIG = ({u}, ∅) and Au contains every UOSIG-algebra A such that A(u) is a finite set.

This is basically defining a sort symbol u, which in all legal interpretations must be a finite set.
Since u is in the set of disjoint symbols of UO , this sort symbol may not overlap with disjoint symbols
of the other constructs.

Linearly ordered sets The construct of linearly ordered sets LO is defined by LO =
(LOSIG , {(bool)}, {o, lt}, Ao), where LOSIG = ({o, (bool)}, ({lt}, i)) with i(lt) = o o (bool) and where
Ao contains every LOSIG-algebra A such that A(o) is a finite set and A(lt) defines an irreflexive total
order on A(o).

Similarly to unordered sets, linearly order sets define a sort o which is associated with a finite set.
In addition, linearly ordered sets define an operation lt which defines a total (irreflexive) order on o.
Technically, lt is an operation into the booleans. This is where the fixed symbols come in: (bool) is a
fixed symbol of this construct, and therefore must obtain the interpretaion as defined in the generator.
Note that this sort (bool) might be used by different constructs. The symbols o and lt are disjoint
symbols.

Cyclic sets The construct of cyclic sets CS is defined by CS = (CSSIG , ∅, {c, pred, succ}, Ac), where
CSSIG = ({c}, ({pred, succ}, i)) with i(pred) = i(succ) = c c and where Ac contains every CSSIG-
algebra A such that A(c) is a finite set and A(succ) is a function defining a cycle on all elements of
A(c), and A(pred) is the inverse of A(succ).

The construct of cyclic sets is very similar to linearly order sets. The elements are arranged in a
cycle, which is expressed by the operators succ and pred.

Partitions The construct of partitions PAR is defined by PAR = (PARSIG , ∅, {p, f}, Ap), where
PARSIG = ({s, p}, ({f}, i)) with i(f) = s p and where Ap contains every PARSIG-algebra A such
that A(p) is a finite set and A(f) is a surjective function.

Equality The construct of equality EQ is defined by EQ = (EQSIG , {(bool)}, ∅, Ae), where EQSIG =
({e, (bool)}, ({eq}, i)) with i(eq) = e e (bool) and where Ae contains every EQSIG-algebra A such that
A(eq) is the equality function on A(e) (i. e. it evaluates to true if both arguments are the same).

Note that, in this construct, the sort symbol e as well as the operation symbol eq expressing the
equality are not in the set of the construct’s disjoint symbols. This way, the equality operation may be
added to any sort (even to the ones coming from other constructs).

133

All Likewise, the following construct allows to introduce a constant for a sort s that denotes a multiset
in which each element of the set associated with this sort occurs exactly once, which is often denoted
by alls; we use, the notation (all, s) here.

The construct ALL is defined by ALL = (ALLSIG , {(ms, s)}, ∅, Aa), where ALLSIG =
({s, (ms, s)}, ({all}, i)) with i(all) = (ms, s) and where Aa contains every ALLSIG-algebra A with
A(s) = {a1, . . . , an} such that A((ms, s)) = MS (A(s)) and A(all) = [a1, . . . , an].

Simple multisets The construct MULTSNB introduces the construction of a multiset el-
ement, the complement of a multiset w.r.t. its carrier set, the difference between two
multisets, and for a sort s a constant singleton multiset with (all, s) as its only ele-
ment. This construct is defined by MULTSNB = (MULTSNBSIG , {s, (ms, s)}, ∅, Am), where
MULTSNBSIG = ({s, (ms, s), (ms, (ms, s))}, ({{}, ~, \, whole}, i)) with i({}) = (ms, s)(ms, (ms, s)),
i(~) = (ms, s)(ms, s), i(\) = (ms, s)(ms, s)(ms, s), i(whole) = (ms, (ms, s)), and where Am contains
every MULTSNBSIG-algebra A with A({})([b1, . . . , bn]) = [[b1, . . . , bn]], A(~)([b1, . . . , bk]) = [c1, . . . , cj]
such that [c1, . . . , cj] contains exactly one occurrence of all the elements of A(s) not in [b1, . . . , bk],
A(\)([b1, . . . , bk], [c1, . . . , cj]) = [b1, . . . , bk] \ [c1, . . . , cj], i.e. the difference between the two multisets,
and finally A(whole) = [(all, s)].

7 The Framework

Now, we can extend the definition of algebraic nets with respect to the used generator and with respect
to some constructs, which will then allow us to define different kinds of algebraic nets. Actually, we use
two generators: the first one defines the basic sorts and operations for the tokens on the places. The
second generator introduces the necessary multiset structure on top of these basic sorts, which are used
to construct the arc annotations and the transition conditions. Note that, in the most general case, the
first generator has the full power so that tokens could be multisets and even multisets of multisets, etc.
The more interesting versions, however, are the ones with a more restrictive first generator.

7.1 Formal definition

Definition 22 (High-level net version definition). Let G1, G2 be two generators, and let C be a
set of constructs with respect to G2 ◦ G1. Then K = (G1, G2, C) is a version definition of high-level
nets.

The main idea of a definition of a version K = (G1, G2, C) is that the constructs C define the
signatures and algebras that may be explicitly defined by the user, and the generator G1 defines which
other sorts and operations may be constructed from them. These together define the basic sorts of this
version of algebraic nets. The generator G2 defines the multiset sorts and the operations that may be
used for the annotations of the net (markings, arc labels and transition conditions).

Definition 23 (Algebraic net of kind K). Let K = (G1, G2, C) be a version definition of high-level
nets with G1 = (GS 1,GA1) and G2 = (GS 2,GA2).

An algebraic net scheme of kind K is a tuple Σ = (N,SIG , sort, vars, l, c, i) with

1. a net N = (P, T, F),
2. a signature SIG,
3. a place sort mapping sort : P → SGS1(SIG),
4. a transition variable mapping vars : T → VGS1(SIG),
5. an arc label mapping l : F → TGS2(GS1(SIG))(VGS1(SIG)) such that:

– for all (p, t) ∈ F ∩ (P × T) : l((p, t)) ∈ TGS2(GS1(SIG))
(ms,sort(p)) (vars(t))

– for all (t, p) ∈ F ∩ (T × P) : l((t, p)) ∈ TGS2(GS1(SIG))
(ms,sort(p)) (vars(t)),

134

6. a transition condition mapping c : T → TGS2(GS1(SIG))
(bool) (VGS1(SIG)) with

c(t) ∈ TGS2(GS1(SIG))
(bool) (vars(t)) for every t ∈ T , and

7. an initial marking i : P → TGS2(GS1(SIG)) such that, i(p) ∈ TGS2(GS1(SIG))
(ms,sort(p)) for every place p ∈ P .

An algebraic net scheme Σ of kind K together with a SIG-algebra A and a construct mapping H
from C to A form an algebraic net (Σ,A,H) of kind K.

Note that the semantics and the reachability graph for algebraic nets of any kind is the same as the

one defined before in Sect. 4.2. The exact details of the generators do not play any role, as long as the

booleans and the multiset addition are included.

7.2 Examples of definitions of net versions

At last, we apply this framework for defining some versions of high-level Petri nets. Note that this

is mainly meant for demonstrating the use of the framework; a more complete, more systematic and

careful definition and classification of most of the relevant high-level Petri net versions is out of the

scope of this paper.

P/T-systems We start with the most primitive version of high-level nets, which is Place/Transition

systems, just in the setting of high-level nets. In ISO/IEC 15909-2 this version is called Place/Transition
systems in high-level net notation. The basic idea is that all places are of sort dots, which represents

the black tokens.

This version can be defined by PT = (DOT ,TRUE ◦MULT , ∅). Since the set of legal constructs

is empty, the signature and algebra provided for an algebraic net of this kind must be empty. Since

the first generator DOT only creates the sort dots from an empty signature, this is the only legal

sort for places. For constructing the legal arc inscriptions, also the sorts and operations generated by

TRUE ◦ MULT on top of that can be used. As discussed earlier, TRUE is a simple version of the

booleans with true as the only possible value; this is necessary for technical reasons, since in high-level

nets as defined above a transition must have condition.

Symmetric nets Next, we define symmetric nets by the help of a specific generator (products and

multisets cannot be built recursively) and the symmetric net constructs. We define the generators for

symmetric nets by SN 1 = PROD ◦ BOOL, SN 2 = MULT .

We define the constructs for symmetric nets by CSN = {UO ,LO ,CS ,PAR,EQ ,ALL}.

Then the definition of the symmetric net version of an algebraic net is KSN = (SN 1,SN 2, CSN).

Symmetric nets with bags Symmetric nets where extended in [12] to allow for manipulating multiset

elements in places, on arcs and in transitions conditions. This feature provides additional flexibility for

modelling with symmetric nets, without losing the analysis techniques such as the symbolic reachability

graph.

The definition of the symmetric net with bags version of algebraic net is KSNB = (MULT ◦PROD ◦
BOOL,MULTB ∪NAT , CSN ∪ {MULTSNB}).

Algebraic Petri nets with fixed arc weight Next, we characterise the version of algebraic nets as defined

by Reisig [5]. The major characteristics of this version is that the number of tokens flowing through an

arc is always the same, which is why they are sometimes called nets with fixed arc weight (see [13]).

The main point is that the multiset structure of the signature is constructed in a fixed way on top

of an arbitrary algebra. This is reflected in the formal definition AN 1 = (BOOL,MULT , CBOOL).
The constructor BOOL is used for using BOOL as a pre-defined sort. All other sorts can be defined

by arbitrary constructs over that generator. The multisets only come in via the second constructor

MULT (which does not provide any operation for flexible arc weights).

135

Algebraic Petri nets with flexible arc weight In contrast to that, Kindler and Völzer [13] introduce a

version of algebraic nets in which the signature and algebra can define arbitrary operations on multisets.

And multiset sorts may even be used as the sort of some places, and multisets of multisets are possible.

Therefore, the first generator allows to use this, and the constructs for the algebra may even define

some of these operations.

This version can be defined as AN 2 = (MULT
∗ ◦ BOOL, ID , CMULT∗◦BOOL).

Note that the second generator does not need to contribute any further operations, since all the

needed multiset operations are already added by the first generator. Therefore, the second generator is

just the identity ID .

General version In principle, algebraic nets with flexible arc weights have all the necessary power. But,

to obtain this power, they require that all more powerful operations are defined by the user by providing

a signature and an algebra with all the desired operations. It would be much easier, if some of these

operations were built-in and could be used without explicitly defining them everytime a new algebraic

net is used. This is in particular true for products. Therefore, a more general version would have the

products and some more operations on multisets available. Only very special sorts or operations would

then come from the signature and algebra defined by the user.

This could look like AN 3 = ((MULTX ∪ PROD)∗ ◦ (BOOL ∪
DOT), ID , C(MULTX∪PROD)∗◦(BOOL∪DOT)). Actually, even some other sorts like strings, integers,

and list could be included here. But, we leave the exact set of operations and sorts that should be

built-in open for a discussion here, as we left the exact definition of MULTX open.

8 Conclusion

In this paper, we have introduced a mathematical framework that allows us to define different versions

of high-level Petri nets, with different built-in sorts and operators, and different legal constructs in the

underlying algebra. The examples at the end of this paper show that a wide variety of different kinds of

high-level net can be defined this way. The main advantage is that the legal constructs and the built-in

sorts and operations can be defined independently from the actual definition of algebraic Petri nets.

This way, it is much easier to define, to compare and classify different versions of high-level Petri nets

and make the built-in sorts and operations and the legal constructs explicit.

Note that for making this possible, we needed to introduce some mathematics, which might be hard

to understand for non-experts. But, once this framework is there (and validated by some experts), it

can be used in an intuitive way, by selecting and combining the respective constructs and generators.

Defining a new version can be done without understanding the details of the underlying framework; one

just needs to select the basic building blocks, and combine them with each other, which is demonstrated

by the examples in Sect. 7.2.

References

1. Chiola, G., Dutheillet, C., Franceschinis, G., Haddad, S.: On well-formed coloured nets and their symbolic
reachability graph. In Jensen, K., Rozenberg, G., eds.: Petri Nets: Theory and Application. Springer-Verlag
(1991) 373–396

2. Kindler, E., Petrucci, L.: Towards a standard for modular Petri nets: A formalisation. In Franceschinis,
G., Wolf, K., eds.: Application and Theory of Petri Nets 2009, Internat. Conference, Proceedings. Volume
5606 of LNCS., Springer-Verlag (2009) 43–62

3. Kindler, E., Reisig, W.: Algebraic system nets for modelling distributed algorithms. Petri Net Newsletter
51 (1996) 16–31

4. Kindler, E., Völzer, H.: Algebraic nets with flexible arcs. Theoretical Computer Science (2001)
5. Reisig, W.: Petri nets and algebraic specifications. Theoretical Computer Science 80 (1991) 1–34
6. Ehrig, H., Mahr, B.: Fundamentals of Algebraic Specifications 1, Equations and Initial Semantics. Volume 6

of EATCS Monographs on Theoretical Computer Science. Springer-Verlag (1985)

136

7. Berthomieu, B., Choquet, N., Colin, C., Loyer, B., Martin, J., Mauboussin, A.: Abstract Data Nets com-
bining Petri nets and abstract data types for high level specification of distributed systems. In: Proceedings
of VII European Workshop on Application and Theory of Petri Nets. (1986)

8. Vautherin, J.: Parallel systems specifications with coloured Petri nets and algebraic specifications. In
Rozenberg, G., ed.: Advances in Petri Nets. Volume 266 of LNCS. Springer-Verlag (1987) 293–308

9. Billington, J.: Many-sorted high-level nets. In: Proceedings of the 3rd International Workshop on Petri
Nets and Performance Models, IEEE Computer Society Press (1989) 166–179

10. ISO/IEC: Software and Systems Engineering – High-level Petri Nets, Part 1: Concepts, Definitions and
Graphical Notation, International Standard ISO/IEC 15909 (2004)

11. Schmidt, K.: Verification of siphons and traps for algebraic Petri nets. In Azéma, P., Balbo, G., eds.:
Application and Theory of Petri Nets 1997, Internat. Conference, Proceedings. Volume 1248 of LNCS.,
Springer-Verlag (1997) 427–446

12. Haddad, S., Kordon, F., Petrucci, L., Pradat-Peyre, J., Trèves, N.: Efficient state-based analysis by in-
troducing bags in Petri nets colour domains. In: Proc. 28th American Control Conference (ACC2009), St
Louis, Missouri, USA. (2009) 5018–5025

13. Kindler, E., Völzer, H.: Flexibility in algebraic nets. In Desel, J., Silva, M., eds.: Application and Theory
of Petri Nets 1998, 19th International Conference. Volume 1420 of LNCS., Springer-Verlag (1998) 345–364

137

