
Advanced State Space
Methods and ASAP:

Simple Methods
Michael Westergaard

Department of Computer Science
Aarhus University

mw@cs.au.dk

V := { s0 }
W := { s0 }
while W ≠ ∅ do
Select an s ∈ W
W := W ∖ { s }
if ¬I(s) then

return false
for all t, s’ such that s →t s’ do

if s’ ∉ V then
V := V ∪ { s’ }
W := W ∪ { s’ }

return true

mailto:mw@cs.au.dk
mailto:mw@cs.au.dk

State-space Tool of
ASAP

SML/NJ

Model-independent
code

Model-dependent
generated code Model

interface

CPN implementation of
model interface

W
ai

tin
g

se
ts

St
or

ag
es

Q
ue

ry
la

ng
ua

ge
s

…

Explorations

CheckersCPN-specific properties
(bounds, TI fairness, …)

Methods

Example:
On-line vs. Off-line

Constructing a
State Space

1

3

2

Constructing a
State Space

V:
W:

Constructing a
State Space

1

V:
W:

1
1

Constructing a
State Space

1

V:
W:

1

Constructing a
State Space

1

3

2

V:
W:

1 2 3
2 3

Constructing a
State Space

1

3

2

V:
W:

1 2 3
2 3

Constructing a
State Space

1

3

2

V:
W:

1 2 3
2

Constructing a
State Space

1

3

2

V:
W:

1 2 3
2

Constructing a
State Space

1

3

2

V:
W:

1 2 3
2

Constructing a
State Space

1

3

2

V:
W:

1 2 3

Constructing a
State Space

1

3

2

V:
W:

1 2 3

Constructing a
State Space

1

3

2

V:
W:

1 2 3

Off-line Safety Checker

V := { s0 }
W := { s0 }
while W ≠ ∅ do

Select an s ∈ W
W := W ∖ { s }
for all t, s‘
 such that s →t s’ do

if s’ ∉ V then
V := V ∪ { s’ }
W := W ∪ { s’ }

for all v ∈ V do
if ¬I(v) then

return false
return true

This is off-line analysis; we first generate the state space and then we analyze it.

On-line Safety Checker
V := { s0 }
W := { s0 }
while W ≠ ∅ do

Select an s ∈ W
W := W ∖ { s }
if ¬I(s) then

return false
for all t, s’ such that s →t s’ do

if s’ ∉ V then
V := V ∪ { s’ }
W := W ∪ { s’ }

return true

This is on-line

analysis; we analyze

the state space while

we generate it.

On-line Off-line

Finds errors faster

Uses less memory

Supported by ASAP

Can check additional properties
subsequently

Can (easier) provide error traces

Can check more properties

Supported by Design/CPN, CPN
Tools, and ASAP

On-line vs. Off-line

Demo:
On-line vs. Off-line (08)

Show safety checker and time spent
checking property (maybe crank up size)

Change to off-line

Note that top-level has not changed

Show time spent checking property

Example:
Standard Report

The Standard Report
CPN Tools (and DESIGN/CPN) creates a
standard report with a set of standard
properties

It is possible to remove properties from
the report

It is not possible to add new properties to
the report

The Standard Report
in ASAP

Is very much work in progress!

Contains the same properties as the
standard report in CPN Tools

Is based on JoSEL

Demo:
Standard Report (09)

Switch to standard report workspace

Go thru the standard report JoSEL
specification

Example:
Hash-compaction

State Space Methods

Store states compactly

Delete states during exploration

Store only some states

Use external memory

State Space Methods

Store states compactly

Delete states during exploration

Store only some states

Use external memory

Hash-compaction
A problem of the standard method is that
we use 1000 bytes per state, and 4 GB /
1000 = 4 • 106 states

What if we only use, say, 4 bytes per state;
then we can store 4 GB / 4 = 109 states

This is the rationale behind hash-
compaction

Observation
For a hash function h (any function, really) we have

s = s’ ⇒ h(s) = h(s’)

We use the terminology

s: full state descriptor (1000 bytes)

h(s): compressed state descriptor (4 bytes)

We do not have that h(s) = h(s’) ⇒ s = s’, but good

hash functions ensure that this is mostly true

If h(s) = h(s’) but s ≠ s’ we say we have a hash
collision

Hash-compaction
V := { s0 }
W := { s0 }
while W ≠ ∅ do

Select an s ∈ W
W := W ∖ { s }
if ¬I(s) then

return false
for all t, s’ such that s →t s’ do

if s’ ∉ V then
V := V ∪ { s’ }
W := W ∪ { s’ }

return true

We replace full state

descriptors by

compressed state

descriptors in V

Hash-compaction
V := { s0 }
W := { s0 }
while W ≠ ∅ do

Select an s ∈ W
W := W ∖ { s }
if ¬I(s) then

return false
for all t, s’ such that s →t s’ do

if s’ ∉ V then
V := V ∪ { s’ }
W := W ∪ { s’ }

return true

We replace full state

descriptors by

compressed state

descriptors in V

{ h(s0) }

h(s’) ∉ V
{ h(s’) }

Hash-compaction
V := { s0 }
W := { s0 }
while W ≠ ∅ do

Select an s ∈ W
W := W ∖ { s }
if ¬I(s) then

return false
for all t, s’ such that s →t s’ do

if s’ ∉ V then
V := V ∪ { s’ }
W := W ∪ { s’ }

return true

We replace full state

descriptors by

compressed state

descriptors in V

{ h(s0) }

h(s’) ∉ V
{ h(s’) }

As long as we
encounter no hash

collisions, this
algorithm works
identically to the

previous

Example

s1

s2

s5

s3

s4

s6

b b

b

c

a a

ah1

h3

h2 h3

h3

h4

Example

s1

s2

s5

s3

s4

s6

b b

b

c

a a

ah1

h3

h2 h3

h3

h4

Example

s1
h1

V:
W:

h1
s1

Example

s1
h1

V:
W:

h1

Example

s1

s2

s5
b

a

h1

V:
W:

h1

Example

s1

s2

s5
b

a

h1

h2

V:
W:

h1 h2
s2

Example

s1

s2

s5
b

a

h1

h3

h2

V:
W:

h1 h2 h3
s2 s5

Example

s1

s2

s5
b

a

h1

h3

h2

V:
W:

h1 h2 h3
s2 s5

Example

s1

s2

s5
b

a

h1

h3

h2

V:
W:

h1 h2 h3
s5

Example

s1

s2

s5

s3

b

a a

h1

h3

h2

V:
W:

h1 h2 h3
s5

Example

s1

s2

s5

s3

b

a a

h1

h3

h2 h3

V:
W:

h1 h2 h3
s5

Example

s1

s2

s5

s3

b

a a

h1

h3

h2 h3

a

V:
W:

h1 h2 h3
s5

Example

s1

s2

s5

s3

b

a a

h1

h3

h2 h3

a

V:
W:

h1 h2 h3
s5

Example

s1

s2

s5

s3

b

a a

h1

h3

h2 h3

a

V:
W:

h1 h2 h3

Example

s1

s2

s5

s3

s4

b b

a a

h1

h3

h2 h3

a

V:
W:

h1 h2 h3 h4
s4

Example

s1

s2

s5

s3

s4

b b

a a

h1

h3

h2 h3

h4
a

V:
W:

h1 h2 h3 h4
s4

Example

s1

s2

s5

s3

s4

b b

a a

h1

h3

h2 h3

h4
a

V:
W:

h1 h2 h3 h4
s4

Example

s1

s2

s5

s3

s4

b b

a a

h1

h3

h2 h3

h4
a

V:
W:

h1 h2 h3 h4

Example

s1

s2

s5

s3

s4

b b

a a

h1

h3

h2 h3

h4
a

V:
W:

h1 h2 h3 h4

Example

s1

s2

s5

s3

s4

b b

a a

h1

h3

h2 h3

h4
a

Incorrect edge

V:
W:

h1 h2 h3 h4

Example

s1

s2

s5

s3

s4

s6

b b

a a

h1

h3

h2 h3

h4
a

Never
discovered

Incorrect edge

V:
W:

h1 h2 h3 h4

Notes on Hash-compaction

We find most but not all states

Improve coverage by using larger hash values

Improve coverage using more than one hash
function

SHA-1 uses 160 bits (20 bytes) per state and
has no known collisions

Uses around as much time as the standard
algorithm and space is still O(# nodes) but with
a smaller factor

Demo:
Hash-compaction (10)

Replace storage in standard method

We can but should not compute error
traces

Replace storage in sweep-line method –
easy to combine methods

Numbers
Model Nodes NodesHC Mem MemHC % /st /stHC

DP22

DB10

SW7,4

TS5

ERDP2

ERDP3

39604 39603 23.6 20.8 88 625 550

196832 196798 174.0 4.9 3 927 26

215196 214569 43.0 5.2 12 210 25

107648 107647 61.2 45.7 75 596 445

207003 206921 87.4 5.1 6 443 26

4277126 4270926 - 113.5 - - 28

Example:
Bit-state Hashing

Bit-state Hashing
Hash-compaction uses a hash function to
compress state descriptor and stores the
compressed vectors

Bit-state hashing instead uses a hash
function to compute an index in an array
and sets a bit if a corresponding state has
been seen

We need an array of size 2|h(s)|/8 bytes,
e.g., 232/8 = 500 Mb to get same coverage
as hash compaction

Hash-compaction
V := { s0 }
W := { s0 }
while W ≠ ∅ do

Select an s ∈ W
W := W ∖ { s }
if ¬I(s) then

return false
for all t, s’ such that s →t s’ do

if s’ ∉ V then
V := V ∪ { s’ }
W := W ∪ { s’ }

return true

We replace full state

descriptors with bit-

array access.

Hash-compaction
V := { s0 }
W := { s0 }
while W ≠ ∅ do

Select an s ∈ W
W := W ∖ { s }
if ¬I(s) then

return false
for all t, s’ such that s →t s’ do

if s’ ∉ V then
V := V ∪ { s’ }
W := W ∪ { s’ }

return true

We replace full state

descriptors with bit-

array access.

new bool[2|h(s)|]; V[h(s0)] := true

¬V[h(s’)]
V[h(s’)] := true

Hash-compaction
V := { s0 }
W := { s0 }
while W ≠ ∅ do

Select an s ∈ W
W := W ∖ { s }
if ¬I(s) then

return false
for all t, s’ such that s →t s’ do

if s’ ∉ V then
V := V ∪ { s’ }
W := W ∪ { s’ }

return true

We replace full state

descriptors with bit-

array access.

new bool[2|h(s)|]; V[h(s0)] := true

¬V[h(s’)]
V[h(s’)] := true

This works exactly
like hash-compaction
with the same hash

function.

Bit-state Hashing vs.
Hash-compaction

Both allow us to increase the size of the
compressed state descriptor to get better
coverage, but for bit-state hashing each extra
bit doubles memory usage

Hash-compaction uses memory proportional to
the size of the number of nodes, bit-state
hashing uses a constant amount of memory

Hash-compaction uses memory proportional to
the number of hash functions we use, bit-state
hashing uses a constant amount of memory

Bit-state Hashing vs.
Hash-compaction

Both allow us to increase the size of the
compressed state descriptor to get better
coverage, but for bit-state hashing each extra
bit doubles memory usage

Hash-compaction uses memory proportional to
the size of the number of nodes, bit-state
hashing uses a constant amount of memory

Hash-compaction uses memory proportional to
the number of hash functions we use, bit-state
hashing uses a constant amount of memory

More Hash Functions

Using 2 hash functions require that we
have 2 collisions instead of just one

But we may have a new kind of collisions,
h1(s1) = h2(s2)

Using more hash functions improves
coverage to a certain point where the bit-
array gets “filled up”, so collisions become
more common

Hash-compaction
V := new bool[2|h(s)|]; V[h(s0)] := true
W := { s0 }
while W ≠ ∅ do

Select an s ∈ W
W := W ∖ { s }
if ¬I(s) then

return false
for all t, s’ such that s →t s’ do

if ¬V[h(s’)] then
V[h(s’)] := true
W := W ∪ { s’ }

return true

We simply set and
read bits for both

Hash-compaction
V := new bool[2|h(s)|]; V[h(s0)] := true
W := { s0 }
while W ≠ ∅ do

Select an s ∈ W
W := W ∖ { s }
if ¬I(s) then

return false
for all t, s’ such that s →t s’ do

if ¬V[h(s’)] then
V[h(s’)] := true
W := W ∪ { s’ }

return true

We simply set and
read bits for both

; V[h2(s0)] := true

or ¬V[h2(s’)]
; V[h2(s’)] := true

Double Hashing
Calculating hash functions is actually pretty
expensive, so the time complexity grows with
the number of hash functions

Simply using hn(s) = n • h1(s) does not work!

It turns out that using hn(s) = n • h(s) + h’(s)
does work; this is called double hashing

Triple hashing works better but takes more time

Experiments show that using 15-20 hash
functions works well

Demo:
Bit-state Hashing (11)

Replace storage on standard example

Try replacing storage on sweep-line
example

JoSEL catches (most) illegal combinations
on construction

Bit-state Hashing and
the Sweep-line Method

We can combine the hash-compaction
method with the sweep-line method

We cannot combine the double hashing
method with the sweep-line method

The sweep-line method deletes states

We may have hn(s) = hm(s’) with s ≠ s’

Thus, removing s may accidentally
remove s’ as well

Bit-state Hashing and
the Sweep-line Method

The bit-state hashing/double hashing
methods use a constant amount of memory
regardless of number of states stored

Can we win anything by removing entries
using the sweep-line?

We can reduce the probability of collisions

Numbers
Model Nodes NodesDH Mem MemDH % /st /stDH

DP22

DB10

SW7,4

TS5

ERDP2

ERDP3

39604 39604 23.6 32.0 135 625 846

196832 196832 174.0 12.3 7 927 66

215196 215196 43.0 12.3 28 210 60

107648 107648 61.2 55.4 90 596 540

207003 207003 87.4 12.3 14 443 62

4277126 4277125 - 12.1 - - 3

More Numbers
Model Nodes MemHC MemDH /stateHC /stateDH

DP22

DB10

SW7,4

TS5

ERDP2

ERDP3

39604 20.8 32.0 550 846

196832 4.9 12.3 26 66

215196 5.2 12.3 25 60

107648 45.7 55.4 445 540

207003 5.1 12.3 26 62

4277126 113.5 12.1 28 3

