
Advanced State Space 
Methods and ASAP:
Status and Outlook

Michael Westergaard
Department of Computer Science

Aarhus University
mw@cs.au.dk

V := { s0 }
W := { s0 }
while W ≠ ∅ do
Select an s ∈ W
W := W ∖ { s }
if ¬I(s) then

return false
for all t, s’ such that s →t s’ do

if s’ ∉ V then
V := V ∪ { s’ }
W := W ∪ { s’ }

return true

mailto:mw@cs.au.dk
mailto:mw@cs.au.dk


Current Status

ASAP supports an extensive list of methods 
in a coherent way

ASAP uses the language JoSEL to compose 
verification jobs

New methods can be added via plug-ins



Current New Features

Rewritten JoSEL editor with full support for 
hierarchical JoSEL specifications

Support for off-line (in addition to on-the-fly) 
analysis of safety properties

Off-line drawing of graphs and error traces

Support for calculation of SCC graphs

(32 bit) simulator that runs on 64 bit 
Windows

This is being incorporated into CPN Tools



Short-term
New Features

Even faster analysis
Support for timed models
Standard report
On-line drawing of graph
Advanced off-line visual graph reduction 
based on image resizing
(On-the-fly) LTL model checking



Even Faster Analysis
CPN Tools and ASAP currently uses SML/NJ
In the labs we have ported parts of the 
simulator to SML compiler, MLton
MLton can cut runtime down to 50% - 70%
MLton does not allow dynamic code 
generation and you must ask all questions 
in advance

We seek a reasonable way to use SML/NJ 
in the initial phases (interactive 
investigation) and MLton for hardcore 
number crunching in later phases



Even Faster Analysis

MLton provides a much better profiler than 
SML/NJ, leading to new insights

We use 30% - 50% of the time 
generating random numbers to choose 
bindings fairly

After eliminating the above, we use 20% 
- 30% of the time converting between 
multi-set representations



Even Faster Analysis

MLton provides a much better profiler than 
SML/NJ, leading to new insights

We use 30% - 50% of the time 
generating random numbers to choose 
bindings fairly

After eliminating the above, we use 20% 
- 30% of the time converting between 
multi-set representations

When doing state space 
analysis, we need to investigate 
all bindings, so we do not care 

about a fair order



Even Faster Analysis

MLton provides a much better profiler than 
SML/NJ, leading to new insights

We use 30% - 50% of the time 
generating random numbers to choose 
bindings fairly

After eliminating the above, we use 20% 
- 30% of the time converting between 
multi-set representations



Even Faster Analysis

MLton provides a much better profiler than 
SML/NJ, leading to new insights

We use 30% - 50% of the time 
generating random numbers to choose 
bindings fairly

After eliminating the above, we use 20% 
- 30% of the time converting between 
multi-set representations

Most likely it is possible to 
just use the one of the 

state space tool when not 
doing simulation



Even Faster Analysis

MLton provides a much better profiler than 
SML/NJ, leading to new insights

We use 30% - 50% of the time 
generating random numbers to choose 
bindings fairly

After eliminating the above, we use 20% 
- 30% of the time converting between 
multi-set representations



Even Faster Analysis

MLton provides a much better profiler than 
SML/NJ, leading to new insights

We use 30% - 50% of the time 
generating random numbers to choose 
bindings fairly

After eliminating the above, we use 20% 
- 30% of the time converting between 
multi-set representations

Using all of this information 

has allowed us to speed the 

tool up by a factor 6-8 

(compared to the speed we 

have seen today)



Support for
Timed Models

We need to add time information to the 
state descriptor (easy)
We need to make all the utility functions 
understand the time value (hash-functions, 
serializations, etc.)
(easy but mind numbingly dull)
We need to implement time equivalence 
(easy)



p

1`p++1`((p + 1) mod n)

p

c

p

(p, old)

(p, c)
c

p

Done

@+3

Take
Second

[p = c orelse
 (p +1) mod n = c,
 c <> old]

Take
First

[p = c orelse
 (p +1) mod n = c]

Chopsticks

CHOP

Eating

PHIL

Has One

PHILxCHOP

Waiting

PHIL

5

1`0@0+++
1`1@0+++
1`2@0+++
1`3@0+++
1`4@0

5
1`0@0+++
1`1@0+++
1`2@0+++
1`3@0+++
1`4@0

Support for
Timed Models

Models with finite 
untimed behavior 
can have infinite 
timed state spaces
Time equivalence 
does not record 
absolute time 
stamps, only the 
difference between 
the current time and 
the time stamp



p

1`p++1`((p + 1) mod n)

p

c

p

(p, old)

(p, c)
c

p

Done

@+3

Take
Second

[p = c orelse
 (p +1) mod n = c,
 c <> old]

Take
First

[p = c orelse
 (p +1) mod n = c]

Chopsticks

CHOP

Eating

PHIL

Has One

PHILxCHOP

Waiting

PHIL

4

1`0@0+++
1`1@0+++
1`3@0+++
1`4@0

1
1`(2,2)@0

41`0@0+++
1`1@0+++
1`3@0+++
1`4@0

Support for
Timed Models

Models with finite 
untimed behavior 
can have infinite 
timed state spaces
Time equivalence 
does not record 
absolute time 
stamps, only the 
difference between 
the current time and 
the time stamp



p

1`p++1`((p + 1) mod n)

p

c

p

(p, old)

(p, c)
c

p

Done

@+3

Take
Second

[p = c orelse
 (p +1) mod n = c,
 c <> old]

Take
First

[p = c orelse
 (p +1) mod n = c]

Chopsticks

CHOP

Eating

PHIL

Has One

PHILxCHOP

Waiting

PHIL

3

1`0@0+++
1`1@0+++
1`4@0

11`2@0

41`0@0+++
1`1@0+++
1`3@0+++
1`4@0

Support for
Timed Models

Models with finite 
untimed behavior 
can have infinite 
timed state spaces
Time equivalence 
does not record 
absolute time 
stamps, only the 
difference between 
the current time and 
the time stamp



p

1`p++1`((p + 1) mod n)

p

c

p

(p, old)

(p, c)
c

p

Done

@+3

Take
Second

[p = c orelse
 (p +1) mod n = c,
 c <> old]

Take
First

[p = c orelse
 (p +1) mod n = c]

Chopsticks

CHOP

Eating

PHIL

Has One

PHILxCHOP

Waiting

PHIL

5

1`0@0+++
1`1@0+++
1`2@3+++
1`3@3+++
1`4@0

5
1`0@0+++
1`1@0+++
1`2@3+++
1`3@0+++
1`4@0

Support for
Timed Models

Models with finite 
untimed behavior 
can have infinite 
timed state spaces
Time equivalence 
does not record 
absolute time 
stamps, only the 
difference between 
the current time and 
the time stamp



Standard Report

Most of the engine is there (exploration, 
SCC graphs, extensible reporting engine)

The properties need to be generated from 
the model, and code needs to be written 
for this



On-line
Drawing of Graphs

Now, graphs are drawn all at once

Normally, we’ll just want to explore parts of 
the graph interactively (like in CPN Tools)



On-line
Drawing of Graphs

ASAP keeps a real representation of the 
graph fragments it draws in memory 
(instead of just state numbers)

If we only require to be able to draw out-
going nodes, we do not even have to 
precompute the entire graph



On-line
Drawing of Graphs

0



On-line
Drawing of Graphs

0



On-line
Drawing of Graphs

0

Display
successors

Display
predecessors



On-line
Drawing of Graphs

0

Display
successors

Display
predecessors

Display
successors



On-line
Drawing of Graphs

0 A representation of 
state 0 is sent to state 
space engine, which 

calculates and returns 
the successors



On-line
Drawing of Graphs

0

1

2



On-line
Drawing of Graphs

0

1

2



On-line
Drawing of Graphs

0

1

2

Display
successors

Display
predecessors



On-line
Drawing of Graphs

0

1

2

Display
successors

Display
predecessors

Display
successors



On-line
Drawing of Graphs

0

1

2 A representation of 
state 1 is sent to state 
space engine, which 

calculates and returns 
the successors



On-line
Drawing of Graphs

0

1

2

3



Advanced Graph Resizing 
using Image Resizing

When you initially explore the behavior of a 
system, you often have little idea of what 
to look for in the model
A visualization of the state space may help
For an interesting system, though, the 
graph is often too large to draw (in 
reasonable time at least)
Master’s thesis by Surayya Urazimbetova



Example:
Simple Protocol



Example:
Simple Protocol

10 packets



Example:
Simple Protocol

10 packets



Example:
Simple Protocol

3000 nodes

10 packets



Example:
Simple Protocol

3000 nodes

10 packets

Took around an 
hour to draw 
and layout



Context-Aware
Image Resizing



Context-Aware
Image Resizing



Using this for Graphs



On-the-fly
LTL Model Checking

LTL is a standard logic for specifying 
generalized liveness properties

We are currently working on integrating a 
LTL model checker into ASAP



Longer-term
New Features

Off-line CTL analysis

Distributed (safety) checking

Extend JoSEL (syntactical sugar, langauge 
extensions)

Integrate CPN viewer

More user friendly ways to specify 



Get It!

ASAP can be downloaded from
www.cs.au.dk/CPnets/projects/ascoveco/asap.html

Access/CPN can be downloaded from
www.cs.au.dk/CPnets/projects/ascoveco/accesscpn

Videos from tutorial available on YouTube:
tinyurl.com/asaptutorial09

http://www.cs.au.dk/CPnets/projects/ascoveco/asap.html
http://www.cs.au.dk/CPnets/projects/ascoveco/asap.html
http://www.cs.au.dk/CPnets/projects/ascoveco/accesscpn
http://www.cs.au.dk/CPnets/projects/ascoveco/accesscpn
http://tinyurl.com/asaptutorial09
http://tinyurl.com/asaptutorial09


Get It!

ASAP can be downloaded from
www.cs.au.dk/CPnets/projects/ascoveco/asap.html

Access/CPN can be downloaded from
www.cs.au.dk/CPnets/projects/ascoveco/accesscpn

Videos from tutorial available on YouTube:
tinyurl.com/asaptutorial09

Thanks for you attention!

http://www.cs.au.dk/CPnets/projects/ascoveco/asap.html
http://www.cs.au.dk/CPnets/projects/ascoveco/asap.html
http://www.cs.au.dk/CPnets/projects/ascoveco/accesscpn
http://www.cs.au.dk/CPnets/projects/ascoveco/accesscpn
http://tinyurl.com/asaptutorial09
http://tinyurl.com/asaptutorial09

