A primer on the Petri Net Markup Language and
[SO/TEC 15909-2

L.M. Hillah, UPMC & CNRS UMR 7606, Paris
E. Kindler, Technical University of Denmark (DTU), Lyngby
F. Kordon, UPMC & CNRS UMR 7606, Paris
L. Petrucci, University Paris 13 & CNRS UMR 7030, Villetaneuse
N. Tréves, CNAM & Cedric, Paris

1 Introduction

In 2000, there was a workshop [1] that should foster the definition of a standard transfer format for Petri
nets as a satellite event of the annual ‘Petri Net Conference’ in Aarhus. As a result of this first workshop,
after many other discussions and meetings, the Petri Net Markup Language (PNML) is about to be finally
adopted as ISO/IEC 15909-2. Over the years, PNML has evolved and, unfortunately, there are many
different intermediate versions and variants, that are still in use. With this paper, we would like to report
on the final result and on PNML as it is defined in ISO/IEC 15909-2. This way, we hope to unify the
different lines of PNML and advertise the use of ISO/IEC 15909-2.

Note that this paper is not a copy or exact reproduction of ISO/IEC 15909-2 (which, including all
Aunnexes, has more than 100 pages). Rather it is a restructured excerpt that focuses on the most important
issues and abstracts from some technical details, which can be found in ISO/IEC 15909-2. Most of the
technical details can be derived from the RELAX NG grammars provided at the PNML web pages [17].
Together, this should provide a fair account of the standard, its ideas and concepts, and its practical use.
For a in-depth discussion of the rationales and design decisions behind PNML, we refer to the bunch of
earlier publications [2, 15, 4, 18, 19]

Though not an exact copy of ISO/IEC 15909-2, this paper reuses material of ISO/IEC 15909-2 with
some modifications and simplifications with the kind permission of ISO/IEC, Geneva.

Originally, PNML was introduced as an interchange format for all kinds of Petri nets [2, 3, 4]. Some
major concepts of PNML were driven by this objective. Technically, ISO/IEC 15909-2 defines a transfer
syntax for High-level Petri Net Graphs and those subclasses of Petri nets only that have been conceptually
and mathematically defined in the International Standard ISO/IEC 15909-1 [5], for capturing the essence
of all kinds of coloured and high-level Petri nets [6, 7, 8, 9, 10, 11, 12, 13]|. In this paper, the focus is
on PNML for high-level nets in order not to mix up concepts that are part of ISO/TEC 15909-2 and some
extensions, which are currently under consideration for ISO/IEC 15909-3. In the conclusion (Sect. 5), we
will briefly discuss some of these perspectives, which make PNML applicable for all kinds of Petri nets.

2 Concepts

In this section, we discuss the main concepts of PNML, were the main idea is that any kind of Petri net
can be considered to be a labelled graph. In particular, all information that is specific to a particular kind
of Petri net can be captured in labels.

This will be discussed in more detail in Sect. 2.1. The concepts of PNML will be defined by a meta-
model for PNML in terms of UML class diagrams. These meta-models, however, do not define the XML
syntax for the transfer format. Therefore, there is a mapping from the concepts of the PNML meta-model
to XML, which will be discussed in Sect. 4. Curious readers, who are interested in looking at the actual
XML right away, might have a look at this and, in particular, at the example in Listing 1.

As mentioned above, ISO/IEC 15909-2 defines transfer formats for different versions of Petri nets:
Place/Transition Nets, High-level Petri Net Graphs (HLPNG), and Symmetric Nets as defined in ISO/IEC

101

)))

. <<merge>>
PT—Net SymmetricNet < ------"---1 HLPNG

<<merge>> “~__ <<merge>>

—

PNML Core Model

Figure 1: Overview of the UML packages of PNML

15909-1, where Symmetric Nets are a subclass of high-level nets, which originally were introduced under
the name well-formed nets [14]. The main differences between them are the available data types, which
will be discussed in Sect. 3.

2.1 General Principles

In order to deal with different kinds of Petri nets, the transfer format needs to be flexible and extensible.
In order to obtain this flexibility, a Petri net is considered to be a labelled directed graph, where all type
specific information of the net is represented in labels. A label may be associated with a node, an arc, or
the net itself. This basic structure of a PNML Document is defined in the PNML Core Model using a UML
class diagram. This will be discussed in Sect. 2.2.

The pNML Core Model imposes no restrictions on labels. Therefore, the PNMI Core Model can represent
any kind of Petri net. Due to this generality of the PNML Core Model, there can be even PNMIL Documents
that do not correspond to a Petri net at all. For example, there could be labels from two different and
even incompatible versions of Petri nets within the same PNML Document. For a concrete version of Petri
nets, the legal labels will be defined by extending the PNML Core Model with another meta-model that
exactly defines the legal labels of this particular type.

Technically, the PNML Core Model is a UML package, and there are additional UML packages for the
different Petri net types that extend the PNML Core Model package. ISO/IEC 15909-2 defines a package
for Place/Transition Nets, a package for Symmetric Nets, and a package for High-level Petri Net Graphs,
where the package for High-level Petri Net Graphs extends the package for Symmetric Nets. Therefore,
every Symmetric Net is also a High-level Petri Net Graph.

Figure 1 gives an overview of the different packages defined and on their dependencies. The package
PNML Core Model defines the basic structure of Petri mets; this structure is extended by the package
for each type. The PNML Core Model is discussed in Sect. 2.2 and the package PT-Net is discussed in
Sect. 2.3.1. The general concepts of High-level Petri Net Graphs will be discussed in Sect. 2.3.2. The
different data types used in the different versions of high-level Petri nets are discussed in Sect. 3.1. Based
on these data types, the package SymmetricNet is discussed in Sect. 3.3.2 and the package HLPNG for
general High-level Petri Net Graph is defined in Sect. 3.3.3.

2.2 The PNML Core Model

Figures 2 and 3 show the meta-model of the PNML Core Model as a UML class diagram. The diagram of
Fig. 2 focusses on the conceptual parts, whereas the diagram of Fig. 3 focusses on the parts concerning
the graphical representation (i.e. graphics). Note that the data type String is imported from a separate
package XMLSchemaDataTypes, which is discussed in Sect. 2.2.6; since this is a technicality only, the
references to this package are shown in tiny fonts in the diagram. The concepts of the PNML Core Model
are discussed below.

2.2.1 Petri Net Documents, Petri Nets, and Objects

A document that meets the requirements of the PNML Core Model is called a Petri Net Document
(PetriNetDoc) or a PNML Document. It contains one or more Petri Nets (PetriNet). Each Petri Net
has a unique identifier and a type. The type is a name uniquely identifying a Petri net type definition;

102

PNMLCoreModel W

PetriNetDoc

net | 1.% Toollnfo
) r'S toolspecific
PetriNet toolspecific i/oe(l)‘lsion
igpe > toolspecific
L 2 . >—
Object
object . 1—
id

| name

{redefines label}
{>{ Anm)tation‘ ‘ Attribute ‘
name
{redefines label, 0.1
graphics
Graphics
String 0.1

1 source *
_

| target ®
context Arc inv:

—— source and target must
—— be on the same page

TransitionNode self.source page =

A self .target.page
* * ‘
‘ Place ‘ ‘ RefPlace ‘ ‘ RefTrans ‘
i<<import>>
Y
XMLSchemaDataTypes

Figure 2: The pPNML Core Model package: concepts

an example for such a name is http://www.pnml.org/version-2009/grammar/ptnet for the definition
of Place/Transition Nets.

A Petri net consists of one or more pages that in turn consist of several objects. These objects,
basically, represent the graph structure of the Petri net. Each object within a Petri net document has a
unique identifier, which can be used for referring to this object. Moreover, each object may be equipped
with graphical information defining its position, size, colour, shape and other attributes on its graphical
appearance (graphics). The precise graphical information that can be provided for an object depends on
the particular type of the object (see Sect. 2.2.4 for more details).

The most important objects of a Petri net are places, transitions, and arcs. For extensibility reasons
and principles of good design, places and transitions are generalised to nodes. For reasons explained in
Sect. 2.2.2, this generalisation is via place nodes and via transition nodes. Nodes of a Petri net can be
connected by arcs.

Note that it is legal to have an arc from a place to a place or from a transition to a transition according
to the PNML Core Model. The reason is that there are versions of Petri nets that support such arcs. If a
Petri net type does not support such arcs, this restriction will be defined in the particular package defining
this type.

103

2.2.2 Pages and Reference Nodes

Three other kinds of objects are used for structuring a Petri net: pages, reference places, and reference
transitions. As mentioned above, a page may contain other objects; since a page is an object itself, a page
may even contain other pages, thus defining a hierarchy of subpages.

Note that PNML requires that an arc must connect nodes on the same page only. The reason for this
requirement is that arcs connecting nodes on different pages cannot be drawn graphically. In the PNML
Core Model of Fig. 2, this requirement is captured by the OCL expression next to the class for arcs.

In order to connect nodes on different pages by an arc, a representative of one of the two nodes must
be drawn on the same page as the other node. Then, this representative may be connected with the other
node by an arc. This representative is called a reference node, because it has a reference to the node it
represents. Note that a reference place must refer to a place or a reference place, and a reference transition
must refer to a transition or a reference transition. Moreover, cyclic references among reference nodes are
not allowed.

2.2.3 Labels

In order to assign further meaning to an object, each object may have labels. Typically, there are labels
representing the name of a node, the initial marking of a place, the transition condition, or some arc
annotation. In addition, the Petri net itself or its pages may have some labels, which are called global
labels. For example, the package HLPNG defines declarations as global labels of a High-level Petri Net,
which are used for defining variables, and user-defined sorts and operators.

In the PNML Core Model, we distinguish two kinds of labels: annotations and attributes. An annotation
comprises information that is typically displayed as text next to the corresponding object. Examples of
annotations are names, initial markings, arc annotations, transition conditions, and timing or stochastic
information. In contrast, an attribute is, typically, not displayed as text next to the corresponding object.
Rather, an attribute has an effect on the shape or colour of the corresponding object. For example, an
attribute such as arc type could have domain {normal, read, inhibitor, reset}. ISO/IEC 15909-2,
however, does not mandate the effect on the graphical appearance of an attribute.

Note that the classes for label, annotation and attribute are abstract in the PNML Core Model, which
means that the PNML Core Model does not define concrete labels, annotations, and attributes. The only
concrete label defined in the PNMI Core Model is the name, which is a label that can be used for any
object within any Petri net type. This way, any object such as nodes, pages, the net itself, and even
arcs can have a name. The value of a name is a String, which is imported from the separate package
XMLSchemaDataTypes (see Sect. 2.2.6 for more information). All other concrete labels are defined in the
packages for the concrete Petri net types (see Sect. 2.3).

In order to support the exchange of information among tools that have different textual representation
for the same concepts (i. e. when they have different concrete syntax), there are two ways for representing
the information within an annotation: textually in some concrete syntax and structurally as an abstract
syntax tree (see Sect. 2.3.2 and 4.1.2 for details).

Note that reference nodes may have labels, but these labels do not have any meaning. This choice was
made in order to obtain a semantically equivalent Petri net without pages by merging every reference
node to the node it directly or indirectly refers to. This is called flattening of the Petri net (see [15] for
details). Still, the labels of a reference node can have an effect on the graphical appearance or can give
some additional information to the user.

2.2.4 Graphical Information

In addition to the Petri net concepts, information concerning the graphical appearance can be associated
with each object and each annotation. For a node, this information includes its position; for an are, it
includes a list of positions that define intermediate points of the arc; for an object’s annotation, it includes
its relative position with respect to the corresponding object; for an annotation of a page, the position
is absolute. There can be further information concerning the size, colour and shape of nodes or arcs, or
concerning the colour, font and font size of labels. Note that this information can be used for automatically
transforming a Petri Net into Scalable Vector Graphics (SVG) by XSLT transformations (see [16] for more
details). This transformation, however, is not part of ISO/IEC 15909-2.

Figure 3 shows the different graphical information that can be attached to the different types of objects
and the different attributes. Note that these concepts still belong to the PNML Core Model; it is shown in

104

a different figure only in order to avoid clutter. Table 1 gives an overview of the meaning and the domain
of the attributes of the different graphical features.

PNMLCoreModel |

context NodeGraphics inv:

self.object.ocllsKindOf(Node) or
context ArcGraphics inv: raphics self.object.oclIsKindOf(Page)
self.object.oclIsKindOf(Arc)

context AnnotationGraphics inv:
self.object.oclIsKindOf(Annotation)

Annotation
Graphics

ArcGraphics

NodeGraphics

0..1
fill 0..1| font
Fill Font
. sion color family
tion| Coordi image style
0.1l tine position| Coordinate gradient—color weight
gradient—rotation| size
Line X 0.1 decoration
0.1 y et align
shape line offse rotation
color 0.1
width
style line
Figure 3: The PNML Core Model: graphical information
Table 1: PNML attributes of graphical information
Class Attribute Domain
Coordinate x decimal
y decimal
Fill color CSS2-color
image anyURI
gradient-color CSS2-color
gradient-rotation {vertical, horizontal, diagonal}
Line shape {line, curve}
color CSS2-color
width nonNegativeDecimal
style {solid, dash, dot}
Font family CSSs2-font-family
style CSS2-font-style
weight CSS2-font-weight
size CSS2-font-size
decoration {underline, overline, line-through}
align {left, center, right}
rotation decimal

The position defines the absolute position for nodes and pages. For an annotation the offset defines
its relative position to the object it is attached to; for a global annotation, the offset defines the absolute
position on that page. Each absolute or relative position consists of a pair of Cartesian coordinates (x,y),
where the units are points (pt). As for many graphical tools, the z-axis runs from left to right and the
y-axis from top to bottom. And the reference point for the position of an object is its centre.

For an are, the (possibly empty) sequence of positions defines its intermediate points (bend points).
Note that the positions of the start point and the end point of an arc are not given explicitly for the
arc. These positions are determined from the position of the source and the target nodes of the arc and
the direction of the first resp. last segment of the arc, by the intersection of this segment with the nodes
border. Altogether, the arc is displayed as a path from the start point on the border of the source node to
the end point on the border of the target node via the intermediate points. Note that, even though there

105

is no way to define the start point and the end point of an arc explicitly, the above concepts allow a user
making sure that an arc starts and ends exactly at the point, where he wants it to start and end: If the
first, (or last) intermediate point of an arc lies exactly on the border of the respective node, this will be
the start point (or the end point resp.) of that arc.

For arcs, there are also some line attributes, which define the style, the colour, and the width in which
they are displayed.

Depending on the value of the attribute shape of element line, the path is displayed as a broken
line (polyline) or as a quadratic Bezier curve. In the case of a Bezier curve the intermediate positions
alternately are the line connectors or Bezier control points. The reference point of an arc is the middle of
the arc, which is the middle of the middle segment of the arc, if there are an odd number of segments; it
is the middle point, if there are an even number of segments.

The dimension of a node or page gives its size, again as a pair referring to its width (x) and height
(v)- Depending on the ratio of height and width, a place is displayed as an ellipse rather than a circle. A
transition is displayed as a rectangle of the corresponding size. If the dimension of an element is missing,
each tool is free to use its own default value for the dimensions.

The two elements fill and line define the interior and outline colours of the corresponding element.
The value assigned to a color attribute must be a RGB value or a predefined colour as defined by €SS2
(Cascading Style Sheets 2). When the attribute gradient-color is defined, the fill colour continuously
varies from color to gradient-color. The additional attribute gradient-rotation defines the orientation of
the gradient. When the attribute image is defined, the node is displayed as the image which is provided at
the specified URI, which must be a graphics file in JPEG or PNG format. In this case, all other attributes
of fill and line are ignored.

For an annotation, the font element defines the font used to display the text of the label. The attributes
family, style, weight, and size are €SS2 attributes for defining the appearance of the text. The detailed
description of the possible values of these attributes and their effect can be found in the €SS2 specification.
The decoration attribute defines additional properties of the appearance of the text such as underlining,
overlining, or striking-through the text. Additionally, the align attribute defines the alignment of the text
to the left, right or center. The rotation attribute defines a clockwise rotation of the text.

The reference point of an annotation is always its centre.

2.2.5 Tool Specific Information

For some tools, it might be necessary to store tool specific information (Toollnfo), which is not meant to
be used by other tools. In order to store this information, tool specific information may be associated
with each object and each label. The internal structure of the tool specific information depends on the tool
and is not specified by PNML. PNML provides a mechanism for clearly marking tool specific information
along with the name and the version of the tool adding this information. Therefore, other tools can easily
ignore it, and adding tool specific information will never compromise a Petri Net Document.

The same object may be tagged with tool specific information from different tools. This way, the same
document can be used and changed by different tools at the same time. The intention is that a tool should
never change or delete the information added by another tool as long as the corresponding object is not
deleted. Moreover, tool specific information should be self-contained and not refer to other objects of the
net because the deletion of other objects by a different tool might make this reference invalid and leave the
tool specific information inconsistent. This use of the tool specific information is strongly recommended;
however, it is not normative.

2.2.6 Data Types

In this section, we discuss six XML data types, which are taken from XMLSchema. These can be used for
defining labels for some Petri net type with numerical and textual information. Note that these data types
are not related to the data types that may be used within high-level nets! Rather, they define the types
of the attributes and their XML syntax that may be used in the meta-models of the PNML Core Model
and of the Petri net types.

Figure 4 gives an overview of these XML data types and their relation.

String refers to any printable sequence of characters, which is mapped to XML PCDATA. Decimals,
NonNegativeDecimals, Integer, NonNegativelnteger, and Positivelnteger refer to any character sequence
which denotes a number of the corresponding kind.

106

XMLSchemaDataTypes)

Integer

NonNegativelnteger

Positivelnteger

Figure 4: Standard data types

2.3 Petri Net Type Meta Models

Next, we discuss three versions of Petri nets: Place/Transition Nets, Symmetric Nets, and High-Level
Petri Net Graphs (HLPNGs) as defined in ISO/IEC 15909-1, where Symmetric Nets' are a restricted
version of High-Level Petri Net Graphs currently defined as an Amendment to ISO/IEC 15909-1. The
general relation between the different types has already been shown in Fig. 1. Again, the concepts of
these different versions are defined in terms of meta-models. These meta-models define the labels of the
respective Petri net type.

ISO/IEC 15909-1 defines a mapping from the concepts of Place/Transition Nets to the concepts of
High-Level Petri Net Graphs and shows how the usual mathematical representation of Place/Transition
Nets can be represented as a restricted version of High-level Petri Nets. Though conceptually the same
model, the syntax is different. Therefore, ISO/TEC 15909-2 introduces yet another Petri net version:
Place/Transiton Nets in High-level Notation, which will be discussed in Sect. 3.3.1.

ISO/IEC 15909-2, however, introduces an explicit transfer format for Place/Transition Nets in order
not to force tools for Place/Transition Nets to use the syntax of High-Level Petri Net Graphs. This format
reflects the usual mathematical definition of Place/Transition Nets.

2.3.1 Place/Transition Nets

Since Place/Transition Nets are the simplest version, we start with this version: the concepts are defined
in terms of a meta-model in UML notation: the package PT-Net.

A Place/Transition Net is a net graph, where each place can be labelled with a natural number
representing the initial marking and each arc can be labelled with a non-zero natural number representing
the arc annotation, with the usual meaning: the label of a place p denotes the initial marking M (p), the
label of an arc f denotes the arc weight W (f).

Figure 5 shows the package PT-Net. Note that the only classes defined here are PTMarking and
PTArcAnnotation. The classes Place, Arc, and Annotation come from the package PNML Core Model.
They are imported (actually, they are merged) here in order to define the possible labels for the particular
nodes of Place/Transition Nets. Likewise, the classes prefixed with XMLSchemaDataTypes are imported
from the standard data type package (see Sect. 2.2.6).

The initial marking of a place is represented by the annotation PTMarking, the contents of which
must be a non-negative integer. Technically, the representation of the contents of this label is defined by
referring to the data type NonNegativelnteger.

The arc annotation is represented by the annotation PTArcAnnotation, the contents of which must
be a non-zero natural number, which is defined by referring to the data type Positivelnteger.

Note that, according to this definition, it is legal that a place does not have an annotation for the
initial marking. In that case, the initial marking is assumed to be empty, i.e. 0. Likewise, there may be
no annotation for an arc. In that case, the arc annotation is assumed to be 1.

1 Remember that Symmetric Nets were originally introduced under the name well-formed nets [14].

107

PT—Net 1

/\

initialMarking

defi label

inscription

{redefines label}
Arc 01 PTArcAnnotation

context Arc inv:
——no arcs between nodes of the same kind

(self source.oclIsKindOf(PlaceNode) and text| 1 text| 1
self target.oclIsKindOf(TransitionNode))

XMLSchemaDataTypes:: XMLSchemaDataTypes::
or) . . LﬂonNegativeImegeJ Positivelnteger
(self .source.oclIsKindOf(TransitionNode) and

self target.oclIsKindOf(PlaceNode))
| |
I I
! <<merge>> ' <<import>>
I I
v v
PNML Core Model XMLSchemaDataTypes

Figure 5: The package PT-Net

In addition to the definition of the new labels, this package also defines the structural restriction that,
in a Place/Transition Net, an arc must not connect a place to a place or a transition to a transition. This
is captured by the OCL expression below class arc.

Sometimes, one wants to store the position of the individual tokens within a place. In order not to
mandate all tools to support this feature, ISO/IEC 15909-2 suggests a tool specific information for this
purpose, which would refer to the tool org.pnml.tool. Since no tool is required to support tool specific
features, every tool is free to use and support this feature or not.

PNML Extensions)

PT-Net::
Toollnfo

context TokenGraphics inv: ﬁ
—— TokenGraphics only for PTMarkings .
self.object.oclIsKindOf(PTMarking) | 7<f17rr71port>7>>
TokenGraphics self.tool = org.pnml.tool’ PT-Net

+ | tokenposition

PT-Net::
Coordinate

Figure 6: Tool specific extension for token positions

This extension is shown in Fig. 6. For a PTMarking, this label can be equipped with the tool specific
information attached to AnnotationGraphics. This consists of information on a list of tokenpositions.
Each of these elements represents the position of a token relative to the centre of the place; represented as
a Coordinate, which is imported from package PT-Net, where it was obtained by a merge with the PNML
Core Model. If this graphical information is present at all, the number of tokenpositions should be the
same as indicated by the PTMarking (see example in Sect. 4.1.5).

108

2.3.2 High-Level Core Structure

ISO/IEC 15909-1 defines High-level Petri Net Graphs. Symmetric Nets and Place/Transition Nets are
introduced as restricted versions of High-level Petri Net Graphs. The difference is in the types and functions
that may be used in the different versions. To cater for this structure, we distill the common structure
of all High-level Petri Net Graphs first: This is called the High-Level Core Structure. The built-in data
types of the specific Petri net types are discussed in Sect. 3.1.

Syntactically, the basic features of a High-Level Petri Net are the annotations of places, transitions,
and arcs. For each place, a sort defines the type of the tokens on this place. A term associated with a
place denotes the initial marking and must have the respective sort. The term associated with an arc
to or from a place, defines which tokens are added or removed, when the corresponding transition fires.
These terms must also be of the respective sort.

For constructing such terms, one can use built-in operators and sorts, and user-defined wvariables,
which are defined in a wariable declaration. The variable declarations are annotations of the net or a
page. Moreover, a transition can have a condition which is a term of sort boolean and imposes additional
conditions on the situations in which a transition can fire.

The meta-model for terms, which defines all these concepts, is shown in Fig. 7: It defines the concepts
of sorts, operators, declarations, and terms, and how terms are constructed from variables and operators.

Terms W

1 def

Declarations

* subterm
{ordered}

Declaration

iableDecl 1 variableDecl ’7 | |
SortDecl VariableDec Variable OperatorDecl | 1
name name * parameter context Variable inv: name

declaration

1 t {ordered} —— sort of Variable is sort of Term

declaration self.sort = self.variableDecl.sort

sort Isort
NamedSort {ordered} s Sort | Operator
elementSort * /input .
context NamedSort inv: Pasis | equals(Sort):bool {ordered} context Operator inv:

1self def.ocl. —— sort of Term is output sort of Operator

IsTypeOf(MultiSetSort) self.sort = self.output
BuiltInOperator
BuiltInSort
BuiltinConst

MultisetSort

ProductSort m

Figure 7: The meta-model for Terms

MultiSetOperator

multi

i
i

For each variable declaration, there is a corresponding sort. A sort can be a built-in sort, a multiset sort
over some basis sort, a product sort over some sorts, or a sort which is given in a user declaration. In the
core structure, the only possible sort declaration of a user is by constructing a new sort from existing ones
and by giving them a new name. From these, the user can define new ones. Note that cyclic references in
user-defined sorts are not allowed. In addition to these user-defined sorts, called named sorts, there will
be arbitrary sorts. Since these are not allowed in Symmetric Nets, these are not defined in the core. They
are discussed in Sect. 3.3.3 where the concepts of general high-level nets are explained.

109

An operator can be a built-in constant or a built-in operator, a multiset operator which among others
can construct a multiset from an enumeration of its elements, or a tuple operator. Each operator has a
sequence of sorts as its input sorts, and exactly one output sort, which defines its signature. As for sorts,
the user can define his own operators. Here, it is only possible to define an abbreviation, which is called
a named operator: It can use a term, which is built from existing operators and parameter variables, for
defining a new operator. As for sorts, cycles (recursion) in these definitions are not allowed. As for sorts,
there will be arbitrary operator declarations for High-level Petri Net Graphs, but not for Symmetric Nets.
Therefore, these concepts will be discussed in Sect. 3.3.3.

From the built-in operators and the user-defined operators and variables, terms can be constructed in
the usual way. The sort of a term is the sort of the variable or the output sort of the operator. Therefore,
sort is indicated as a derived association; its definition is expressed by an OCL expression in the UML meta-
model. Note that the input and output sorts of the operator are also represented as derived associations
because, in some situations, they need not be given explicitly since they can be derived from the type of
the operator.

Figure 8 shows the package High-Level Core Structure, which defines all the annotations for both
Symmetric Nets and High-Level Petri Net Graphs. Note that, since the classes for built-in sorts and
operators are abstract, we do not have any built-in sorts and operators yet. These are discussed in
Sect. 3.1.

In addition to the annotations defined above, the package High-Level Core Structure requires that arcs
must not connect two places and must not connect two transitions.

Note that this model defines an abstract syntax (composition structure) for all these concepts only. In
order to allow tools to store the concrete text, all annotations of High-level Nets may also consist of text,
which should be the same expression in the concrete syntax of some tool. This concrete syntax, however,
is not mandated by ISO/IEC 15909-2; therefore, all the meaning is in the structure of the labels!

3 Details of High-level nets and their data types

As mentioned earlier, Sect. 2.3.2 discussed the core structure of High-level Petri Net Graphs only. In this
section, we briefly discuss the details of the built-in sorts and operators. For each built-in sort, there is a
UML package. Sections 3.1 gives an overview of these packages. Section 3.2 briefly discusses the package
for user-defined declarations. Based on that, Sect. 3.3 defines the different types of high-level nets.

3.1 Data types

ISO/IEC 15909-2 defines the following data types for being used in the different versions of high-level
Petri nets:

e Dots defines the sort which represents a type with exactly one element (token): {e}. This is used
to represent Place/Transition Nets as High-level Net Graphs.

o Multiset defines the multiset over any other sort, which are needed for defining the terms labelling
arcs and for initial markings.

e Booleans defines the boolean type and associated operations.

o Finite Enumerations, Cyclic Enumerations, and Finite Integer Ranges allow the definition of finite
ranges by explicitly enumerating them or by giving an integer range. Depending on the type, different
structures are imposed on them [14], such as an order relation, or a successor and predecessor
operation.

e Partitions allow the definition of finite enumerations that are partitioned into sub-ranges, where a
partition function defines for each element to which partition it belongs. These partitions define a
separate sort, where each partition is an element of the respective type.

o Integer defines the integers and the usual operations on them; it also defines the subtypes positive
numbers and the natural numbers.

e Strings defines the strings and the usual operations on them.

110

HLCoreStructure

N
XMLSchemaDataTypes

:A
! <<import>>

<<import>> .
Terms =" Ype
{redefines label}| structure | Terms::Sort
0.1
0.1
hlinitialMarking
) redefines label . structure
. {redefi A HLMarking S Terms:: Term
<<import>> 0..1 0.1
an< <--------1
Booleans condition
o redefines label
Transition { 0? Condition —|A structure | Terms::Term
h 0.1
hlinscription

Annotation

>I

text

. XMLSchemaDataTypes:
HLCoreAnnotation

{redefines label}

Terms::Term
0.1

HLAnnotation structure

i

0.1

declaration

{redefines label} *
b .

structure | Terms::Declarations

PetriNet %

context Arc inv:

or

—— no arcs between nodes of the same kind
(self .source.oclIsKindOf(PlaceNode) and
self target.oclIsKindOf(TransitionNode))

(self .source.oclIsKindOf(TransitionNode) and
self target.oclIsKindOf(PlaceNode))

declaration =
{redefines label}

context Condition inv:
—— the term for the condition must be of sort boolean
(self structure.sort.oclIsKindOf(Booleans:Bool)

1V
PNMLCoreModel

<<merge>>

Figure 8: The package High-Level Core Structure

e Lists defines the Lists over the other data types and the usual operations on them.

For details, we refer to ISO/IEC 15909-2 or to the RELAX NG grammars which can be found at [17].

3.2 User declarations

In general High-Level Petri Net Graphs (HLPNGs), the user is allowed to define arbitrary sorts and op-
erators. This package ArbitraryDeclarations is shown in Fig. 9. In contrast to named sorts and named
operators, arbitrary sorts and operators do not come with a definition of the sort or operation; they just
introduce a new symbol without giving a definition for it. So, these symbols do not have a meaning, but

can be used for constructing terms.

The additional concept Unparsed in terms provides a means to include any text, which will not be
parsed and interpreted by the tools. This is helpful for exchanging the general structure of a term, but

not all its details.

111

ArbitraryDeclarations W

Terms::SortDecl

Terms::OperatorDecl|
ArbitraryOperator

L * input {ordered}

‘Terms::Sort ‘
‘ 1 output

‘ ArbitrarySort

Figure 9: The package ArbitraryDeclarations

3.3 Net types

Based on the data types introduced in the previous section, we can now discuss the different versions of
high-level nets. Note that, conceptually, high-level nets extend Place/Transition-Systems. But, syntacti-
cally they do not. That is why all these types are not extending the package PT-Net, which is discussed

in Sect. 2.3.1.
Instead, the different versions of high-level nets form a separate hierarchy (see also Fig. 1). The lowest

level in this hierarchy are Place/Transition Nets in High-level Notation.

3.3.1 Place/Transition Nets as High-level Net Graphs

Booleans
<;‘imporl>>
E«impm»n PT-HLPNGs
<<import>> <<imp0“’li;>>
<<import>> <<merge>>
Multisets
| <<import>> —
i % / HLCoreStructure
Terms /

context Type inv:
-- the type of all places must be Dot
self.structure.ocllsTypeOf(Dots::Dot)

context Condition inv:

-- the condition of all transitions must be true

let cond: Terms::Term = self.structure in
cond.ocllsTypeOf(Booleans::BooleanConstant) and
cond.value = ‘true’

Figure 10: The package of P/T Nets defined as restricted HLPNGSs

Annex B of ISO/IEC 15909-1 defines Place/Transition Nets as a restricted form of High-level Net
Graphs. Fig. 10 shows the corresponding UML definition. This class allows for the use of the built-in sorts
Bool and Dot only. It does neither allow any user declarations, nor variables, nor sorts, nor operators.

The type of each place must refer to sort Dot. All transition conditions need to be the constant true,
if this label is present. And the arc annotations and the initial markings are ground terms of the mulitset

sort over Dot.

112

3.3.2 Symmetric Nets

Symmetric Nets as currently defined in an Amendment (Annex B.2) of Part 1 of ISO/IEC 15909, are
tion.

High-Level Petri Net Graphs with some restrictions. Basically, the carrier sets of all basic sorts are finite,
and only a fixed set of operations, as defined below, are allowed. Therefore, the sort of a place must not
be a multiset sort. The available built-in sorts are defined below.

Moreover, for Symmetric Nets, it is required that every HLPNG annotation has the structural informa-

The built-in sorts of Symmetric Nets are the following: Booleans, range of integers, finite enumerations,

cyclic enumerations and dots. Moreover, for every sort, there is the operator all, which is a multiset that
contains exactly one element of its basis sort. This is often called the broadcast function.

Altogether, the Symmetric Nets can be defined by importing the packages as shown in Fig. 11.
1

Partitions

T .

| <<import>> .

\ N

V) .

\

\

| |CyclicEnumerations

\

VL Ne

\\<<import>> .

Vo < N .
\ . N N

! |) <<1mport>>~. \f<lmport>>

\ ~ N

Vo .
' | FiniteEnumerations N
Vo <
v A < .
\ T S~ N N
L) <<import>> . ANERN
o <<import>>""~. N
\
\ \ 1 AR ~ \W
oy S~
[R <<import>> -
Lo FiniteIntRanges <<-------""--"-----7 SymmetricNets
Lol >
\ \ ! T P ’ . .
V) <<import>> <<import>> .-~ | contextTypeinv:
(R - ;| ——no multiset sorts as types
[\ L7 S Iself structure.oclIsKindOf(MultisetSort)
\ 1 PR / !
\\ '\ \\ \\ & // // ;
AR Booleans J/ ;! |
[, / !
A S ’ 1 !

\ ! T ’ |
T \' <<1mp(iri,>> s (/ | <<merge>>
R import>>, | !

\ .
R ! / <<import>> 3
v .
VA Multisets K !

\ 1
\\ ‘\ \\ \\ ll ‘ : ’// i
G| <<import>> ; :

Lo \\ ! ! |

WYYy —
Terms Dots HLCoreStructure

=
<<import>>

Figure 11: The package Symmetric Nets and its built-in sorts and functions
3.3.3 High-level Petri Net Graphs

The complete definition for High-Level Petri Net Graphs is shown in Fig. 12. It extends Symmetric Nets
4 XML Syntax

by declarations for sorts and functions and the additional built-in sorts for Integer, String, and List.

Section 2 and 3 discussed the concepts of the PNML Core Model and the concepts of Place/Transition
Nets, High-level Petri Net Graphs, and Symmetric Nets in terms of UML meta-models (and some additional

constraints). This, however, does not define the concrete XML syntax for representing these concepts.

113

N

Lists
<
T .ol .
| <<import>> -~ <<import>>
! T~ ~
! S~ ~
‘\ . T~ ~ o
. . <<import>> -
| Strings Dy HLPNGs
\ .
\ . e - f T
\\ | <<import>> <<import>> -~/ !
\ i - 7 1 |
\‘ \‘ . . P // :
\ / |
! \ \ ! I
Vo Integers S !
Lo / <<1mport>> .
\ ! T / |
| . /
Loy <<import>> /! | <<merge>>
\ ! !
. \\ | —) 3
\ |
\ ! I I
\ | . ArbitraryDeclarations .
1 s
\\ \\ : L i
Lo x ‘
Lo .- <<merge>> !
L
NYV 2 Y
Terms SymmetricNets

Figure 12: The package HLPNGSs

The XML syntax of the PNML Core Model and the three Petri net types is discussed in this section. A
RELAX NG grammar defining the exact XML syntax can also be found at the PNML web site [17].

In Sect. 4.1, we discuss the general format of PNML Documents; i.e. the XML syntax for the PNML
Core Model. In Sect. 4.2, we discuss the format for Place/Transition Nets. In fact, for simple Petri net
types such as Place/Transition Nets there are some general rules, as to how the concepts of a package
defining some Petri net type are mapped to XML syntax. This idea is discussed here by the help of the

example of Place/Transition Nets. For High-level Petri Nets, however, there is a dedicated mapping for
the labels of these types to XML. This is discussed in Sect. 4.3.

Note that there is no need for a separate mapping for Symmetric Nets and Place/Transition Nets in
High-level Notation to XML since, as a restricted version of High-level Petri Nets, these mappings are fully
covered by the mapping for High-level Petri Nets.

4.1 XML syntax of the PNML Core Model

The mapping of the PNML Core Model concepts to XML syntax is defined for each class of the PNML Core
Model diagram separately.

4.1.1 PNML Elements

Each concrete class? of the PNML Core Model is mapped to an XML element. The mapping of these classes
along with the attributes and their data types is given in Table 2. These XML elements are the keywords
of PNML and are called PNML elements for short. For each PNML element, the compositions of the PNML
Core Model define in which elements it may occur as a child element.

The data type ID in Table 2 refers to a set of unique identifiers within the PNML Document. The data
type IDRef refers to the set of all identifiers occurring in the document, i.e. they are meant as references
to identifiers. A reference at some particular position, however, is restricted to objects of a particular
type — as defined by the resp. associations in the PNML Core Model. For instance, the attribute ref of a
reference place must refer to a place or a reference place of the same net. The set to which a reference is
restricted is indicated in the table (e.g. for a reference place, the attribute ref should refer to the id of

a Place or a RefPlace). Note that these requirements are defined in the UML meta-model already; here,
these requirements are repeated just for better readability.

2A class in a UML diagram is concrete if its name is not displayed in italics.

114

Table 2:

Translation of the PNML Core Model into PNML elements

Class XML element XML Attributes
PetriNetDoc <pnml> xmlns: anyURI
(http://www.pnml.org/version-2009/
grammar/pnml)
PetriNet <net> id: 1D
type: anyURI
Place <place> id: ID
Transition <transition> id: 1D
Arc <arc> id: ID
source: IDRef (Node)
target: IDRef (Node)
Page <page> id: ID
RefPlace <referencePlace> id: ID
ref: IDRef (Place or RefPlace)
RefTrans <referenceTransition> id: ID
ref: IDRef (Transition or RefTrans)
Toollnfo <toolspecific> tool: string
version: string
Graphics <graphics>
Name <name>

Note that the <pnml1> element must have a namespace attribute xmlns. For the current version of PNML,
this namespace is fixed: http://www.pnml.org/version-2009/grammar/pnml

4.1.2 Labels

Except for names, there are no explicit definitions of PNML elements for labels because the PNML Core
Model does not define other labels. For concrete Petri net types, such as Place/Transition Nets, Symmetric
Nets, and High-level Petri Nets the corresponding packages define these labels.

In general PNML Documents, any XML element that is not defined in the PNML Core Model (i.e.
not occurring in Table 2) is considered as a label of the PNML element in which it occurs. For exam-
ple, an <initialMarking> element could be a label of a place, which represents its initial marking, and
<inscription>, which represents an arc annotation.

A legal element for a label must contain at least one of the two following elements, which represents
the actual value of the label: a <text> element represents the value of the label as a simple string; the
<structure> element can be used for representing the value as an abstract syntax tree in XML.

An optional PNMIL <graphics> element defines its graphical appearance; and optional PNMIL
<toolspecific> elements may add tool specific information to the label. Note that ISO/IEC 15909-2
does not mandate the inner structure of <toolspecific> elements; every tool is free to structure its infor-
mation inside that element at its discretion; as long as it produces well-formed XML.

4.1.3 Graphics

All pNMI elements and all labels may include graphical information. The internal structure of the PNML
<graphics> element, i.e. the legal XML children, depends on the element in which the graphics element
occurs. Table 3 shows the XML elements which may occur within the <graphics> element (as defined by
the UML model in Fig. 3).

Table 4 explicitly list the attributes for each graphical element defined in Table 3 (cf. Fig. 3 and
Table 1). The domain of the attributes refers to the data types of either XMI1, Schema, or Cascading
Stylesheets 2 (CsS2), or is given by an explicit enumeration of the legal values.

4.1.4 Mapping of XMLSchemaDataTypes concepts

The concepts from the package XMLSchemaDataTypes are mapped to XML syntax in the following way:
The String objects are mapped to XML PCDATA, i.e. there will be a PCDATA section within the element
which contains the String. This, basically, corresponds to any printable text.

115

Table 3: Possible child elements of the <graphics> element

Parent element class

Sub-elements of <graphics>

Node, Page

Arc

Annotation

<position>

<dimension>

<fill>

<line>

<position> (zero or more)
<line>

<offset>

<fill>
<line>

Table 4: PNML

graphical elements

XML element Attribute Domain
<position> X decimal
y decimal
<offset> X decimal
y decimal
<dimension> X nonNegativeDecimal
y nonNegativeDecimal
<fill> color CSS2-color
image anyURI
gradient-color CSS2-color
gradient-rotation {vertical, horizontal, diagonal}
<line> shape {line, curve}
color CSS2-color
width nonNegativeDecimal
style {solid, dash, dot}
 family CSS2-font-family
style CSS2-font-style
weight CSS2-font-weight
size CSS2-font-size
decoration {underline, overline, line-through}
align {left, center, right}
rotation decimal

Likewise, Integers, NonNegativelntegers and PositiveIntegers are mapped to the XMLSchema syntax
constructs integer, nonNegativelnteger, and positivelnteger, respectively.

4.1.5 Example

In order to illustrate the structure of a PNMIL Document, there is a simple example PNML Document repre-
senting the Petri net shown in Fig. 13, which is a Place/Transition Net. Listing 1 shows the corresponding
PNML Document in XML syntax. It is a straightforward translation, where there are labels for the names
of objects, for the initial markings, and for arc annotations.

Note that, in this figure, the initial marking is not displayed as a textual label — it is shown graphically.
This is due to the fact that the initial marking comes with a tool specific information on the positions of
the tokens, tokens are shown at the individual positions as given in the elements <tokenposition>.

Since there is no information on the dimensions in this example (in order to fit the listing to a single
page), the tool has chosen its default dimensions for the place and the transition.

4.2 XML syntax of the Petri net types

Based on the PNML Core Model of Sect. 2.2, Sect. 2.3.1 and 3.3 discussed the definition of some Petri net
types, which restrict PNML Documents to the particular labels defined in the corresponding packages.

116

10

15

20

25

30

35

40

45

10 ready 2

20

Figure 13: A simple Place/Transition Net

Listing 1: PNML code of the example net in Fig. 13

<pnml xmlns="http://www.pnml.orqg/version-2009/g9rammar/pnml ">
<net id="n1" type="http://www.pnml.org/version-2009/grammar/ptnet'>
<page id="top-level'>
<name>
<text>An example P/T-net</text>
</name>
<place id="p1'">
<graphics>
<position x="20" y="20"/>
</graphics>
<name>
<text>ready</text>
<graphics>
<offset x="0" y="-10"/>
</graphics>
</name>
<initialMarking>
<text>3</text>
<toolspecific tool="org.pnml.tool" version="1.0">
<tokengraphics>
<tokenposition x="-2" y="-2" />
<tokenposition x="2" y="0" />
<tokenposition x="-2" y="2" />
</tokengraphics>
</toolspecific>
</initialMarking>
</place>
<transition id="t1">
<graphics>
<position x="60" y="20"/>

</graphics>
</transition>

<arc id="al" source="pl" target="t1'">
<graphics>
<position x="30" y="5"/>
<position x="60" y="5"/>
</graphics>
<inscription>
<text>2</text>
<graphics>
<offset x="0" y="5"/>
</graphics>
</inscription>
</arc>
</page>
</net>
</pnml>

117

Table 5: Tool specific information for token positions

XML element Attribute Domain

<tokengraphics>

<tokenposition> x decimal
y decimal

These packages define the labels that are used in the particular Petri net. Here, it is shown how to
map such a package to the corresponding XML syntax. This mapping is the same for all type definitions,
unless the type definition explicitly defines a dedicated mapping for this type. This general mapping will
be explained by the help of the example of Place/Transition Nets (see Fig. 5 and the PNML Document in
Listing 1).

The PT-Net package defines two kinds of labels that can be used in a Place/Transition Net: PTMark-
ings and PTAnnotations. Each place can have one annotation PTMarking, and each arc can have one
annotation PTAnnotation. This is indicated by the compositions in the UML diagram in Fig. 5.

The XML syntax for these labels is derived from the role names of these compositions. Every annotation
PTMarking is mapped to an XML element <initialMarking>, and every annotation PTAnnotation is
mapped to an element <inscription>. Listing 1 shows an example for the XML syntax of a Place/ Transition
Net.

Since all labels in this package are anmnotations, all graphical elements defined for annotations may
occur as children in these elements.

In the PT-Net package each label is defined to have a <text> element, which defines the actual content
of this annotation. For Place/Transition Nets there are no structured elements.

The corresponding classes from package DataTypes define the XML content of the <text> element.
These were discussed in Sect. 4.1.4 already.

Note that for Place/Transition Nets, there is a predefined tool specific extension for the label
<initialMarking> (see Sect. 2.3.1), which represents the positions of tokens within a place. The class
TokenGraphics is mapped to the XML element <tokengraphics> with no attributes. The token positions
contained by this element are represented by the elements <tokenposition> as shown in Table 5. Within
the element <tokengraphics> there can be any number of <tokenposition> elements with two attributes x
and y.

4.3 Mapping for High-Level Nets

Table 6 defines the mappings between the meta-model elements and their XML representation. In these
tables, only meta-model elements that have corresponding PNML elements or attributes are displayed.
Thus, most abstract elements are not shown in the tables, except if they have attributes. All attribute
types are mapped to XMLSchema-datatypes library data types. For details, we refer to the RELAX NG
grammars [17].

5 Conclusion

In this paper, we have outlined the main concepts and the syntax of PNML as defined in ISO /TEC-15909-2,
which passed its final ballot and will hopefully be published soon. For lack of space, we could not discuss
all the details. In particular, we could not discuss the rationale behind the design of PNML and we could
not discuss all built-in data types and their XML syntax. For the design rationale, we refer to earlier
publications [2, 15, 4] and for some more information on the XML syntax we refer to the PNML web pages
[17], which has the full RELAX NG grammar for all currently standardized Petri net types. The ultimate
source of information will be the International Standard ISO/IEC 15909-2.

Another great help for implementing the PNML might be the PNML Framework [18], which provides
an API for reading and writing Petri nets in PNML. This API is automatically generated from the PNML
meta-models in the Eclipse Modeling Framework (EMF). More details can be found on the PNML web
pages [17].

These web pages are also used for discussing future extensions, some of which might be covered in
Part 3 of ISO/IEC 15909. This concerns in particular the precise definition of how to define a Petri

118

Table 6: High-level meta-model elements and their PNML constructs

Model element PNML element | PNML attributes
Booleans::Bool bool

Booleans::And and

Booleans::Or or

Booleans::Not not

Booleans::Imply imply

Booleans::Equality equality

Booleans::Inequality inequality

Booleans::BooleanConstant booleanconstant value: boolean
HLCoreStructure::Declaration declaration

HLCoreStructure::Type type

HLCoreStructure::HLMarking hlinitialmarking
HLCoreStructure::Condition condition
HLCoreStructure::HLAnnotation hlinscription

Terms::Declarations declarations

Terms::VariableDeclaration variabledecl id: ID; name: string
Terms::OperatorDeclaration No element id: ID; name: string
Terms::SortDeclaration No element id: ID; name: string
Terms::Variable variable variabledecl: IDREF
Terms::NamedSort namedsort

Terms::NamedOperator namedoperator

Terms::Term No element

Terms::Sort No element

Terms::MultisetSort multisetsort

Terms::ProductSort productsort

Terms::UserSort usersort, declaration: IDREF
Terms::Tuple tuple

Terms::Operator No element

Terms::UserOperator useroperator declaration: IDREF
ArbitraryDeclarations:: ArbitrarySort arbitrarysort
ArbitraryDeclarations::Unparsed unparsed
ArbitraryDeclarations::ArbitraryOperator | arbitraryoperator

net type (which where used informally only up to now) and its features, and the use this Petri net type
definition mechanism for defining some more standard Petri types such as timed and stochastic Petri nets.
Another major issue is the definition of a module concept for PNML [15, 19, 20]. This setting should
be powerful enough to encompass most structuring mechanisms. Hence, it will be possible to exchange
modular and hierarchical models, using different structuring paradigms, between tools so as to apply their
specific analysis techniques.

If you are interested in some of these issues, you might also want to join the work of WG19 of ISO /TEC
JTC1 SC7 or the discussion list available at the PNML web pages. All ideas are welcome.

Acknowledgements The work on PNML and ISO/IEC 15909-2 has been going on over 10 years now and many
people have been involved in the discussion and development process in different stages and different intensity.
Since, it is hard to weigh the individual contributions, we thank all of them in alphabetical order: Joao Paulo
Barros, Jean Bérubé, Jonathan Billington, Didier Buchs, Sgren Christensen, Jorg Desel, Erik Fischer, Giuliana
Franceschinis, Guillaume Giffo, Jun Ginbayashi, Kees van Hee, Nisse Husberg, Kurt Jensen, Matthias Jiingel,
Albert Koelmans, Olaf Kummer, Kjeld Hgyer Mortensen, Reinier Post, Wolfgang Reisig, Stefan Roch, Karsten
Wolf, Christian Stehno, Kimmo Varpaaniemi, Michael Weber, Lisa Wells, Jan Martijn van der Werf, and Lukasz
Zogolowek.

We would also like to thank ISO/IEC for their kind permission to publish this paper based on material of the
upcoming standard ISO/IEC 15909.

119

References

[1] Bastide, R., Billington, J., Kindler, E., Kordon, F., Mortensen, K.H., eds.: Meeting on XML/SGML
based Interchange Formats for Petri Nets, University of Aarhus, Dept. of Computer Science (2000)

[2] Jingel, M., Kindler, E., Weber, M.: The Petri Net Markup Language. Petri Net Newsletter 59
(2000) 24-29

[3] Weber, M., Kindler, E.: The Petri Net Kernel. In Ehrig, H., Reisig, W., Rozenberg, G., Weber, H.,
eds.: Petri Net Technologies for Modeling Communication Based Systems. Volume 2472 of LNCS.
Springer (2003) 109-123

[4] Billington, J., Christensen, S., van Hee, K., Kindler, E., Kummer, O., Petrucci, L., Post, R., Stehno,
C., Weber, M.: The Petri Net Markup Language: Concepts, technology, and tools. In van der Aalst,
W., Best, E., eds.: Application and Theory of Petri Nets 2003, 24*" International Conference. Volume
2679 of LNCS., Springer (2003) 483-505

[5] ISO/IEC: Software and Systems Engineering — High-level Petri Nets, Part 1: Concepts, Definitions
and Graphical Notation, International Standard ISO/TEC 15909 (2004)

[6] Genrich, H.J., Lautenbach, K.: System modelling with high-level Petri nets. Theoretical Computer
Science 13 (1981) 109-136

[7] Jensen, K.: Coloured Petri nets and invariant methods. Theoretical Computer Science 14 (1981)
317-336

[8] Berthomieu, B., Choquet, N., Colin, C., Loyer, B., Martin, J., Mauboussin, A.: Abstract Data Nets
combining Petri nets and abstract data types for high level specification of distributed systems. In:
Proceedings of VII European Workshop on Application and Theory of Petri Nets. (1986)

[9] Vautherin, J.: Parallel systems specifications with coloured Petri nets and algebraic specifications.
In Rozenberg, G., ed.: Advances in Petri Nets. Volume 266 of LNCS. Springer-Verlag (1987) 293-308

[10] Billington, J.: Many-sorted high-level nets. In: Proceedings of the 3rd International Workshop on
Petri Nets and Performance Models, IEEE Computer Society Press (1989) 166179

[11] Reisig, W.: Petri nets and algebraic specifications. Theoretical Computer Science 80 (1991) 1-34
[12] Jensen, K., (Eds.), G.R.: High-level Petri Nets, Theory and Application. Springer-Verlag (1991)

[13] Jensen, K.: Coloured Petri Nets, Volume 1: Basic Concepts. EATCS Monographs on Theoretical
Computer Science. Springer-Verlag (1992)

[14] Chiola, G., Dutheillet, C., Franceschinis, G., Haddad, S.: On well-formed coloured nets and their
symbolic reachability graph. In Jensen, K., Rozenberg, G., eds.: Petri Nets: Theory and Application.
(1991) 373-396

[15] Weber, M., Kindler, E.: The Petri Net Markup Language. In Ehrig, H., Reisig, W., Rozenberg, G.,
Weber, H., eds.: Petri Net Technologies for Modeling Communication Based Systems. Volume 2472
of LNCS. Springer (2003) 124-144

[16] Stehno, C.: Petri Net Markup Language: Implementation and Application. In Desel, J., Weske, M.,
eds.: Promise 2002. Lecture Notes in Informatics P-21., Gesellschaft fiir Informatik (2002) 18-30

[17] PNML team: PNML.org: The Petri Net Markup Language home page. (URL http://www.pnml.
org/) 2009/06/8.

[18] Hillah, L., Kordon, F., Petrucci, L., Tréves, N.: Model engineering on Petri nets for ISO /IEC 15909-2:
API framework for Petri net types metamodels. Petri Net Newsletter 69 (2005) 22-40

[19] Kindler, E.: Modular PNML revisited: Some ideas for strict typing. In: Proc. AWPN 2007, Koblenz,
Germany. (2007)

[20] Kindler, E., Petrucci, L.: Towards a standard for modular Petri nets: A formalisation. In Franceschi-
nis, G., Wolf, K., eds.: Application and Theory of Petri Nets 2009, Internat. Conference, Proceedings.
Volume 5606 of LNCS., Springer-Verlag (2009) 43-62

120

