

Australian GovernmentDepartment of DefenceDefence Science andTechnology Organisation

University of South Australia

Seeking Improved CPN Tools Simulator Performance:

Evaluation of Modelling Strategies for an Army Maintenance Process

Guy Edward Gallasch Benjamin Francis Jonathan Billington

South Australia

Australian Army is interested in Maintenance Planning

- Example: Determine the composition of the maintenance workforce required to sustain a military operation
 - determine the tasks and staff (by trade) required to maintain a given piece of equipment (maintenance liability)
 - given the inventory of equipment for the military operation, determine the number of tradespeople by trade required to sustain the operation
 - determine the distribution of the workforce over several workshops
- Methods and Tool support that will allow them to:
 - validate the feasibility of solutions
 - explore "what if" scenarios
 - optimize

This motivated our attempt to apply Timed Coloured Petri Nets and CPN Tools.

South Australia

A Military Maintenance Network

Australian Government Department of Defence Defence Science and Technology Organisation

South Australia

Maintenance Scenarios

Australian Government Department of Defence Defence Science and Technology Organisation

When maintenance is required, there are five scenarios:

- In-Situ: The equipment does not need to move from its current location.
- Self-Transport: Equipment moves itself to a suitable location.
- Distribution: Equipment is moved by a general transportation network.
- Recovery: A Recovery Team is sent from a workshop to recover the equipment and move it to a suitable location.
- Forward Repair: A Forward Repair Team comes to repair the equipment, and then returns to the workshop.

If a maintenance workshop is full, the equipment and task is "backloaded" up the hierarchy of workshops.

South Australia

A Defence Logistics Maintenance Process

System Components

Australian Government Department of Defence Defence Science and Technology Organisation

- Equipment (thousands)
 - Approx. 500-600 different item types
 - Vehicles, weapons, plant, electronics etc.
 - Maintenance
 - preventative, servicing, wear, breakage, battle damage, inspections.
 - Data (poorly captured)
 - a combination of deterministic (scheduled) & random.
- Tradespeople (hundreds)
 - Different trades can only repair specific types, e.g.
 - Vehicle Mechanic, Fitter Armaments, Electrician etc
 - Non-productive time
 - Picket duty, awaiting parts, sleep etc
- Workshop/Maintenance System (tens of nodes)
 - 1st 4th line maintenance, Forward Repair Teams (FRT)
 - Backlog maximum allowable work (hours)
 - Backloading movement of equipment up a level

South Australia

Australian Governmen Department of Defence Defence Science and

Technology Organisation

Statistics

- 3 Levels of Hierarchy (plus one for initialisation)
- 27 places (88 place instances)
- 14 substitution transitions
- 44 executable transitions
- About 200 ML functions
- About 1600 lines of ML

Focus

• States of equipment during the maintenance cycle

Timed Coloured Petri Net Model Process Overview page

Australian Government

Department of Defence Defence Science and Technology Organisation

South Australia

Modelling Personnel as Tokens or in a List

Australian Government Department of Defence Defence Science and Technology Organisation

• Each person as a token (Model 1):

colset Personnel = record
trade : Trade *
home_location : STRING *
working_status : Personnel_States *
last_came_online_time : INT timed;

• Each person as a data value in a list (Model 4B):

colset Person = record trade : Trade * home_location : STRING * working_status : Personnel_States * last_came_online_time : INT; colset Personnel = product Person * INT; colset Personnel_List = list Personnel timed;

- Elements of list ordered by time value.

ast came online time=0}@10

1`[({trade="RecoveryMech",home_lo cation="node1",working_status=Rea dy,last_came_online_time=0},10),({t rade="Vehicle_Mech",home_location= "node1",working_status=Ready,last_ came_online_time=0},10)]@10

South Australia

Simulation Performance - Baseline

Australian Government Department of Defence Defence Science and Technology Organisation

- A baseline scenario:
 - Five simple nodes.
 - Two tradespeople at each node (10 in total):
 - One Recovery Mechanic and one Vehicle Mechanic at each node.
 - Two tasks requiring teams at each node (10 in total):
 - One Recovery Team and one Forward Repair Team to be formed at each node.
 - Recovery Team comprises one Recovery Mechanic and one other of any trade.
 - FRT comprises one Vehicle Mechanic and one other of any trade.

• Scaling the baseline scenario:

- Three dimensions:
 - Number of available personnel
 - Number of tasks requiring teams at each node
 - Number of nodes
- The first two are implemented using a *personnel multiplier* and a *team multiplier*:
 - E.g. personnel multiplier of 2 gives 4 tradespeople per node (20 total)
- The third requires changes to model initialisation.
 - Each node is as described in the baseline scenario (2 people, 2 tasks)

- We performed five tests on both Model 1 and Model 4B using variants of the baseline scenario on the parts of the model previously identified as having performance concerns:
 - Moving personnel offline and online
 - Allow personnel to move offline and online for 20 days of model time.
 - Record how long CPN Tools takes to complete each simulation.
 - Test 1: scale the number of available personnel.
 - Test 2: scale the number of nodes.
 - Assigning Personnel to Teams
 - · Simulate until all teams have been formed.
 - To test only the mechanism for forming teams, each team that is formed is disbanded immediately, freeing up people for the formation of another team.
 - Test 3: scale the number of teams requiring personnel.
 - Test 4: scale the number of available personnel.
 - **Test 5:** scale the number of nodes.
- These two parts of the model were considered in isolation.
- Repeated the above tests with topology represented in net structure rather than in data (unfolding network topology).

South Australia

Simulation Performance – Folded Models

Australian Government Department of Defence Defence Science and Technology Organisation

Moving Personnel Offline and Online

- Model 1: 706.7 seconds
- Model 4B: 20.5 seconds a factor of 34 improvement
- Due to finding enabled binding elements:
 - Model 4B has two list tokens (offline, ready) to choose from
 - Model 1 has a large multiset of people to choose from
- Test 2: (Scaling nodes) similar trend (see paper)
 - Personnel are geographically separate but reside on the same place in the model

South Australia

Simulation Performance – Folded Models

Australian Government Department of Defence Defence Science and Technology Organisation

Assigning Personnel to Teams

- Model 4B far outperforms Model 1. At 30 teams:
 - Model 1: 839.9 seconds
 - Model 4B: 0.0625 seconds a factor of 13400 improvement
 - Due to the inefficient workaround mechanism for selecting a varying number of partially specified people in Model 1.
- Tests 4 and 5: (scaling personnel and nodes) similar trends (see paper).

South Australia

Simulation Performance – Unfolded Models

Australian Government Department of Defence Defence Science and Technology Organisation

Moving Personnel Offline and Online

• Model 4B is still better, both models benefit from unfolding the topology:

- Model 1: a factor of 6 improvement at 2000 personnel.
- Model 4B: a factor of 2.5 improvement at 2000 personnel.
- Possible reasons:
 - Simpler calculations when determining enabled binding elements
 - Less tokens to select from in Model 1 the personnel tokens are distributed across multiple places.

South Australia

Simulation Performance – Unfolded Models

Australian Government
 Department of Defence
 Defence Science and
 Technology Organisation

Moving Personnel Offline and Online

- For this plot the personnel multiplier is **50**, to differentiate the results.
- This test reveals a major benefit to unfolding the network topology:
- Time taken appears to scale linearly with the number of nodes.
 - Previously, increasing the number of nodes increased the number of people in the Personnel place.
 - Now, the same number of people (2*50) are in the Personnel place of each node.
 - Duplicating the net structure essentially duplicates the calculations involved.

South Australia

Simulation Performance – Unfolded Models

Australian Government Department of Defence Defence Science and Technology Organisation

Assigning Personnel to Teams

- Model 4B: only marginal improvement with an unfolded topology.
- Model 1: significant improvement (but still much worse than Model 4B)
 - Folded topology: Model 1 took 840 seconds to assign people to 30 teams.
 - Unfolded topology: Model 1 takes 730 seconds to assign people to 1100 teams.
- Improvement in Model 1:
 - No. of tokens in any one place are reduced (now distributed over multiple places)
 - The effect of this is more pronounced in Model 1 due to its inefficient "workaround" selection mechanism.

South Australia

Simulation Performance – Unfolded Models

Australian Government Department of Defence Defence Science and Technology Organisation

Assigning Personnel to Teams

- Model 1 outperforms 4B! and appears to scale linearly:
 - Experiments to 100,000 people (not shown) further indicate a linear relationship
 - Model 1 increasingly outperforms Model 4B.
- Reasons: We suspect that the selection mechanism in Model 1:
 - Is highly sensitive to the number of distinct personnel tokens to choose from.
 - Is relatively independent of the multiplicity of the distinct tokens.
- Whereas Model 4B's list manipulations depend on the length of the lists involved, which increase regardless of a folded or unfolded topology.

Australian Government Department of Defence Defence Science and Technology Organisation

Assigning Personnel to Teams

- Note that here the team multiplier is **100**, to differentiate the results.
- Both now appear to scale linearly in the number of nodes.
 - Expected, as duplicating net structure duplicates the calculations involved.
- Model 4B still wins, but Model 1 benefits more from unfolding:
 - Model 1 with two nodes:
 - Folded Model 1 took over 1.5 hours, unfolded Model 1 took under 4 minutes (225 seconds)
 - Model 4B has also improved, but not by as much (factor of 1.68 at 10 nodes)

- Model design for good model performance is difficult!
- Complex interactions between personnel and tasks resulted in a prohibitively large number of calculations to determine enabled binding elements in Model 1. This was greatly reduced in Model 4B.
- A folded network topology:
 - Modelling people as individual tokens results in inefficient simulations.
 - List-based representation is computationally superior without losing much of the desired behaviour of the model.
- An unfolded network topology:
 - Model 1 benefits the most, by distributing tokens over multiple places.
 - Model 4B also benefits, but to a lesser degree.
- Unfolding other aspects of the model:
 - This may provide additional performance gains.
 - However there comes a point when the model becomes unmanageable.
 - Unfolding reduces model flexibility, e.g. a new model must be produced for each new topology to be considered.

- We have explored different modelling approaches to improve the simulation performance of an industrial-scale CPN model capturing the Australian Army's maintenance process.
 - Our aim: to improve simulation performance to a level that allows timely evaluation of different maintenance scenarios.
- Maintenance involves hundreds of personnel and thousands of pieces of equipment distributed over tens of locations.
 - Our original model did not allow any simulation results of a realistic scenario to be obtained. The simulation never proceeded past formation of the first team.
 - Profiling of the model revealed performance bottlenecks:
 - The "less-than" function for the Personnel colour set was being executed billions of times during the checking of enabling of the two transitions that form teams.
 - Exploring different data structures for personnel has resulted in dramatic performance gains by using lists of personnel, rather than the more natural use of multisets.
 - Considering models that do not encode the network topology of the maintenance system (i.e. partially unfolded models) has also shown promise.

- These tests purposely cover extreme values of personnel, teams, and nodes, to elicit performance trends.
- Model 4B provides acceptable performance when considering cycling of personnel and assignment to teams in isolation.
 - When considering the model as a whole, this may not be the case.
 - Currently under investigation.
- We also would like to investigate a method of modelling personnel changing state from online to offline, and vice versa, that does not involve explicit transition occurrences.
- It is likely that these performance issues affect many industrial-scale CPN models:
 - A more fundamental understanding of the relationship between the use of various modelling constructs and their impact on analysis and simulation performance in CPN Tools will benefit the user community.
 - We hope that our work provides a starting point for the development of a set of guidelines for modelling complex systems that are more readily simulated by CPN Tools.