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Abstract. Semiconductor technology miniaturization allows designers
to pack more and more transistors onto a single chip. The resulting Sys-
tem on Chip (SoC) designs are predominant for embedded systems such
as mobile devices. Such complex chips are composed of several subsys-
tems called Intellectual Property blocks (IPs) which can be developed by
independent partners. Functional verification of large SoC platforms is
an increasingly demanding task. A common approach is to use SystemC-
based simulation to validate functionality and evaluate the performance
using executable models. The downside of this approach is that develop-
ing SystemC models can be very time consuming. We propose to use a
coloured Petri net model to describe how IPs are interconnected and use
SystemC models to describe the IPs themselves. Our approach focuses
on fast simulation and a natural way for the user to interconnect the
two kinds of models. We demonstrate our approach using a prototype,
showing that the cosimulation indeed shows promise.

1 Introduction

Modern chip design for embedded devices is often centered around the concept
of System on Chip (SoC) as devices such as cell phones benefit from the progress
of the semiconductor process technology. In these platforms, complex systems
including components such as general-purpose CPUs, DSPs (digital signal pro-
cessors), audio and video accelerators, DMA (direct memory access) engines and
a vast choice of peripherals, are integrated on a single chip. In Fig. 1, we see
an example of an SoC, namely Texas Instruments’ OMAP44x architecture [14],
which is intended for, e.g., mobile phones. Each of the components, called in-
tellectual property blocks (IPs), can be contributed by separate companies or
different parts of a single company, but they must still be able to work together.
The IPs are designed to be low-power and low-cost parts and often have in-
tricate timing requirements, making the functional verification of such systems
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increasingly difficult. Therefore the IPs are modeled using an executable model-
ing language and simulation based validation is performed to ensure that, e.g.,
the multimedia decoder can operate fast enough to decode an incoming stream
before it is sent to the digital-to-analog converter for playback.
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Fig. 1: Block diagram of Texas Instruments’ OMAP44x platform.

When an IP is purchased for inclusion in an SoC, one often obtains a model
of the component for inclusion in a whole-system simulation. Such a model is
often created using SystemC [5], an industry standard for creating models based
on an extension of C++. SystemC supports simulation-based analysis and is
well-suited for making models that deal with intricate details of systems, such
as electronic signals. SystemC can semi-automatically be translated directly to
microcode or even electrical circuits, making it possible to obtain an implementa-
tion of the final chip directly from the model. SystemC has weaknesses as well, as
it has no formal semantics and therefore is not well-suited for performing formal
verification. Furthermore, SystemC is not well-suited for modeling in a top-down
approach where implementation details are deferred until they are needed, and
SystemC is inherently textual, making it difficult to get an idea of, e.g., which
parts of the chip are currently working or idle, unless a lot of post-processing
of simulation results is performed. All of these traits make it tedious and time
consuming to create models in SystemC, which postpones the moment where
the modeling effort actually pays off by revealing problems in the design.

The coloured Petri nets formalism (CP-nets or CPNs) [6] is a graphical for-
malism for constructing models of concurrent systems. CP-nets has a formal
semantics and can be analyzed using, e.g., state-space analysis or invariant anal-
ysis. CPN models provide a high-level of abstraction and a built-in graphical
representation that makes it easy to see which parts of the model that currently
process data. The main drawback of CP-nets is that the formalism is not widely
used in the industry, meaning that only little expertise and few pre-existing IP
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models exist. In order to switch to using CP-nets for SoC modeling, one would
have to make models of the obtained IPs or translating the CPN model to Sys-
temC for simulation along with the IP models.

During development of the next generation SoC at Texas Instruments, some
IPs were modeled with coloured Petri nets using CPN Tools [3, 12] instead of
SystemC. Due to the next generation SoC being work in progress, we cannot go
into further details about the specifics of the model nor the modeled architec-
ture, but we can sum up some initial experiences with using CPN models for SoC
modeling and verification. Firstly, a CPN model can be constructed faster than
a corresponding SystemC model, making it possible to catch errors earlier in the
process and increase confidence in the new architecture. The model constructed
made it possible to catch a functionality error, and subsequent performance sim-
ulation provided input to making reasonable trade-offs between implementation
of some sub-blocks in hardware or software. All in all, the CPN model did pro-
vide interesting insights for a real-life example. Unfortunately, the model also
had limitations. The biggest limitation is that the performance of the connection
between the modeled block and the memory subsystem could not be evaluated
even though a cycle accurate model of the memory system was available in Sys-
temC without doubling the effort put into the SystemC model of the memory
system.

The above shows that CPN models and SystemC models complement each
other very well; one language’s weaknesses are the other language’s strengths. It
would therefore be nice to be able to use the IP models created using SystemC
with a more high-level model created using CP-nets. In this way it is possible
to have the SystemC models specify the low levels of the model and graphically
compose the IPs using CP-nets, allowing us to have a high-level view of which IPs
are processing during the simulation. In this paper we describe an architecture
for doing this by running a number of CPN simulator in parallel with a number
of SystemC simulators, what we call a cosimulation.

The reason for introducing our own notion of cosimulation instead of relying
on, e.g., the High-Level Architecture (HLA) [4, 11], is mainly due to speed of
development and a wish for a more decoupled architecture, which hopefully
leads to faster execution; please refer to Sect. 3 for a more detailed discussion.

The rest of this paper is structured as follows: First, we briefly introduce
SystemC and CP-nets using a simple example, in Sect. 3 we present the algo-
rithm used to cosimulate models, and in Sect. 4 we describe a prototype of the
cosimulation algorithm, our experiences from the prototype, and propose an ar-
chitecture for a production-quality implementation. Finally, in Sect. 5, we sum
up our conclusions and provide directions for future work.

An earlier version of this paper has been published as [17]. The changes made
in this revision is that Sect. 2 has been rewritten for people with background
in CP-nets. Section 3 has been expanded with Algorithm 2 and an improved
description of Algorithm 1. Section 4 has been rewritten to tie the description
of the architecture better to the algorithms from Sect. 3. Section 4 has also been
expanded with a screenshot and a more detailed description of our prototype.
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2 Background

In this section we introduce an example model of a simple stop-and-wait commu-
nication protocol over an unreliable network. We will use this example through-
out the paper and introduce the SystemC formalism using the example. It is not
crucial to understand the details of SystemC, but just to get an impression of
SystemC models and their communication primitives.

2.1 Stop-and-wait Protocol CPN Model

We use the example hierarchical stop-and-wait protocol included with the CPN
Tools distribution [3, 12]. We briefly recall the example with focus on how com-
munication between the different pages takes place.

At the top level (Fig. 2) the model consists of three modules, a Sender, a
Receiver, and a Network, here represented by substitution transitions . The sender
sends packets via the network to the receiver. As the network can drop and
deliver packets out of order, the sender attaches a sequence number to each
packet and retransmits packets. The receiver acknowledges the receipt of packets
to let the sender know when it is allowed to continue to the next packet. To
make the example more interesting, we have attached a time stamp to each
packet to allow us to simulate real world conditions, where packet delivery is not
instantaneous, and where retransmission only takes place after a certain delay.

Receiver
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Network

Network

Sender

Sender

D

INT

C

INT

B

INTxDATA

A

INTxDATA

Sender Network Receiver

11`1@312
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1`(2,"net")@16411`(2,"net")@281

Fig. 2: Top level of network protocol.

Let us also take a closer look at the sender part of the model shown in Fig. 3
(left). We will not actually use a CPN version of the sender, but it may be use-
ful to compare the CPN version with the SystemC version we present below.
The sender is quite simple. The Send Packet transition reads a packet from the
Send place, matches it against the NextSend counter, delays it for the amount of
time read from Wait and transmits the packet to the out-buffer on A. When Re-
ceive Ack receives an acknowledgement from D, it updates the NextSend counter.
Sending a packet takes 9 time units and processing an acknowledgement takes 7
time units. Figure 3 (right) shows the situation after Send Packet has been exe-
cuted. The A and D places of the sender are port places (or just ports) that are
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assigned to the socket places (or just sockets) with the same names on the top
page in Fig. 2. Ports are marked by a port tag showing the direction information
flows (into and out of the sender module). Whenever a token is produced on or
consumed from a port or socket place, it is also produced/consumed on the corre-
sponding socket/port place, and we note that port places and the corresponding
socket places indeed have the same markings in the right part of Fig. 3 (e.g.,
1‘(2, ”net”)@281 on both A places), but apart from the shared names nothing in
the graphical representation shows which ports correspond to which sockets.
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Fig. 3: Sender of network protocol before executing Send Packet (left) and after (right).

We will not go into details about the Network and Receiver modules; they are
CPN modules that implement the aforementioned operations. The interested
reader is invited to look at the model distributed with CPN Tools.

While neither of the modules shows it, the CPN model also has an associated
global clock , which indicates what the current model time is in the execution of
the model. The idea is that tokens are not available until the global clock reaches
or exceeds the time stamp of the token; intuitively the execution of transitions
take time and tokens are consumed immediately, but new tokes are only produced
after the execution is done. In order to show this to the modeler, the token is
shown immediately, but has an attached time stamp that indicates when it is
available. In Fig. 3 (left) the global clock is 272 and in Fig. 3 (right) and Fig. 2
the global clock has the value 281 (the change is that Send Packet transmitted
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another copy of packet number 2 at time 272 and the packet is available 9 time
units later, at time 281, due to its @+9 inscription).

2.2 SystemC

We wish to model the Sender module using SystemC instead of the CPN module
shown in Fig. 3. SystemC models, like CPN models, consist of modules organized
in a hierarchy. Modules have interfaces consisting of ports that can be connected
to other ports using channels (note that in SystemC both ends of such an as-
signment are called ports). Modules can execute C++ code. Like CPN models,
SystemC models have a global clock which allows us to model delays in trans-
mission.

In Listing 1, we see a very simplistic SystemC version of the sender. We define
a module Sender (l. 4) and give it two ports, a and d (ll. 5–6). The names used
in this module correspond to the names used in Fig. 3 except we use C++ nam-
ing conventions. The sender has some local data, a variable nextSend (l. 43) for
keeping track of which packet to send next, and an array of all packets we intend
to send, send (l. 44). These are set up in the constructor (ll. 9–13), where we also
indicate (ll.15–16) that our module has two threads, sendPacket, responsible for
transmitting packets, and receiveAck, responsible for receiving and processing ac-
knowledgements. We indicate that we are interested in being notified when data
arrives on d (l. 17). The sendPacket thread (ll. 20–29) loops through all packets,
writing them to a and delaying for sendDelay time units between transmitting
each packet. The receiveAck thread (ll. 31–40) receives acknowledgements from d
and updates nextSend, so the next packet is transmitted. We see that the model
basically is C++ code and despite its simplicity still comprises over 40 lines
of code. We would normally split the code up in interface and implementation
parts, but have neglected to do so here in order to keep the code simple.

We need to set up a complete system in order to run our sender. In Listing 2,
we see how such a setup could look like. We basically have a module Top (l. 6)
which is a simplified version of the top level in the CPN model (Fig. 2), where
we have essentially removed the network part and just tied the sender directly
to the receiver. The top module sets up two channels (ll. 7–8), packets and
acknowledgements. The constructor initializes the sender and receiver test bench
(l. 13) and connects the ports via channels (ll.14–17). The main method initializes
the top level (l. 22) and starts the simulation (l. 23).

Now, our goal is to use the code in Listing 1 as the sender module in the CPN
top level (Fig. 2) with the CPN implementations of the network and receiver (not
shown).

3 Algorithm

As our primary goal is to be able to simulate real-life System-on-Chip (SoC)
systems, which are typically modeled on the nanosecond scale, we need to be
able to perform very fast simulation, and it is not feasible to synchronize the
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Listing 1: Sender.h
! "

1 #include "systemc.h"
2 #include "INTxDATA.h"

4 SC_MODULE (Sender) {
5 sc_port<sc_fifo_out_if<INTxDATA> > a;
6 sc_port<sc_fifo_in_if<int> > d;

8 SC_CTOR(Sender) {
9 nextSend = 1;

10 for (int i = 0; i < 2; i++)
11 send[i].no = i + 1;
12 send[0].mes = "CP-";
13 send[1].mes = "net";

15 SC_THREAD(sendPacket);
16 SC_THREAD(receiveAck);
17 sensitive << d;
18 }

20 void sendPacket(void) {
21 sc_time sendDelay = sc_time(9,SC_NS);
22 sc_time waitDelay = sc_time(100,SC_NS);

24 while (nextSend < 3){
25 wait(sendDelay);
26 a->write(send[nextSend-1]);
27 wait(waitDelay);
28 }
29 }

31 void receiveAck(void) {
32 sc_time ackDelay = sc_time(7,SC_NS);
33 int newNo;

35 while (true){
36 newNo = d->read();
37 wait(ackDelay);
38 nextSend = newNo;
39 }
40 }

42 private:
43 int nextSend;
44 INTxDATA send[2];
45 };

# $
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Listing 2: sc main.cpp
! "

1 #include <systemc.h>
2 #include "Sender.h"
3 #include "ReceiverTestBench.h"
4 #include "INTxDATA.h"

6 SC_MODULE (Top) {
7 sc_fifo<INTxDATA> packets;
8 sc_fifo<int> acknowledgements;

10 Sender S;
11 ReceiverTestBench RTB;

13 SC_CTOR(Top): S("S"), RTB("RTB") {
14 S.a(packets);
15 RTB.b(packets);
16 S.d(acknowledgements);
17 RTB.c(acknowledgements);
18 }
19 };

21 int sc_main(int argc, char* argv[]) {
22 Top SenderReceiver("SenderReceiver");
23 sc_start();
24 return 0;
25 }

# $

CPN and SystemC parts of the model after each step if we wish to simulate
several seconds of activity. Instead, we only globally synchronize the clocks of
models when needed, i.e., when one part has done everything it can do at one mo-
ment in time and needs to increase its clock in accordance with the other parts.
We synchronize models pairwise whenever information is exchanged (which may
enable further events at the current model time). In the following we refer to
CPN and SystemC simulator as components in cosimulations, synchronization
of global clocks as synchronization or time synchronization, and pairwise syn-
chronization in the form of sending or receiving data to/from other components
as information exchange.

Aside from requiring loose coupling between the components, we prefer a
truly distributed algorithm in order to avoid having to rely on a coordinator.
One goal of this work is to find out whether CPN/SystemC cosimulation is
possible and feasible and can actually benefit modeling, and therefore we want
to do relatively fast prototyping.

For these reasons, we decided to make our own implementation of cosimu-
lation instead of using an off-the-shelf technology such as HLA. HLA enforces
a stricter synchronization than we need, so by making our own implementa-
tion, we believe we can achieve better performance. Furthermore, implementing
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a generic HLA interface for CPN models is a non-trivial and demanding task,
and does not satisfy our requirement of development without investing too many
resources before the viability of the solution can be judged. Finally, HLA relies
on coordinators which conflicts with our desire for a distributed algorithm.

Our algorithm for simulation of the individual components is shown as Al-
gorithm 1. Basically, it runs two nested loops (ll. 2–6 and 3–5). The inner loop
executes steps locally as long as possible at the current model time. A step is an
atomic operation dependent on the modeling formalism; for CPN models a step
is executing a transition and for SystemC a step can be thought of as executing a
line of code (though the real rule is more complex, dealing with synchronization
points, such as information exchange and time synchronization). The inner loop
also transmits information to or from other components (here we have shown
a single-threaded implementation that exchanges information after every step –
but of course only if there is information to exchange – but we can of make a
multi-threaded version or only transfer information when it is no longer possi-
ble to make local steps). When we can make no more steps locally, we find the
allowed time increase by calculating the global minimum of the time increase
requests by all components in the cosimulation.

Algorithm 1 The Cosimulation Algorithm
1: time ← 0
2: while true do

3: while localStepIsPossibleAt( time ) do

4: executeOneStepLocally()
5: sendAndReceive()
6: time ← distributedGlobalMin( desiredIncrease() )

We note that exchange of information takes place without global synchro-
nization. Participants simply communicate directly as described by the model
structure and if incoming information causes components to be able to execute
more local steps they just do so, and reevaluate how much they want to incre-
ment time. This means that our time synchronization algorithm does not have
to deal with information exchange.

Naturally, Algorithm 1 needs to be implemented for each kind of simula-
tor we wish to be able to use for cosimulation. Our primary goal is to make
implementations for CPN and SystemC models, but the algorithm is general
and can in principle be implemented for any timed executable formalism as
long as the formalism uses a compatible concept of time, i.e., a global clock. In
order to implement the algorithm, we need to provide implementations of lo-
calStepIsPossibleAt, executeOneStepLocally, and sendAndReceive.
The first two will typically be trivial when given a simulator, as executing steps
and querying whether it is possible to execute steps is the main functionality
provided by a simulator. The difficult part is the implementation of sendAn-
dReceive, which requires that we hook into the simulator in some way to find
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out when values to send are produced, translate the value into an exchange for-
mat (such as JSON (JavaScript Object Notation) [7] or XML described using
XML Schema [1]) agreed upon by the simulators. We must resolve the destina-
tion component, either directly or from an external binding, and transmit the
encoded data to the receiving component. Only the latter part can be done in-
dependently of the component modelling language. When a value is received, we
need to translate the exchange format to a format understood by the simulators
of the component and modify the state of the simulator correctly. Again, these
steps needs to be done for each simulator. For CPN models we regard each token
as an individual exchanged value; SystemC only allows transmitting one value at
a time on a port (though the channel may have a buffer), so sendAndReceive
simply has to exchange single values over a channel. In [9] we describe how to
embed types from Java in CPN models by basically translating simple values
directly, translating between lists of SML and Lists of Java, translating between
JavaBeans and Java Maps, and SML records, and translating between union
data types (datatypes in SML) and Java Enums. A similar approach can be
used to translate between data types of SystemC and CPN models.

Algorithm 1 does not specify how we calculate the global minimum required
for synchronization. As we need to use the time specified by the components
of the models, we cannot use something like, e.g., Lamport timestamps [8] to
perform our time synchronization as they are only useful for ordering events ac-
cording to a causal ordering. We do not only care about causal ordering but also
for slowing down or halting simulation of components if the other components
have not yet advanced their clocks as information exchange may make it possible
to execute actions earlier than what was possible without information exchange.
Therefore Algorithm 1 synchronizes every time a component wishes to increase
its time stamp.

It is possible to do time synchronization without imposing any restrictions on
the network structure, e.g., by using flooding, but making certain assumptions
allows a simpler and faster implementation. As both CPN and SystemC models
are naturally structured hierarchically with components containing nested com-
ponents, optionally in several layers, making the assumption that components
are structured in a tree is no real restriction. Here we give an algorithm for dis-
tributedGlobalMin of Algorithm 1 where we assume that components are
ordered in a tree, and we use normal tree terminology (root, parent, and child).
Naturally, each node knows how many children it has and its parent. The idea is
that each node requests a time increase from its parent. The parent then returns
the allotted time increase. When a node wants to increase time, it waits for
all its children to request a time increase. It takes the minimum of all of these
votes (including its own) and requests this time increase from its parent. When
it receives a response from the parent, it announces this increase to all children.
The root just announces to all children without propagating to its (non-existing)
parent. The entire algorithm is shown as Algorithm 2.

Algorithm 2 consists of two procedures, a workerThread and the ac-
tual distributedGlobalMin procedure. We assume that each component has
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Algorithm 2 distributedGlobalMin for tree-structured components
1: ready ← false

2: requests ← Queue.empty()
3: results ← Queue.empty()
4:
5: proc workerThread() is

6: while true do

7: minRequest ← ∞ // collect requests from children
8: for i = 1 to children.size() + 1 do

9: minRequest ← min(minRequest, requests.removeHead())
10: if this = root then

11: result ← minRequest // we know the result locally
12: else

13: // propagate our request
result ← parent.distributedGlobalMin( minRequest )

14: for i = 1 to children.size() + 1 do

15: results.add( result ) // distribute time increase to children
16: ready ← true

17:
18: proc distributedGlobalMin( vote ) is

19: while ready do

20: skip() // wait for any previous ongoing calculations
21: requests.add( vote )
22: while ¬ready do

23: skip() // wait for calculation to complete
24: result ← results.removeHead()
25: if results.isEmpty() then

26: ready ← false // if we are last, signal calculation is over
27: return result

started a single instance of workerThread in a separate thread. We also as-
sume that calls to a parent component’s distributedGlobalMin conceptually
happens in the thread of the caller (the parent starts a separate thread to handle
each child or the child call communicates directly with the workerThread of
the parent). All variables defined in ll. 1–3 live in the context of the work-
erThread. Now, the idea is that the calculation in each component has two
stages: gathering of requests (a result is not ready for queries) and distribution
of replies (a result is ready).

The ready variable keeps track of which stage we are currently in, initially
gathering of requests (l. 1). We gather requests in a queue, which is initially
empty (l. 2). When a child or the component itself (from l. 6 in Algorithm 1) calls
distributedGlobalMin, we first wait until we are in the request gathering
stage (ll. 19–20). We then add our request to the queue of requests (l. 21). We
then wait until replies are ready (ll. 22–23), and read the result (l. 24). If there
are no more results available (l. 25), we indicate that (l. 26), and return the
result (l. 27).
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Meanwhile, the workerThread calculates the minimum received request
(ll. 7–9). It knows that it will receive exactly children.size() + 1 requests, one
for each child and one for the component itself. If the current component is also
the root component (l. 10), the result is just this calculated minimum (l. 11),
the worker requests an increase from the parent node of exactly this minimum
(l. 13). The workerThread then makes exactly children.size() + 1 copies of
the result, one for each caller (ll. 15–16), switches to the result distribution stage
(l. 14), and restarts for another calculation (l. 6).

The algorithm can be improved in various ways. For example, as soon as
a node realizes that only the minimum time increase can be granted (0 or 1
depending on whether we allow requesting a zero time increase), it can just
announce the result to all children and continue propagating up in the tree.
This can be done around line 9 in Algorithm 2, if we realize that minRequest
is equal to time (l. 1 in Algorithm 1). We also need to change how we wait for
responses, so we do not wait in lines 22–23, yet keep the stage correctly in lines
25–26. This can be done by counting the number of results returned instead of
relying on results to be empty.

Another improvement can be made by observing that a parent node need not
actually announce the lowest time increase. It can announce the time increase
requested by the node that has the second lowest request minus one, and sub-
trees can then autonomously proceed (knowing that other sub-trees will not be
able to proceed as they cannot receive data since information is exchanged only
up and down the tree). Here we need to change the calculation in lines 7–9.

We can also exploit additional knowledge about individual components. For
example a component (or component sub tree) with only output ports can be
allowed to continue indefinitely, as their processing will never be influenced by
the calculation of other components.

4 Evaluation

In order to evaluate Algorithm 1 and whether CPN/SystemC cosimulation is
feasible, we have developed a prototype to show that is is possible to integrate
the two languages. Furthermore, a goal is to show that it is possible to make
the integration without (or with very few) changes to the SystemC simulator,
as there are multiple vendors with different implementations.

4.1 Prototype Architecture

The architecture of our prototype can be seen in Fig. 4. We first look at the
static architecture from the top of Fig. 4. The prototype consists of three kinds
of processes: a SystemC simulator (left), an extended version of the ASCoV-
eCo State-space Analysis Platform (ASAP) [15] (middle), and a CPN simulator
(right) with a library called Access/CPN [16] for easy interaction with the
simulator. The yellow/light gray boxes are standard components (ONC RPC,
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C++, Java, Eclipse Platform, Eclipse Modeling Framework, SML runtime, and Stan-
dard ML), already part of a standard SystemC simulator (SystemC and SystemC
model), ASAP (CPN model representation, CPN model loader, and CPN model
instantiator), or CPN Tools’ simulator process (CPN simulator and Access/CPN)
and therefore does not have to be built from scratch.

At the top middle of the ASAP process, we have a Cosimulation action, which
takes care of starting and connecting the correct components based on a Cosim-
ulation representation which describes which components to use and how to com-
pose them. The cosimulation action and cosimulation representation (marked
in green/dark gray) are independent of the simulator used. The cosimulation
action basically implements code to set up Algorithm 1 and Algorithm 2 as
described by a cosimulation representation. The representation describes the hi-
erarchy of components, a mapping of interfaces to modelling language-specific
features (port places and exported ports in the cases of CP-nets and SystemC),
and how interfaces are connected to each other (corresponding to port/socket
assignments in CP-nets and channels in SystemC).

The two cosimulation jobs SystemC cosimulation job and CPN cosimulation
job implement Algorithm 1. They share a common Java implementation of Al-
gorithm 1 and Algorithm 2 and are just specializations in terms of localStepIs-

Fig. 4: The static architecture (top) and run-time architecture (bottom) of our proto-
type
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PossibleAt, executeOneStepLocally, and sendAndReceive. The reason
for this is that a common implementation allows us to do fast prototyping.

The CPN cosimulation job uses Access/CPN to implement the required func-
tion. Access/CPN allows us to check whether any transitions are enabled at
the current model time (accounting for localStepIsPossibleAt), to execute
a step (accounting for executeOneStepLocally) and to read and change the
marking of all places, including port places (allowing us to implement sendAn-
dReceive). All of this can be done in the ASAP process, so we do not have to
change the CPN simulator process.

In order to implement the SystemC cosimulation job, we need to do a little
more work, as we do not have something like Access/CPN available for Sys-
temC. Instead, we have added a Cosimulation layer on top of the SystemC model,
which basically plays the role of Access/CPN. The cosimulation layer provides
stubs for modules that are external (such as a CPN model or another SystemC
model) and implements the top level of the SystemC model (corresponding to
Listing 2). Like with Remote Procedure Call (RPC) [13] systems, stub modules
look like any other module to the rest of the system and takes care of com-
municating with other components. In the example in Sect. 2, the stub would
consist of an implementation of ReceiverTestBench referred to in Listing 2 and
the cosimulation layer would consist of code like Listing 2 along with a com-
munication library. Currently, we need to write stubs and the top level code
manually, but we are confident that both can be generated automatically, as the
problem is very much like standard stub generation for RPC systems (we need to
send/receive data, serialize it, and call the appropriate remote method). The stub
communicates using ONC-RPC [13] (formerly known as Sun RPC and available
on all major platforms) with the SystemC cosimulation job to implement lo-
calStepIsPossibleAt) and executeOneStepLocally (by communicating
with the glue top level code) and sendAndReceive (by communicating with
the stubs).

At run-time, a cosimulation looks like Fig. 4 (bottom). Each rectangle is
a running process, and each rounded rectangle is a task running within the
process, corresponding to the blocks from the static architecture. We see that all
simulators are external and can run on separate machines. We have implemented
Algorithm 1 and Algorithm 2 within the ASAP process (this in particular means
that the distributed algorithm runs within one process). We have implemented
our algorithm in full generality using channel communication only, but as we
were not overly concerned with speed in our prototype, decided against setting
up a truly distributed environment.

4.2 Prototype

In Fig. 5 we see a screenshot from our prototype. The prototype runs on Linux
and Mac OS X, and with a Windows version of ONC RPC port mapper also
on Windows. The view basically consists of four parts, the project explorer at
the top left, where we see all our models and related files, the progress area at
the bottom left, where we see running components during execution, the editing
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area at the top right, where we describe our cosimulation jobs (as represented
by a cosimulation representation), and an auxiliary area at the bottom right,
currently showing properties of the currently selected object, but which can also
show, e.g., the console of a running SystemC job.

Fig. 5: Screenshot from prototype.

In the Project Explorer view, we see a top-level entries Binaries, Includes, and
Debug, which are part of the C++ subsystem we have built our prototype upon
(they contain compiled files, header files, and debugging files for SystemC mod-
els). A more interesting entry is Models, containing TimedProtocolTop.model,
which contains the CPN model from Fig 2 as well as an implementation of
Network and Receiver (but not Sender from Fig. 3). It also contains a SystemC
model, main.cc containing the code from Listing 1 (implementing the sender in
SystemC) along with an implementation of a hand-written communication top
level and stubs for the rest of the model. The RPC sub-entry contained in the
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Models folder contains the library to communicate with the SystemC cosimu-
lation jobs. The Logs entry contains an entry for each time we have executed
our cosimulation. We can see an entry Execution 1, containing a TimedProto-
colTop.simlog containing the simulator log for the TimedProtocolTop.model com-
ponent and an entry demo2 corresponding to the compiled name of our SystemC
model. SystemC allows users to specify log files manually, and they are all gath-
ered in this directory along with a log of the console while executing the model.
If our cosimulation had consisted of more CPN and/or SystemC components,
we would have an entry for each additional component here. The last thing we
notice in the Project Explorer, is the Cosimulations entry, which contains just
one file, namely cppcpn.cosimulation, which is a file containing our cosimulation
representation.

In the editing area, we can see the overall structure of our cosimulation rep-
resentation. A cosimulation description consists of a set of components (such as
a CPN or SystemC components). Each component can expose an external in-
terface (such as port places for CP-nets or ports for SystemC models), and can
import other components (corresponding to substitution transitions in CP-nets
and module instantiations in SystemC) and ties into the interface of imported
modules (corresponding to port/socket assignments in CP-nets and channels in
SystemC). In the example in Fig. 5, we have a cosimulation with two components,
a Petri Net Model and a System CModel. The Petri net model is tied to Timed-
ProtocolTop.model and the SystemC model is tied to the compiled name, demo2,
which is our SystemC sender. We see that the SystemC model exports two ports,
one input port and one output port. The ports have exported names (here we
use names corresponding to the places they represent in the CPN models, but
they could be anything) and describe which SystemC port they correspond to.
In the Properties view, we can see that for Output Port Export A the exported
name is A and the corresponding SystemC port is a. The Petri net model does
not export any ports, but rather imports a module from the environment re-
placing a transition in the model. This import contains a link to the SystemC
component (not visible in the figure) as well as assignments between exported
port names and places (also not visible).

This information allows us to implement sendAndReceive for both kinds of
jobs. For Petri net cosimulation jobs we can just read the marking of places, find
the matching exported name and imported module, and transmit the data to that
module when sending, and map an exported port name to a place when receiving
data. For SystemC, we can set up channels listening on/transmitting to the
specified ports. When we receive data on a channel, we invoke code transmitting
it to the correct component. This code can be generated from information about
the module structure (which we have) and information about the exported port
name (which we also have). In the same manner, we can generate code to invoke
when we receive data.

In our prototype, we have not focused on a real exchange format between
the components, and just assume that transmitted values are strings that can
be understood by the receiver.
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4.3 Simplified Architecture for Production-quality Implementation

For a production-quality implementation we propose the simpler architecture in
Fig. 6. In this architecture, we have removed the centralized process and instead
moved the implementation of Algorithm 1 and Algorithm 2 to the Cosimulation
layers for both SystemC and CPN (using instead a much faster in-process ver-
sion of the Access/CPN layer). We have also replaced ONC-RPC with Message
Passing Interface (MPI) [10] which is an industry standard for very fast com-
munication between distributed components. In order to use MPI, we have to
embed a standard MPI implementation into the CPN simulator process and add
code to interface with that from SML code used in the simulator. The run-time
behaviour is as one would expect: Instead of having the communication being
mediated by ASAP, ASAP is now only responsible for setting up a cosimulation
by starting the autonomous component processes. After being set up, the com-
ponents communicate directly with each other. ASAP can be used to process
the results in a single user interface after simulation.

Fig. 6: The static architecture (top) and run-time architecture (bottom) of production-
quality implementation

One of our design goals was that we did not want to change the SystemC
simulator. Instead, we have created a cosimulation layer as a regular SystemC
process, namely as stubs, so our prototype shows that it is feasible to achieve
cosimulation without changing the SystemC simulator. For efficient implementa-
tion we may need to augment the CPN simulator, but that is less of a problem,
since we have control over it.
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Our implementation shows that our algorithm is able to provide cosimulation
and we anticipate that the very loose coupling between components will allow
it to perform very well. We believe that it is possible to get meaningful results
from the components of the model. Currently we just extract log files, but it
should be easy to map these back to the models, which is most interesting for
the CPN models, to get graphical feedback, such as showing markings of the
CPN models.

As a completely unrelated bonus, our prototype shows that it may be possible
to do reasonable parallel or distributed simulation of timed CPN models. In
fact, the current prototype is able to use as many processor cores as there are
components in a simulation setup, which can potentially lead to faster simulation
of timed CPN models on multi-core systems.

5 Conclusion and Future Work

In this paper we have described an algorithm for cosimulation of CPN and Sys-
temC models for verification of SoC platforms. The algorithm allows loose cou-
pling between different simulators and the practicality has been demonstrated
using a prototype. We have have demonstrated that it is possible to cosimulate
SystemC and CPN models without changes to either languages by introducing a
cosimulation representation, external to the languages, which takes care of map-
ping between language specific features for composability. The current prototype
is interesting and worth pursuing further as outlined below. The prototype has,
in addition to our intended goal of demonstrating viability of cosimulation, also
provided unforeseen benefits namely an idea for distributed simulation of timed
CPN models.

The major problem currently is that we only have a prototype implementa-
tion and simple proof-of-concept examples. A natural next step is to implement
an actual SoC model using the approach. This will most like lead to performance
problems of the prototype, so future work includes making a production-quality
implementation as proposed in the previous section. We have not currently im-
plemented all of the optimizations to the distributed minimum calculation, and
these should be implemented and evaluated.

It would be interesting to compare an implementation using the simplified
architecture with an implementation using HLA for cosimulation of CPN and
SystemC models, which would require making an implementation of HLA for
CPN models. It would also be interesting to see if the proposed architecture
architecture also allows faster simulation of timed CPN models by using multiple
processor cores.

Until now, we have only dealt with simulation of composite models. It would
be interesting to also look at verification, e.g., by means of state-spaces, which
seems quite promising as modular approaches for CP-nets perform [2] well when
systems are loosely synchronized, which is indeed the case here.
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