
CPN Workshop - 2009 - 1

Towards Automatic Code
Generation from Process
Partitioned Coloured Petri Nets

K.L. Espensen, M.K. Kjeldsen, M. Westergaard
Computer Science Department,
Aarhus University, Denmark

L.M. Kristensen
Department of Computer Engineering,
Bergen University College, Norway

Presenter
Presentation Notes
Present work which is based on the Master’s thesis project of Mads and Kristian which was supervised by Michael and myself.

CPN Workshop - 2009 - 2

Motivation and Background
Modelling, simulation, and analysis yields useful insight
into the design and behaviour of a system:

?

Several approaches to automatic code generation:
Simulation-based: the code constituting the model
simulator is embedded directly in the implementation.
State space-based: the state space of the model is
computed and used in the implementation.
Structure-based: structural analysis of the model for
translation into programming language constructs.

Target programming
language

Presenter
Presentation Notes
Anaysis, e.g., state space analysis or performance analysis.

The construction of the model has hopefully indirectly contributed to make, e.g., a manual implementation easier but it would be nice to have some automatic support for code generation.

There has been work taking the simulator-based approaches, e.g., the development of a COAST scheduling tool for the australian defence force, the development of an alarm systems.

The disadvantage of simulation-based approach is the structure of the code – which is not of a form that a human programmer would have written – and the second problem is that there is a potential complex enabling step to performed in each step of the execution.

The potential problem with enabling computation can be avoided by taking a state space-based where the state space is used to direct the execution of the resulting implementation. But the disadvantage is now the size of the state space and that it may not in general be finite.

The advantage of the structure-based approach is that it results in code which is similar to what a human-programmer would write and hence easier to adapt if that is needed, e.g., for performance tuning or when embedding the code into a larger application.

In the following we shall focus on a structure-based approach – a main advantage of this is that the code is closer something than a human programmer may have written.

CPN Workshop - 2009 - 3

An Observation (A Claim)
It is difficult (generally) to recognize
programming language constructs in CPNs:

Conclusion: Some additional syntactical
constraints and annotations are needed.

Control flow: if-then-
else, case, while,…?

Communication,
synchronisation,
message passing,
shared data,…?

Presenter
Presentation Notes
We can infer that kind of information from our understanding of what is being modelled – but a computer tool that are to generate an implementation does not have such intuition and understanding.

Point: we need to restrict the set of CPNs to do it in a meaningful way

Put some requirements.

CPN Workshop - 2009 - 4

Process
Partitioned CPNs

Provides an explicit
separation of:

Control flow of
processes.
Message passing.
Shared and local data.

Key concepts:
Process partitions and
process places.
Buffer places.
Shared and local places.

Presenter
Presentation Notes
A subset of CPNs that provides …

The class was actually developed for something totally different...

Add animation of the different parts.

CPN Workshop - 2009 - 5

Approach: Overview
The translation of Process-Partitioned CPNs
into an implementation is divided into phases:

The abstract syntax tree (AST) is independent
of a particular target programming language.

Control Flow Graph Abstract Syntax Tree

Presenter
Presentation Notes

CFG is a directed graph that reflects the control flow of the processes and the blocks of the CFG corresponds to a group of statements that are to be executed.

The AST includes a tree representation of the statements from the CFG and the inscriptions used in the CPN model.

A main point is to be independent of the concrete target language for as long as possible.

CPN Workshop - 2009 - 6

Target Implementation Language
The two last phases are target programming
language specific:

The Erlang programming language was used
as the target programming language.
The code generation did not consider the
sequential CPN ML parts of the CPN model.

Presenter
Presentation Notes
To make things run we of course need a concrete target language and the last two phases of the translation are target language specific:

The erlang programming language is a programming language developed by Ericsson in the late 1980s for implementing concurrent and fault-tolerant software – in particular for telephone switches and networking. It is sometimes referred to as a concurrency-oriented programming language because concurrency has been built-in from the very beginning of the design of the language – in a similar way as Petri net can be considered a concurrency-oriented modelling language.

In that respect there is a nice conceptual match between Erlang and Coloured Petri nets and a lot of the construct found in Erlang for sequence programming is similar to Standard ML

The ML to Erlang translation concrerning the sequential parts are not where the interesting problems lies.

CPN Workshop - 2009 - 7

Phase 1: CPN Model Decoration
Identification of process partitions, process-,
local-, buffer- and shared- places.

Process partitions: Program
executed by one or more
processes.

Process places: Control
flow locations of processes

Local places: data local to a
process.

Buffer places: messages
passed to a process.

Shared places: data shared
between processes.

Presenter
Presentation Notes
We shall now consider the different phases in a bit more detail using the producer fragment as an example and try to track this through the different phases of the translation.

Would not be required is we had an editor that directly supported the construction of PCPN models – then that information would already be available.

CPN Workshop - 2009 - 8

Phase 2: Translating to CFG
Constructs a control-flow graph for each process
partition:

Presenter
Presentation Notes
Nodes in the control-flow graph corresponds to a group of statements to be executed …

CPN Workshop - 2009 - 9

Phase 3: CFG to AST Translation
Translates blocks and statements of the CFG into
an abstract syntax tree (AST):

Presenter
Presentation Notes
The arc back to the send data block is represented with a conditional jump.

CPN Workshop - 2009 - 10

Phase 4: AST to EST Translation
Generates an Erlang syntax tree (EST) from the
abstract syntax tree (AST):

CPN Workshop - 2009 - 11

Phase 5: EST to Erlang Code
Traverse the EST and
writes out a textual
representation of the
Erlang program:

Presenter
Presentation Notes
The 2 in export states that the exported function start expects two so-called input variabes.

Note: the earlier produced data is ignored.

CPN Workshop - 2009 - 12

Computer Tool Support
A prototype implementation realised as an
Eclipse plug-in to the ASAP Verification Platform.
The existing EMF CPN model of ASAP and the CPN
importer was used to load CPN models:

Presenter
Presentation Notes
Editors and means to inspect the artefacts generated in the various phases of the translation can be obtained fully automatically.

CPN Workshop - 2009 - 13

A Larger Example:
The DYMO MANET Routing Protocol

CPN Workshop - 2009 - 15

DYMO CPN Model*

*K. L. Espensen, M. K. Kjeldsen, and L.M. Kristensen. Modelling and Initial
Validation of the DYMO Routing Protocol for Mobile Ad-Hoc Networks. In
Proc. of ICATPN’2008. Vol. 5062 of LNCS, pp. 152-170. Springer, 2008.

Adjusted to satisfy the syntactical constraints of Process-
Partitioned CPNs in approximately 20 person-hours.

Presenter
Presentation Notes
A transla

CPN Workshop - 2009 - 16

Example: Initiate Module

CPN Workshop - 2009 - 17

Code Generation and Validation
Statistics from code generation:

Approximately 12 person-
hours for manual
implementation of the
sequential functions.

The generated code was validated by setting up
a distributed Erlang system:

Executes a set of Erlang nodes (run-time systems) on a single PC.
Nodes communicate by means of an underlying network simulator.
Each Erlang node independently executes the generated DYMO
protocol entity implementation.

Presenter
Presentation Notes
The sequence functions are for example functions that manipulate entries in the routing tables – but because Erlang in some sense is close to SML the translation is not that hard.

Different manet configurations were investigated and it was checked that the routing tables were set up properly by the implementation.

CPN Workshop - 2009 - 18

Conclusions and Future Work
A proof-of-concept for structure-based code
generation has been established:

Erlang programming language used as target language.
Applied on an large example: the DYMO Routing Protocol.

Main ideas for code generation:
Introduce a CPN model class with explicit notions of control
flow, messaging passing, and shared and local data.
Translation divided into five phases deferring the choice of
the target programming language.

Some directions for future work:
Extending the Process-Partitioned CPN model class.
Improve control structure recognition and maybe use GCC
GENERIC as the target language.

	Slide Number 1
	Motivation and Background
	An Observation (A Claim)
	Process�Partitioned CPNs
	Approach: Overview
	Target Implementation Language
	Phase 1: CPN Model Decoration
	Phase 2: Translating to CFG
	Phase 3: CFG to AST Translation
	Phase 4: AST to EST Translation
	Phase 5: EST to Erlang Code
	Computer Tool Support
	A Larger Example: �The DYMO MANET Routing Protocol
	DYMO CPN Model*
	Example: Initiate Module
	Code Generation and Validation
	Conclusions and Future Work

