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Abstract

The Extensible Authentication Protocol (EAP) allows a server to request au-
thentication information from a client. In order to transport EAP messages over an
IP network, the Protocol for Carrying Authentication for Network Access (PANA)
has been developed. This paper applies a protocol engineering methodology us-
ing Coloured Petri nets (CPNs) as a step towards formally verifying the design
of PANA. State space analysis of a simple PANA configuration shows that the
current specification has removed deadlocks discovered in previous PANA versions.
Furthermore, state space and language analysis of PANA for different client retrans-
mission limits leads to two important conjectures: the state space size (number of
nodes, arcs) can be expressed as a polynomial in terms of the retransmission limit;
and the protocol language is independent of the retransmission limit. The results
suggest parametric verification is applicable to PANA. Finally, ideas for automati-
cally validating the CPN model against the original specification are discussed.

1 Introduction

The Extensible Authentication Protocol (EAP) [1] is a framework for performing authen-

tication in computer networks (see Figure 1). A typical usage scenario, as illustrated in

Figure 2, involves a server (known as authenticator in EAP) initiating an authentication

request to a peer. The peer responds to this, and any subsequent requests, until the

authenticator determines the procedures to be a success (the peer is authenticated for

network access) or failure (the peer is denied access to the network). In practice a third

entity, the authentication server, may be utilised for storage of credential information.

EAP is designed to support different authentication methods (e.g. MD5, TLS) and to

operate over different (non-IP-based) network technologies. For example, a laptop can

authenticate with a wireless LAN access point using IEEE 802.11i, or a home PC can

authenticate with a dial-in server using EAP over the Point-to-Point Protocol (PPP).

In order to allow EAP to be carried over IP networks, PANA has been developed

and released as IETF Request For Comments (RFC) 5191. The Protocol for Carrying

Authentication for Network Access [8] is a lower layer for EAP, and PANA itself uses

UDP as a lower layer. In addition to the protocol definition in [8], the PANA Working

Group has developed a state-table model of PANA published as RFC 5609 [7]. Although

the state-table model is for informative purposes, combined with the protocol definition,

it provides a detailed explanation of the behaviour of PANA. However, as with many

distributed protocols, it is important that the PANA specification is accurate and unam-

biguous. This is particularly important for an authentication protocol, where small errors

or an ambiguous specification may lead to implementations with potentially damaging

security flaws.
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Most research on PANA involved its application to wireless networks [18, 17, 5],
especially performance analysis of PANA re-authentication during handovers [4, 9]. Little
effort has been directed to the formal analysis of PANA, including security analysis. The
overall aim of this research is to verify the design of PANA to ensure a complete and
correct specification is available. To do so a protocol engineering methodology [2] is
applied utilising Coloured Petri nets (CPNs) [14]. There are numerous examples of a
protocol engineering methodology applied to other protocols (e.g. [19, 16, 11, 12]). The
steps followed in this paper include:

1. Modelling of the PANA protocol specification using CPN Tools [15].

2. Simulation of the PANA CPN model to investigate specific scenarios. CPN Tools
is used to step through sequences of events, and combined with BRITNeY [21] to
automatically generate message sequence charts.

3. Functional property verification from state space analysis. CPN Tools is used to
inspect terminal states and identify possible deadlocks, as well as bounds on com-
munication channels.

4. Generation and inspection of the PANA protocol language (i.e. the possible ordering
of interactions between PANA and the higher layer, EAP). Obtaining the protocol
language is necessary in verifying that PANA is a faithful refinement of the service
that EAP assumes is provided by the lower layer. However in this work, there is
not yet a formal definition the PANA service offered to EAP. Hence only manual
inspection of the protocol language is used at this stage.
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Note that this paper does not attempt a formal security analysis (from a crypto-

graphic viewpoint) of PANA. In fact, such analysis depends largely on EAP and other

authentication methods, as PANA is only a protocol that carries EAP messages.

In previous work [13] a CPN model and initial analysis of PANA was presented. This

was based on RFC5191 and draft version 6 of the PANA state tables. Using state space

analysis of the simplest configurations of PANA (no retransmissions, no optimisation of

the initiation procedure), a problem with aborting sessions was identified. Since then

the PANA state tables have been updated (from version 6 through to 13, which is now

published as RFC 5609). This paper uses an updated CPN model of the latest version of

PANA. In addition, new configurations are analysed, in particular with retransmissions

and initiation optimisation.

The remainder of this paper is organised as follows: Section 2 describes PANA and

EAP in further detail. Section 3 provides an overview of the CPN model of PANA.

Results from the formal analysis of the PANA Authentication and Authorisation Phase

are presented in Section 4. Discussion of the approach, results and ideas for future work

are given in Section 5.

2 EAP and PANA

2.1 EAP

EAP is a request/response protocol where only a single packet is in-flight at once, i.e. the

authenticator cannot send a new request until the response from the previous request is

received. The requests contain authentication challenges to the client. EAP assumes the

lower layer (in this paper, PANA) will provide in-order delivery of packets, however it

does not require the lower layer to be reliable, provide security or remove duplicates. A

typical scenario, as illustrated in Figure 2, involves one or more EAP Request/Response
exchanges (always initiated by the authenticator) followed by a final EAP Success or EAP
Failure message, depending on the authentication information supplied by the client.

2.2 PANA

The role of PANA is to transport EAP messages between peer (referred to as PANA

Client or PaC) and authenticator (PAA). PANA uses UDP at the transport layer, and

hence the service provided to PANA may have packet losses, duplication and re-ordering.

An exchange of messages in PANA is a session, which is divided into four phases:

Authentication and Authorisation At the start of a PANA session this phase in-

volves the exchange of EAP messages to perform authentication.

Access Once authentication is successful network access is provided. In this phase either

PaC or PAA may test for the liveness of the session (which has a limited lifetime).

Re-authentication May be performed to maintain the session liveness.

Termination Either PaC or PAA may terminate a session. If a session isn’t terminated

gracefully, then a timeout on the PANA session will result in the termination.

PANA communications are implemented as a series of request and answer messages.

To explain the Authentication and Authorisation phase consider the example scenario

in Figure 3(a) (which is generated from our CPN model in Section 3). It shows the
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Figure 3: Message sequence chart of PANA Authentication phase: (a) no piggybacking;
(b) with piggybacking
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communication between EAP entity and corresponding PANA entity, as well as between

PANA entities across the network.

The PANA session can be initialised by either the PAA or PaC (Figure 3(a) shows

an example initiated by PAA, whereas Figure 3(b) illustrates PaC initiation, as well as

piggybacking). The methods for each entity learning about the presence of the other is

out side of the scope of PANA. For a PAA-initiated-session, after it discovers the presence

of a PaC, it sends an AuthRequest message to start the session (the ’S’ flag indicates this

message is to start the session). This initial AuthRequest is used to force a restart of the

EAP session at the Peer. The PaC responds with an AuthAnswer, which results in the

EAP session at the Authenticator restarting.

The EAP Authenticator then initiates the authentication with an EAP Request. This

triggers the PAA to send an AuthRequest carrying the EAP Request method (e.g. the

authentication challenge). Upon receipt of the AuthRequest, the PaC passes the EAP
Request method to the EAP Peer and replies with an AuthAnswer.

The PaC sends the response to the challenge in an AuthRequest (which is also acknowl-

edged by the PAA with a AuthAnswer). This sequence of EAP requests and responses

(and AuthRequest and AuthAnswer messages) may repeat until the authentication is com-

plete. Finally the EAP Authenticator will send a Success or Failure method indicating

the result of authentication. The EAP Success is shown in Figure 3(a), which is carried

in an AuthRequest with the Complete flag set. Once the AuthAnswer is received by the

PAA, both PAA and PaC have the PANA session established and the Access phase is en-

tered. Note that the AuthAnswer messages can be considered as acknowledgements of the

AuthRequest messages. They do not necessarily carry the answer to the authentication

challenge (i.e. the EAP response). Other relevant details of PANA include:

• 32-bit sequence numbers are used to maintain ordering and perform error detection.

The sequence numbers at PAA and PaC are independent. An outgoing request

message contains a sequence number, and the corresponding answer message must

have the same sequence number.

• Request messages are retransmitted if an answer is not received within a specified

time. The session is terminated if too many retransmissions occur.

• PANA messages contain 16 bytes of fixed size header (e.g. flags, message type,

sequence number, session identifier) as well as a variable number of Attribute-

Value Pairs (AVPs). AVPs include: the actual EAP message; authentication data;

session lifetime; and other security related information.

• Optional piggybacking of messages allows either PaC or PAA to send a single PANA

message that represents both an answer and a request. For example in Figure 3(a)

without piggybacking, PaC sends an AuthAnswer(8) followed by AuthRequest(3).
With piggybacking turned on (Figure 3(b)), the PaC sends a single message, Au-
thAnswer(9) which also includes the EAP response.

2.3 EAP/PANA Interface

In order to verify if the PANA protocol correctly interacts with EAP, it is necessary to

understand the interface between the two layers. The EAP state-machines [20] specify

the variables used for communication between EAP and a lower layer. This information

is summarised in Figure 4. As an example, when the EAP Authenticator sends an EAP
Request, the eapReq flag will be set to true and the Request method will be included in

eapReqData.
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Figure 4: EAP/PANA interface based on [20]

In addition to the EAP-defined interface, the PANA state-tables [7] describes its own

set of variables and procedures used for communication between PANA and EAP. As

an alternative to the two separate set of variables defined by EAP and PANA, service
primitives can be used to describe the interface between the two layers. Table 1 is an

attempt to define the service primitives that correspond to information found in the EAP

standard [20] and PANA standard [8, 7]. The table lists the EAP-defined variables, the

PANA-defined variables, as well as the newly defined service primitives. However from the

available specifications it is difficult to define all valid sequences of primitives, and hence

orderings are not yet defined. In Section 4 the service primitives are used in determining

the PANA protocol language, i.e. the possible sequences of service primitives.

Table 1: EAP/PANA interface variables and service primitives

No. Entity EAP PANA Primitive
1 Peer/PaC - AUTH USER CAuthUser
2 Peer/PaC eapRestart EAP RESTART CRestart
3 Peer/PaC eapReq EAP REQUEST CRequest
4 Peer/PaC eapResp EAP RESPONSE CResponse
5 Peer/PaC eapSuccess EAP SUCCESS CSuccess
6 Peer/PaC eapFail EAP FAILURE CFailure
7 Peer/PaC - - CTimeout
8 Peer/PaC - ABORT CAbort
9 Auth/PAA - PAC FOUND APacFound
10 Auth/PAA eapRestart EAP RESTART ARestart
11 Auth/PAA eapReq EAP REQUEST ARequest
12 Auth/PAA - - AResponse
13 Auth/PAA eapSuccess EAP SUCCESS ASuccess
14 Auth/PAA eapFail EAP FAILURE AFailure
15 Auth/PAA - EAP TIMEOUT ATimeout
16 Auth/PAA - ABORT AAbort
17 Peer/PaC - DISCARD CDiscard
18 Auth/PAA - DISCARD ADiscard

3 Coloured Petri Net Model of PANA

3.1 Model Hierarchical Structure

A CPN model of PANA has been created based on the state tables in [7]. The model

consists of 23 pages, 63 transitions and 7 places (however not all transitions are relevant

for the Authentication and Authorisation phase of PANA considered in this paper).

The model focuses on the components of the protocol important for functional verifi-

cation, i.e. the ordering of exchange of messages. Where possible, abstraction is used so

that details of message content and format can be omitted. This makes analysis easier,

but at the expense of a complete protocol specification. The structure of the model fol-
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Figure 5: Top-level page of PANA CPN Model

lows a state-based approach, where transitions are used to model actions (each row) in

the PANA state-tables. Further discussion of this approach is given in Section 5.

The PANA CPN is hierarchical, with the PaC and PAA modelled on separate pages,

and then each state of the PaC/PAA modelled on separate pages. This is achieved using

substitution transitions and port/socket places. At the highest level (Figure 5) there are

two transitions (PaC and PAA) and two places modelling the communication channel

between PaC and PAA (and vice versa). The channel is assumed to be reliable (no

message loss), but allows re-ordering and delay of messages. As UDP is used as the lower

layer by PANA, the assumption of no message loss is not always valid. However assuming

no message loss is a useful starting point for the analysis, since modelling loss may hide

deadlocks in the protocol. Studying the impact of message loss is part of future work.

Both the PaC and PAA transitions at the top-level contain detailed models on their

respective sub-pages. These sub-pages (Figures 6 and 7) contain transitions that model

the events at each state and a place to model the current state. For example, the

place Client stores the current state of PaC, C INITIAL, and state variables such as

eap piggyback=false. Places LastClientMsg and LastAuthMsg are used to store the previ-

ous message sent in case a retransmission is necessary.

3.2 Modelling State Tables

Each transition on the PAA/PaC sub-pages is further decomposed to individual pages

that model the events, conditions, actions and next states as presented in the state-tables.

To explain, the case of the PAA in the INITIAL state will be used as an example. The

PANA state-table from [7] for the PAA INITIAL state is given in Figure 8.

For a given state, the state-tables in [7] specify:

• An exit condition, i.e. the conditions that must occur. For example, in Figure 8

there is an exit condition called EAP REQUEST, which indicates a request is received

from the higher layer EAP entity.

• Exit actions, i.e. the actions that will be executed upon the conditions being met.

For the EAP REQUEST condition, the actions are to transmit a PANA AuthRequest
message (Tx:PAR[S]) and then start the retransmission timer (RtxTimerStart().
Note that the contents of the AuthRequest message depends on the type of EAP

method received from the higher layer.

• The exit state, i.e. the next state of the entity. After the EAP REQUEST and

corresponding actions, the PAA will re-enter (i.e. remain in) the INITIAL state.
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Figure 6: CPN Model of PaC
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Ideally, each entry in the state table could be modelled by a single transition in the

CPN. However for some entries multiple transitions are used. This is because the exit

actions in the state table sometimes contain conditions. Consider the action for the

exit condition (Rx:PCI[] || PAC FOUND) in Figure 8. If OPTIMIZED INIT is set then

one sequence of actions are taken, and if not set another sequence of actions are taken.

Hence this entry in the state table is modelled as two transitions. Furthermore, there

are in fact two distinct exit conditions: Rx:PCI[] and PAC FOUND. These are therefore

modelled as separate transitions (this is necessary as the two conditions correspond to

different interactions with the higher layer). As a result, the one state table entry in this

case is modelled with four transitions. In Figure 9 the four transitions are: PAC FOUND

Optimum; PAC FOUND NoOptimum; RxPCI Optimum; and RxPCI NoOptimum.

------------------------------
State: INITIAL (Initial State)
------------------------------

Initialization Action:

OPTIMIZED_INIT=Set|Unset;
NONCE_SENT=Unset;
RTX_COUNTER=0;
RtxTimerStop();

Exit Condition Exit Action Exit State
------------------------+--------------------------+------------
- - - - - - - - (PCI and PAA initiated PANA) - - - - - - - - -

(Rx:PCI[] || if (OPTIMIZED_INIT == INITIAL
PAC_FOUND) Set) {

EAP_Restart();
SessionTimerReStart
(FAILED_SESS_TIMEOUT);

}
else {

if (generate_pana_sa())
Tx:PAR[S]("PRF-Algorithm",

"Integrity-Algorithm");
else

Tx:PAR[S]();
}

EAP_REQUEST if (generate_pana_sa()) INITIAL
Tx:PAR[S]("EAP-Payload",

"PRF-Algorithm",
"Integrity-Algorithm");

else
Tx:PAR[S]("EAP-Payload");

RtxTimerStart();
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

- - - - - - - - - - - - - - (PAN Handling) - - - - - - - - - -
Rx:PAN[S] && if (PAN.exist_avp WAIT_EAP_MSG
((OPTIMIZED_INIT == ("EAP-Payload"))
Unset) || TxEAP();

PAN.exist_avp else {
("EAP-Payload")) EAP_Restart();

SessionTimerReStart
(FAILED_SESS_TIMEOUT);

}

Rx:PAN[S] && None(); WAIT_PAN_OR_PAR
(OPTIMIZED_INIT ==
Set) &&

! PAN.exist_avp
("EAP-Payload")
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Figure 8: State Table for PAA in INITIAL state from [7]
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Each transition has or may have:

• An input arc from a place containing the current state, and related state informa-
tion, e.g. sequence numbers, flags. Consider the bottom transition in Figure 9 as
an example. The transition is only enabled when PAA is in the A INITIAL state.

• An input arc from the communication places (Client2Auth or Auth2Client, depending
on the entity) if the event involves receiving a message. (The example transition is
only enabled when a AuthAnswer has been sent by the PaC).

• A guard for the conditions related to the event. (AuthAnswer message must have
the Start flag set, not contain EAPPayload, and PAA must be using OptimizedInit)

• An output arc to the communication places if the action involves sending a message.
(No message is sent for the example transition).

• An output arc to the place containing state information, where the next state is
stored. (The new state is A WAIT PAN OR PAA for the example transition—there
are no changes to the state variables).

PAN Handling

PCI and PAA initiated PANA

1

2

4

(A_INITIAL,a)

(A_INITIAL,a)
ClientInitiation pci

AuthRequest {
 Seq=INITASEQ,
 EAPPayload=false,
 EAPType=NO_EAP,
 ResultCode=NO_RESULT,
 Start=true,
 Complete=false}

AuthRequest {
 Seq=INITASEQ,
 EAPPayload=true,
 EAPType=EAP_REQUEST,
 ResultCode=NO_RESULT,
 Start=true,
 Complete=false}

AuthRequest {
 Seq=INITASEQ,
 EAPPayload=false,
 EAPType=NO_EAP,
 ResultCode=NO_RESULT,
 Start=true,
 Complete=false}

(A_INITIAL,
 SessionTimerReStartA(
 StartedA(
 SetSeqRxA(a,INITCSEQ))))

(A_INITIAL,a)

AuthRequest {
 Seq=INITASEQ,
 EAPPayload=false,
 EAPType=NO_EAP,
 ResultCode=NO_RESULT,
 Start=true,
 Complete=false}

(A_INITIAL,a)

(A_WAIT_PAN_OR_PAR,a)

(A_WAIT_EAP_MSG,
 SessionTimerReStartA(a))

AuthAnswer pan

AuthAnswer pan

(A_INITIAL,a)

(A_INITIAL,a)

AuthAnswer pan
(A_WAIT_EAP_MSG,a)

(A_INITIAL,a)

(A_INITIAL,
 StartedA(
 RtxTimerStartA(
 SetSeqTxA(a,INITASEQ))))

AuthRequest {
 Seq=INITASEQ,
 EAPPayload=true,
 EAPType=EAP_REQUEST,
 ResultCode=NO_RESULT,
 Start=true,
 Complete=false}

AuthRequest {
 Seq=INITASEQ,
 EAPPayload=false,
 EAPType=NO_EAP,
 ResultCode=NO_RESULT,
 Start=true,
 Complete=false}

(A_INITIAL,a)ClientInitiation pci

(A_INITIAL,
 SessionTimerReStartA(
 StartedA(
 SetSeqRxA(a,INITCSEQ))))

(A_INITIAL,a)
ClientInitiation pci

DiscardPCI

[#Started(a)]

input (pci); output (); action (if mscOn then (
msc.addEvent("Network","PAA","ClientInit");
msc.addInternalEvent("PAA","Discard")) else ());

PAC_FOUND
Optimum

[#OptimizedInit(a)
andalso not(#Started(a))]

input (pci); output (); action (if mscOn then (
msc.addInternalEvent("PAA","PAC_FOUND");
msc.addEvent("PAA","EAP Auth","EAP_RESTART")) else ());

PAC_FOUND
NoOptimum

[not(#OptimizedInit(a))
andalso not(#Started(a))]

input (pci); output (); action (if mscOn then (
msc.addInternalEvent("PAA","PAC_FOUND");
msc.addEvent("PAA","Network",concat ["AuthRequest(S,",Int.toString (INITASEQ),")"]))
else ());

RxPAN Start
Opt, No PL

[#Start(pan)
andalso #OptimizedInit(a)
andalso not(#EAPPayload(pan))] input (pan); output (); action (if mscOn then (

msc.addEvent("Network","PAA",concat ["AuthAnswer(S,",
   Int.toString (#Seq(pan)),")"]))
else ());

RxPAN Start
Not Opt, No PL

[#Start(pan)
andalso not(#OptimizedInit(a))
andalso not(#EAPPayload(pan))] input (pan); output (); action (if mscOn then (

msc.addEvent("Network","PAA",concat ["AuthAnswer(S,",
   Int.toString (#Seq(pan)),")"]);
msc.addEvent("PAA","EAP Auth","EAP_RESTART"))
else ());

RxPAN Start
Payload

[#Start(pan)
andalso #EAPPayload(pan)]

input (pan); output (); action (if mscOn then (
msc.addEvent("Network","PAA",concat ["AuthAnswer(S,",
   Int.toString (#Seq(pan)),")"]);
msc.addEvent("PAA","EAP Auth","EAP_RESPONSE"))
else ());

EAP_REQUEST

[not(#Started(a))]
input (); output (); action (if mscOn then (
msc.addEvent("EAP Auth","PAA","EAP_REQUEST");
msc.addEvent("PAA","Network",concat ["AuthRequest(S,",Int.toString (INITASEQ),")"]))
else ());

RxPCI
Optimum

[#OptimizedInit(a) 
andalso not(#Started(a))]

input (pci); output (); action (if mscOn then (
msc.addEvent("Network","PAA",concat ["ClientInit(",
   Int.toString (#Seq(pci)),",PB)"]);
msc.addEvent("PAA","EAP Auth","EAP_RESTART")) else ());

RxPCI
NoOptimum

[not(#OptimizedInit(a)) 
andalso not(#Started(a))] input (pci); output (); action (if mscOn then (

msc.addEvent("Network","PAA",concat ["ClientInit(",
   Int.toString (#Seq(pci)),")"]);
msc.addEvent("PAA","Network",concat ["AuthRequest(S,",Int.toString (INITASEQ),")"]))
else ());

LastAuthMsg
Out

msg

Client2Auth
In

msg

Authenticator
I/O PAAState

Auth2Client
Out

msg

Out

I/O

In

Out

(A_INITIAL,
 StartedA(
 RtxTimerStartA(
 SetSeqTxA(
 SetSeqRxA(a,INITCSEQ),INITASEQ))))

(A_INITIAL,
 StartedA(
 RtxTimerStartA(
 SetSeqTxA(
 SetSeqRxA(a,INITCSEQ),
INITASEQ))))

(A_INITIAL,a)

Figure 9: CPN Model of A INITIAL state
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3.3 Message Sequence Charts

To illustrate the message flow between PANA and EAP entities, BRITNeY [21] and the

message sequence chart library are used in conjunction with CPN Tools. Each transition

modelling state table entries has a code segment indicating the transfer of messages or

special events (if any). For clarity, the code segments are omitted from the figures in this

paper. The code segment for the bottom transition in Figure 9 is:

input (pan); output (); action (if mscOn then (

msc.addEvent("Network","PAA",concat ["AuthAnswer[S,"

Int.toString (#Seq(pan)),")"])) else ());

The firing of the transition will draw an arrow indicating an AuthAnswer message being

sent from the Network to the PAA. Message sequence charts, such as that illustrated in

Figure 3, are useful for testing during model development, and exploring the protocol

behaviour under specific conditions.

4 Analysis Results

4.1 Approach and Assumptions

The state space is generated with CPN Tools and examined to determine the presence

of unexpected terminal states (deadlocks) in PANA, as well as the integer bounds on the

communication places.

To investigate the protocol language (i.e sequence of interactions between PANA and

higher layer), CPN Tools was used to translate the state space into a FSA, where states

were mapped to their node number and each binding element was mapped to an integer

depending on the service primitive it represented. The integer mappings are given in

Table 1. All other binding elements map to 0. In addition, terminal states in the state

space mapped to halt states. Then using AT&T’s FSM Library1 and GraphViz2, the

minimised deterministic FSA is created, representing the PANA protocol language. The

protocol language is studied in order to identify unexpected sequences of events in PANA.

In this paper four protocol parameters are of interest:

1. Piggybacking (PBPaC and PBPAA): this can be either on (true) or off (false). If on,

the PaC/PAA may combine two messages into one, thereby reducing the number

of messages sent over the network.

2. Optimised Initiation (OptInit): this can be either on or off. If on, the PAA can

send an EAP Request in the initial AuthRequest message.

3. PaC Maximum Retransmission Count (MRCPaC): an integer indicating the maxi-

mum number of retransmissions of request messages by PaC.

4. PAA Maximum Retransmission Count (MRCPAA): an integer indicating the max-

imum number of retransmissions of request messages by PAA.

The analysis assumes only a single EAP Request is sent by the Authenticator. In

addition, 4-bit sequence numbers are used (instead of 32-bit), and the initial sequence

numbers are randomly set at 3 and 8 for PaC and PAA, respectively.

In Section 4.2 analysis results for a simple configuration with no retransmissions are

presented. Then the effect of retransmissions is considered in Section 4.3.

1http://www.research.att.com/˜fsmtools/fsm/
2http://www.graphviz.org/
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Table 2: State Space Analysis of PANA CPN with No Retransmissions

Piggyback OptInit States Arcs Terminal States Client2Auth Auth2Client

Off Off 15531 34047 6866 5 3

On Off 3436 7212 1265 3 2

Off On 12079 26360 5292 5 3

On On 2085 4233 775 3 2

4.2 Analysis of Simple Configuration: No Retransmissions

Statistics from the PANA state space are shown in Table 2. In all cases, MRCPaC =

MRCPAA = 0. Also, for simplicity piggybacking is either on for both PaC and PAA or
off for both PaC and PAA. The integer bounds of the communication places, Client2Auth

and Auth2Client, are reported.

The state space is significantly larger when Piggyback is off. This is because with-

out piggybacking, both the PaC and PAA must send a separate AuthRequest message

to carry EAP responses. As illustrated in Figure 3, after receiving an EAP REQUEST,

the PaC sends an AuthAnswer(9) acknowledging the receipt of the EAP REQUEST, and

then sends a AuthRequest(3) containing the EAP RESPONSE. With piggybacking, the

EAP RESPONSE can be sent in the AuthAnswer(9), omitting the need for the AuthRe-

quest(3). Figure 10 shows the partial state space illustrating the sequences from Figure 3.

The integer bound of the communication places Client2Auth and Auth2Client indicates

the number of messages an entity can send before it has to wait for a response from the

peer entity. Normally an entity sends a AuthRequest and then waits for an AuthAnswer

before sending another message. However, with piggybacking off for example, the PAA

can send an AuthRequest message containing an EAP Request, and then if the EAP

Authenticator returns a result to PAA, the PAA can send anotherAuthRequest message

containing the EAP result. After this the PAA must wait for an answer. Hence the

upper bound on the messages in Auth2Client is 2. Similar scenarios occur for the other

configurations.

1
0:3

A_INITIAL'PAC_FOUND_NoOptimum 1

C_INITIAL'RxPAR_Start_No_EAPPayload 1

12
1:2

A_INITIAL'RxPAN_Start_Not_Opt 1

31
1:6

A_WAIT_EAP_MSG'EAP_REQUEST 1

70
1:4

C_WAIT_PAA'RxPAR_No_Piggyback 1

165
1:6

C_WAIT_EAP_MSG'EAP_RESPONSE_NoPiggyback 1

373
1:6

717
1:6

C_WAIT_PAA'RxPAN 1

1143
1:4

A_WAIT_EAP_MSG'EAP_SUCCESS_Authorized 1

1639
2:4

C_WAIT_PAA'RxPAR_Complete_Success 1

2399
1:5

C_WAIT_EAP_RESULT'EAP_SUCCESS 1

3777
1:4

A_WAIT_SUCC_PAN'RxPAN_Complete 1

5791
1:0

4
1:3

A_WAIT_PAN_OR_PAR'RxPAR 1

15 Aug 2009: PB off, Opt Off, C=A=0, Normal sequence

(a)

15 Aug 2009: PB on, Opt Off, C=A=0, Normal sequence

1
0:3

C_INITIAL'AUTH_USER 1

2
1:5

A_INITIAL'RxPCI_NoOptimum 1

6
2:4

C_INITIAL'RxPAR_Start_No_EAPPayload 1

19
2:3

A_INITIAL'RxPAN_Start_Not_Opt 1

52
1:7

A_WAIT_EAP_MSG'EAP_REQUEST 1

133
1:5

C_WAIT_PAA'RxPAR_Piggyback 1

300
1:7

C_WAIT_EAP_MSG'EAP_RESPONSE_Piggyback 1

596
1:4

A_WAIT_PAN_OR_PAR'RxPAN_Payload 1

990
1:6

A_WAIT_EAP_MSG'EAP_SUCCESS_Authorized 1

1309
1:4

C_WAIT_PAA'RxPAR_Complete_Success 1

1721
1:5

C_WAIT_EAP_RESULT'EAP_SUCCESS 1

2108
1:4

A_WAIT_SUCC_PAN'RxPAN_Complete 1

2558
1:0

(b)

Figure 10: Selected state space showing sequence corresponding to those in Figure 3
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4.2.1 Terminal States

Closer inspection of the terminal states is necessary to determine if any are unexpected.
However first the expected terminal states must be defined. From previous analysis of
PANA [13], the expected terminal states are classified by the state that the PaC and
PAA finish in. Recall that only the Authentication and Authorisation phase of PANA
is analysed: if this phase is successful the PANA session will be OPEN, and both PaC
and PAA enter the Access phase. If unsuccessful, both PaC and PAA should enter the
CLOSED state (PANA session is closed). Therefore expected terminal states are defined
as those where the PaC/PAA entity is in a valid state. The four expected groups of
terminal states are:

1. C OPEN and A OPEN: both PaC and PAA have opened a PANA session, i.e. au-
thentication was successful.

2. C CLOSED and A CLOSED: both PaC and PAA have closed a PANA session, e.g.
after a failed authentication attempt or abort due to too many retransmissions.

3. C OPEN and A CLOSED: PaC successfully opens a session, however the PAA aborts
before opening the session thereby leaving it in the CLOSED state. This is consid-
ered valid because the PaC will enter the Access phase and eventually the PANA
session will timeout (and close) after receiving no responses from the PAA. Rather
than explicitly modelling the timeout event which is part of the Access phase, these
terminal markings are considered valid.

4. C CLOSED and A OPEN: PAA successfully opens a session, however the PaC aborts.
Following the same reasoning as above, this is a valid terminal state.

In [13] a fifth, unexpected group of terminal states was discovered. After the PaC re-
sponded to the initial AuthRequest message (with Start bit set), it entered the C WAIT PAA

state. If the PAA aborted before receiving the AuthAnswer from PaC, then the PAA en-
tered A CLOSED. This was an invalid terminal state because as the PANA session had not
yet started by the PaC, the session timer would never expire, leaving PaC in C WAIT PAA.
This problem arose because, with no explicit abort messages, an entity only knows the
peer has aborted if a time out occurs. In specific cases, such as described above, a timer
is not started, and hence no timeout will occur.

In the updates of the PANA state table from version 6 to version 13 this behaviour has
been fixed. That is, the session timer is started after PaC sends the initial AuthRequest

message (rather than after entering the C OPEN state). Therefore if PaC is waiting in
the C WAIT PAA state, while the PAA has aborted, eventually PaC session will time-out.
Similar behaviour can lead to a valid terminal state with PaC in C WAIT PAA and PAA
in A OPEN.

Finally, there is another special terminal state when optimised initiation is used (this
case was not analysed in [13]). Note that both PaC and PAA may initiate the Authenti-
cation and Authorisation phase. If both entities initiate before receiving a message from
the peer, then the PAA takes precedence. That is, the PAA will discard any ClientInitia-

tion messages received from PaC. Similar to the above issues, if the PaC then aborts, the
PAA may remain in the A INITIAL start. However, as the session timer has been started,
this is considered a valid terminal state (as eventually, the PAA will timeout and close
the session).

Therefore, we define three more valid groups of terminal states: (5) C WAIT PAA and
A OPEN; (6) C WAIT PAA and A CLOSED; and (7) C CLOSED and A INITIAL.
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Using CPN Tools queries, the terminal states of each state space were inspected to

determine if they matched any of the above 7 valid groups. Table 3 shows the count of

terminal states for each group. No unexpected terminal states were discovered. Further

discussion on the terminal states is given in Section 5.2.

Table 3: Terminal States with No Retransmissions
Piggyback OptInit 1 2 3 4 5 6 7 Unexpected Total

Off Off 61 6090 164 456 11 84 0 0 6866

On Off 41 871 98 61 8 186 0 0 1265

Off On 59 4660 164 333 7 68 1 0 5292

On On 23 534 59 38 4 116 1 0 775

4.2.2 Language Analysis

There is currently no formally defined service language for PANA. Table 1 lists the

possible service primitives to be exchanged between PANA and the higher layer, but does

not define any ordering. Hence language analysis of PANA is not used for verification

(i.e. comparing a protocol language to a service language), but instead to gain confidence

in the correct operation of the protocol and to investigate a possible service language.

However, as will be shown shortly, the size of the PANA protocol language is too large

for manual inspection. Therefore an abstraction is applied where the protocol languages

for PaC and PAA are produced separately. That is, the PaC Only protocol language

shows the sequence of primitives exchanged between the PaC and the higher layer. This

is useful in validating that at least the PaC and PAA are operating in a normal manner.

Table 4 gives the number of states/arcs/final states in the minimised deterministic

FSA, as well as the number of sequences in the language. Results are shown for the

complete PANA protocol language, PaC only and PAA only. Figures 11 and 12 show

the PaC only and PAA only protocol languages when piggybacking and optimised initi-

ation are both on. Visual inspection of the PaC and PAA languages reveal no obvious

unexpected sequences: the ordering of Requests then Responses is as expected; there are

no Requests or Responses after a Success or Failure; and the PAA only sends a single

Request. The sequence of primitives as seen by the PaC shown in Figure 3 are captured

in the sequence from states 0–2–5–8–12–19 in Figure 11. Unfortunately, the full PANA

protocol language is too large for inspection. Analysis of the full PANA language, and

eventually determining a PANA service language, are left for future work.

Table 4: Protocol Language of PANA CPN with No Retransmissions. (S = States; A =

Arcs; FS = Final States; Seq = Sequences)

PANA PaC Only PAA Only

PB OptInit S A FS Seq S A FS Seq S A FS Seq

Off Off 95 369 7 17862 14 36 6 71 7 23 2 70

Off On 100 383 6 14742 20 56 8 60 7 23 2 56

On Off 88 350 6 13604 14 35 5 65 9 31 3 64

On On 93 340 6 11468 20 47 6 48 9 28 3 54

4.3 The Effect of Retransmissions

The simple configuration assumed no retransmissions from either PaC or PAA. However

in PANA the PaC (or PAA) may retransmit an AuthRequest (or ClientInitiation) message

up to MRCPaC (or MRCPAA) times if a corresponding AuthAnswer has not been received.
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Figure 11: PaC language (piggybacking on, optimised initiation on)
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Figure 12: PAA language (piggybacking on, optimised initiation on)

Table 5 lists state space and language statistics for the PANA CPN for increasing values

of MRCPaC . In all cases, MRCPAA = 0 3.

First consider the results when piggybacking is on. For both cases of Optimised Ini-

tiation on and off, the increase in MRCPaC leads to a quadratic increase in the size of

the state space, as well as number of terminal markings. For values 0 to 5 of MRCPaC ,

the number of states (S), arcs (A) and terminal markings (T) can be expressed as Equa-

tions (1) to (3) for the case of Optimised Initiation off:

SMRCPaC = 441(MRCPaC)
2
+ 2958(MRCPaC) + 3436 (1)

AMRCPaC = 1190.5(MRCPaC)
2
+ 7029.5(MRCPaC) + 7212 (2)

TMRCPaC = 71.5(MRCPaC)
2
+ 813.5(MRCPaC) + 1265 (3)

and Equations (4) to (6) for the case of Optimised Initiation on:

SMRCPaC = 270.5(MRCPaC)
2
+ 3721.5(MRCPaC) + 2085 (4)

AMRCPaC = 699(MRCPaC)
2
+ 4150(MRCPaC) + 4233 (5)

TMRCPaC = 45.5(MRCPaC)
2
+ 502.5(MRCPaC) + 775 (6)

3Initial results reveal the increase in state space size as MRCPAA is increased is much larger than in
the case of MRCPaC . More detailed analysis of MRCPAA is left for future work
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Table 5: State Space Analysis of PANA CPN with PaC Retransmissions (Term = Ter-
minal States; C2A = Client2Auth; A2C = Auth2Client; Seq = Sequences)

Parameters State Space Bounds Language
PB OptInit MRCPaC MRCPAA States Arcs Term. Time C2A A2C Seq.

Off Off 0 0 15531 34047 6866 91 5 3 17862

Off Off 1 0 47046 112620 18943 1549 6 3 17862

Off Off 2 0 101624 257908 38064 5129 7 3 17862

Off Off 3 0 186485 494481 65729 15118 8 3 17862

Off On 0 0 12079 26360 5292 52 5 3 13604

Off On 1 0 38691 93267 15174 665 6 4 14675

Off On 2 0 85589 219656 30983 2248 7 4 14675

Off On 3 0 159568 428774 54100 11413 8 4 14675

Off On 4 0 268212 747212 85947 33286 9 4 14675

On Off 0 0 3436 7212 1265 5 3 2 14742

On Off 1 0 6835 15432 2150 14 4 2 14742

On Off 2 0 11116 26033 3178 24 5 2 14742

On Off 3 0 16279 39015 4349 50 6 2 14742

On Off 4 0 22324 54378 5663 127 7 2 14742

On Off 5 0 29251 72122 7120 146 8 2 14742

On Off 10 0 77116 196557 16550 997 13 2 14742

On On 0 0 2085 4233 775 2 3 2 11468

On On 1 0 4163 9082 1323 6 4 2 11468

On On 2 0 6782 15329 1962 14 5 2 11468

On On 3 0 9942 22974 2692 28 6 2 11468

On On 4 0 13643 32017 3513 51 7 2 11468

On On 5 0 17885 42458 4425 83 8 2 11468

On On 10 0 47210 115633 10350 342 13 2 11468

The equations hold for MRCPaC = 10, giving increased confidence that they are true
for any value of MRCPaC . Similar relationships between retransmission limits and state
space size have been observed with other protocols [11, 12].

A much larger growth in the state space size is seen when considering no piggyback-
ing (see Figure 13). Further state space results are necessary to determine the exact
relationship between state space size and MRCPaC when piggybacking is off.

When piggybacking is on, the PaC can send EAP responses in AuthAnswer messages.
That is, the PaC does not send any AuthRequest messages (instead, the PaC sends
AuthAnswer messages in response to AuthRequest messages sent by the PAA). Therefore
the only message that can be retransmitted is the ClientInitiation which is used by the
PaC to start the session.

When piggybacking is off, the PaC can retransmit a ClientInitiation message as well as
an AuthRequest message that contains the EAP response (since the EAP response cannot
be piggybacked in an AuthAnswer). The ability to retransmit the AuthRequest results in
significant increase in the number of possible states, as illustrated in the partial state
space in Figure 14.

The integer bound of the communication place Client2Auth increases linearly as the re-
transmission limit MRCPaC increases. This is expected as the retransmission mechanism
simply means an additional MRCPaC messages can be sent, and stored in Client2Auth
before the PaC must wait for the PAA to receive a message and respond.

Closer inspection of the PANA protocol language reveals the language is independent
of MRCPaC (with one exception, explained shortly). In other words, retransmissions by
the PaC do not result in additional interactions between PAA and EAP Authenticator,
nor between PaC and EAP Peer. The reason is that retransmissions are only used in two
possible instances by the PaC: ClientInitiation in the C INITIAL state and AuthRequest
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carrying EAP response in the C WAIT EAP MSG state. In both cases, when the PAA

receives one of these messages (either original or retransmitted) it will process that mes-

sage and ignore any subsequent duplicates. An exception is the protocol language with

piggybacking off, and optimised initiation on. With no retransmissions there are less se-

quences than with retransmissions. The reason for this is retransmitted messages in this

case can cause a different ordering of interactions between PAA and EAP Authenticator.
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Figure 13: Impact of PaC retransmissions on state space size (in number of states)
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C_RETRANSMIT'Retransmit 1

A_WAIT_PAN_OR_PAR'RxPAR 1

C_WAIT_PAA'RxPAN 1

A_WAIT_EAP_MSG'EAP_SUCCESS_Authorized 1A_WAIT_EAP_MSG'EAP_SUCCESS_Authorized 1

1643
1:6

2542
1:4

1644
2:3

3984
1:4

3973
2:4

2541
2:6

6375
2:4

6389
2:4

6360
2:4

6395
2:0

3982
2:0

3979
2:4

3967
2:4

This portion of the state space contains states generated

as a result of a retransmission. The states are identical

to those on the left, except there is an additional

AuthRequest message in the Client2Auth place.

Figure 14: Partial state space showing effect of retransmission on state space size

In summary, the analysis with increasing MRCPaC shows that retransmissions by the

PaC do not adversely affect the operation of PANA. However, currently it is assumed

only a single EAP Request is sent and messages cannot be lost. Further work is needed

to analyse the impact of relaxing these assumptions.

5 Discussion

Steps from a protocol engineering methodology utilising Coloured Petri nets have been

applied to PANA, a protocol for carrying authentication information between clients

and servers. In previous work, initial CPN modelling and analysis of an earlier version of
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PANA revealed an undesirable state when the authenticator aborted a session. This paper
modelled and analysed the latest version of PANA, showing the undesirable state is now
avoided. In addition, new PANA configurations have been analysed, in particular when
Optimised Initiation is used by the authenticator, and when the client can retransmit
messages. The results so far show no unexpected behaviour in the latest version of PANA.

The PANA CPN model has been developed over a period of about two years, over
which time the PANA protocol specification and state tables have progressed from ver-
sions 14 to 18 and 5 to 13, respectively. The modelling, maintenance and analysis has
amounted to 3-4 months of effort from a single person new to CPN Tools (but expe-
rienced with CPNs and Design/CPN). The following discusses lessons learned in the
current work, as well as ideas for future work.

5.1 Modelling Approach

A state-based approach is used for modelling PANA as a CPN. The aim is for the CPN
model to closely follow the PANA state tables, which is advantageous during the de-
velopment of the protocol (and corresponding CPN model). In many cases there is a
direct mapping from a state table row to a CPN transition. However the approach has
limitations [3]. For example in the PANA CPN there are many transitions that model
the same behaviour (but in different states) and could be folded together. In addition,
by closely following the protocol state tables, little consideration is given in optimising
the model for state space analysis.

Despite the close relationship between the original state tables and CPN model, as
changes to PANA are made within IETF it is still time consuming to ensure those changes
are accurately reflected in the CPN model. This was especially difficult with PANA,
as there was an official PANA RFC with informal description of the protocol, as well
as a separately maintained (and often out-of-date) Internet Draft for the state table
description. With the IETF protocol descriptions, the difference between versions can be
visually highlighted using diff -based tools. Similar functionality would be useful in CPN
Tools: for example, highlighting CPN elements that have been changed since a previous
model. Another method to assist in validating the PANA CPN model is to generate state
tables directly from the model. Using the state-based modelling approach this is possible
and is currently work-in-progress.

5.2 State Space Analysis

A property of interest for many communication protocols is the absence of deadlocks.
With state space analysis of a CPN model, this requires specifying the expected terminal
states. In this paper, the simplest possible definition of an expected terminal state is
used: the state name of the PaC/PAA is expected (e.g. PaC and PAA both in the OPEN
state). A more precise definition would also consider the state information stored by
the PaC/PAA (e.g. value of session timer, current sequence number) as well as messages
remaining in the communication places. Also, as only the Authentication and Authorisa-
tion phase of PANA is analysed in this work, the expected set of terminating conditions
is quite large. As discussed in Section 4.2.1, there are 7 different valid states of the
PaC/PAA, a number of which are valid only because it is expected in later phases a valid
terminal state will be reached (because a time-out will occur). In the current CPN model
the timeout in the subsequent phase is not explicitly modelled. This CPN model design
decision was chosen to keep the analysis of PANA phases separate, however it leads to
extra complexity when defining/analysing the terminal states. If all PANA phases were
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analysed at once, the number of valid terminal states would be less (e.g. only the case
when PaC/PAA are both CLOSED).

The state space results as the number of PaC retransmissions increases suggests, if
the PANA service language is completed, parametric verification may be applicable to
analyse PANA properties [10]. In addition, the CPN model can be optimised for state
space analysis, and Figure 14 indicates equivalence classes may be promising as a state
space reduction technique.
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