
Advanced State Space 
Methods and ASAP:

Extending ASAP
Michael Westergaard

Department of Computer Science
Aarhus University

mw@cs.au.dk

V := { s0 }
W := { s0 }
while W ≠ ∅ do
Select an s ∈ W
W := W ∖ { s }
if ¬I(s) then

return false
for all t, s’ such that s →t s’ do

if s’ ∉ V then
V := V ∪ { s’ }
W := W ∪ { s’ }

return true

mailto:mw@cs.au.dk
mailto:mw@cs.au.dk


Requirements for
Extendability

It must be easy to add new features/
methods to ASAP

New features must be completely 
integrated and feel like “native” features

It should be possible to mix and match new 
features – even from different vendors



Example:
The Sweep-line Method



Example:
The Sweep-line Method

The sweep-line is defined completely outside of 
the ASAP main application (proof-of-concept, 
eat-your-own-dog-food, …)
Yet…

We can add it in the JoSEL editor
We can use it with the safety-checker
We can combine it with hash compaction
We can create progress measures as easily 
as we create safety properties
The progress measure shows up in the report



Overview
Adding new methods to the GUI

Eclipse’s plug-in system

Adding new methods to the engine

Extending JoSEL

Adding entries to the report

Briefly: ACCESS/CPN



Basically, this is Easy!

ASAP is an Eclipse Rich Client application, 
so we have access to Eclipse’s plug-in 
mechanism

This allows us to easily add new GUI 
elements (like the wizard for creating 
progress measures)

This allows us to specify new points where 
the application can be extended



Eclipse’s Plug-in System: 
Plug-ins

Plug-ins: a program unit that provides a 
bounded functionality (e.g., the sweep-line 
method)

Dependencies: a plug-in may (acyclically) 
depend on one or more other plug-ins 
(e.g., the sweep-line method depends on 
the generic state-space tool in ASAP)



Eclipse’s Plug-in System:
Extensions

A plug-in may define zero or more extension 
points (e.g., new entries to add to the right-
click menu in the index)

An extension point can define any number of 
details (like the class implementing the wizard 
or when the menu entry should be enabled)

An extension point provides an 
implementation of an extension point



A (Flawed) Analogy

Think of plug-ins as pages of a CPN model

Think of extension-points as input port 
places (that can be assigned zero, one, or 
more times)

Think of extensions as socket places and 
port/socket-assignments



Plug-ins in ASAP
ASAP uses mostly standard or slightly 
specialized standard components

These thus get a lot of extensibility 
automatically

E.g., adding an entry to the right-click 
menu of the queries folder for creating a 
progress measure



Interfaces
In order to make this possible we need to 
adhere to the principle

A plug-in defining an extension point 
describes which values are allowed, 
including which interfaces they must 
implement

The plug-in only has access to 
implementations via the interface

Program to the interface, not the implementation



Expanding on the 
(Flawed) Analogy

The interface of a port place is its type

The sub-page can make no assumptions 
other than token produced on the port place 
are of the correct type

In order to make a port/socket-assignment 
we must promise to only produce tokens of 
that type (the socket must have the same 
type, even though we can guarantee that we 
only produce tokens of a sub-type)



n

n
Odd

[n mod 2 = 1]

Even

[n mod 2 = 0]

Extension
point

In
INT

In

Plug-in
dependency
Plug-in 1Plug-in 1

Extension

INT

INT
n

n

Numbers 1`2++
2`4

31`2++
2`4

Two Plug-ins with the 
(Flawed) Analogy

Plug-in 2 Plug-in 1



Example:
Adding Entry for PM



Demo:
Adding Entry for PM (12)

Show navigatorContent extension

Wizard & Enablement

Show newWizards extension



State-space Tool of
ASAP

SML/NJ

Model-independent 
code

Model-dependent 
generated code Model 

interface

CPN implementation of 
model interface

W
ai

tin
g

se
ts

St
or

ag
es

Q
ue

ry
la

ng
ua

ge
s

…

Explorations

CheckersCPN-specific properties 
(bounds, TI fairness, …)

Methods



Adding New Methods
The state space engine of ASAP also 
introduces strict interfaces

Model, Storage, WaitingSet, Exploration 
(actually several explorations)

Adding a new method should depend on 
these interfaces and implement interfaces (or 
define new interfaces and implement them)



Interfaces in SML

SML uses signatures for interfaces

Modules implementing interfaces are called 
structures or functors

Functors can explicitly depend on other 
structures and should be preferred over 
structures



Example:
Sweep-line Exploration



Sweep-line Exploration 
Functor



Sweep-line Exploration 
Functor We require:

a boolean



Sweep-line Exploration 
Functor We require:

a boolean
a storage



Sweep-line Exploration 
Functor We require:

a boolean
a storage
a model



Sweep-line Exploration 
Functor We require:

a boolean
a storage
a model

a progress measure



Sweep-line Exploration 
Functor We require:

a boolean
a storage
a model

a progress measure

We provide:
a sweep-line 
exploration



Sweep-line Exploration 
Interfaces

The “PROGRESS_MEASSURE” signature is 
defined by the sweep-line plug-in (and only 
applicable for the sweep-line method)

The “SWEEP_LINE_EXPLORATION” 
signature is defined by the sweep-line plug-
in, but extends the “TRACE_EXPLORATION” 
provided by ASAP



Sweep-line Exploration 
Interfaces

The “PROGRESS_MEASSURE” signature is 
defined by the sweep-line plug-in (and only 
applicable for the sweep-line method)

The “SWEEP_LINE_EXPLORATION” 
signature is defined by the sweep-line plug-
in, but extends the “TRACE_EXPLORATION” 
provided by ASAP

Or, reiterating an earlier point: The sweep-line method depends on previously defined interfaces and implements one of these interfaces



A Couple Interfaces:
MODEL



A Couple Interfaces:
MODEL

Abstraction of states and events



A Couple Interfaces:
MODEL

Abstraction of states and events

The the initial state(s) of the model



A Couple Interfaces:
MODEL

Abstraction of states and events

…and enabled events in each state
The the initial state(s) of the model



A Couple Interfaces:
MODEL

Abstraction of states and events

…and enabled events in each state

Successors from executing an event in a state

The the initial state(s) of the model



A Couple Interfaces:
MODEL

Abstraction of states and events

…and enabled events in each state

Successors from executing an event in a state

…or a sequence of events

The the initial state(s) of the model



A Couple Interfaces:
EXPLORATION



A Couple Interfaces:
EXPLORATION

Functions that allow us to gather 
information about states and 

events (like fold for lists in SML)



A Couple Interfaces:
EXPLORATION

Functions that allow us to gather 
information about states and 

events (like fold for lists in SML)

A (empty or non-empty) storage for 
“permanent” storage of states (V)



A Couple Interfaces:
EXPLORATION

Functions that allow us to gather 
information about states and 

events (like fold for lists in SML)

A (empty or non-empty) storage for 
“permanent” storage of states (V)

A (list of) state(s) from 
which to start exploration



A Couple Interfaces:
EXPLORATION

Functions that allow us to gather 
information about states and 

events (like fold for lists in SML)

A (empty or non-empty) storage for 
“permanent” storage of states (V)

A (list of) state(s) from 
which to start exploration

The storage 
after exploration



A Couple Interfaces:
EXPLORATION

Functions that allow us to gather 
information about states and 

events (like fold for lists in SML)

A (empty or non-empty) storage for 
“permanent” storage of states (V)

A (list of) state(s) from 
which to start exploration

The storage 
after exploration

Values computed by 
state_hook and arc_hook



A Couple Interfaces:
EXPLORATION



A Couple Interfaces:
EXPLORATION



A Couple Interfaces:
EXPLORATION



A Couple Interfaces:
EXPLORATION

Build a list of states violating “property”



Extending JoSEL

When we have developed a new method, 
we wish to integrate it into the GUI of ASAP

JoSEL can be extended by adding new 
tasks (ASAP defines an extension point for 
this)

We basically need to create a task for each 
functor we create

EMF makes all the boiler-plate code for us, 
and ASAP contains abstract classes that do 
most of the work



Example:
Sweep-line Exploration



Example:
Sweep-line Exploration



Example:
Sweep-line Exploration



Sweep-line Task



Tasks



Tasks



Tasks



Tasks



Tasks



Tasks



Tasks



New Template



New Category (Palette)



Reporting in ASAP
ASAP automatically gathers information 
about every execution in a database (either 
an in-memory database or MySQL)

The standard report is created using a 
standard report generating tool (BIRT)

ASAP is able to automatically assemble a 
report based on report fragments



Adding New Entries
to the Report

Add a new value entry to the database

Make sure the value is gathered during 
execution

(Make a new report item model and report 
item presentation)

Make a fragment showing your value



Example:
Adding PM to the Report



Step 1:
Add Value to Database



Step 2:
Make Sure Value is Gathered



Demo: Step 4:
Creating Report Fragment

Start reporting plugin

Set up reporting library

Create reporting fragment



Registering the Fragment



Step 3:
Displaying New Values

BIRT allows us to extend it to display new 
values

Simple values can automatically be 
displayed

This includes charts for series or 
aggregated data

We can freely describe how to display 
custom values



Interesting Uses of 
Custom Values

We can add the model file to the report
Display the model as part of the report 
instead of just the name

We can (and do) add error traces or even entire 
state space graphs to reports

Currently we display dead states and error 
traces textually
It is fairly easy to display states as actual 
markings
We can show graph fragments graphically



Example:
Error Traces



Registering the Type



Creating a
Report Item Model

We basically need to 
implement code that can store 

and retrieve properties



Creating a
Report Item Presentation

The class registered 
here must be able to 

display the
report item model



A Report Item Presentation

Other possibilities:
OUTPUT_AS_IMAGE

OUTPUT_AS_HTML_TEXT



A Report Item Presentation



A Report Item Presentation



A Report Item Presentation



ACCESS/CPN

We have isolated the library used by ASAP 
to load CPN models as well as the interface 
used by the state space engine

These two parts together are distributed 
under the name ACCESS/CPN



ACCESS/CPN

SML/NJ

Model-independent 
code

Model-dependent 
generated code Model 

interface

CPN implementation of 
model interface

W
ai

tin
g

se
ts

St
or

ag
es

Q
ue

ry
la

ng
ua

ge
s

…

Explorations

CheckersCPN-specific properties 
(bounds, TI fairness, …)



ACCESS/CPN

SML/NJ

Model-independent 
code

Model-dependent 
generated code Model 

interface

CPN implementation of 
model interface

W
ai

tin
g

se
ts

St
or

ag
es

Q
ue

ry
la

ng
ua

ge
s

…

Explorations

CheckersCPN-specific properties 
(bounds, TI fairness, …)

ACCCESS/CPN



ACCESS/CPN

SML/NJ

Model-independent 
code

Model-dependent 
generated code Model 

interface

CPN implementation of 
model interface

ACCCESS/CPN



ACCESS/CPN Features

With Access/CPN you can:

Load models from CPN Tools

Simulate models programmatically (both 
automatic and “manual”)

Inspect and change state

Evaluate SML code

Build a state space tool :-)



Access/CPN Uses

ASAP

Cosimulation of SystemC and CP-nets

Code-generation from CPN models

Integration into ProM (R. Mans & M. Netjes)

…


