
To appear in the course material from the Advanced Course on Petri Nets, Dagstuhl Germany, 1996.
The course material will be published in Lecture Notes in Computer Science, Springer-Verlag.

An Introduction to the Practical Use of
Coloured Petri Nets

Kurt Jensen
Department of Computer Science, University of Aarhus

Ny Munkegade, Bldg. 540, DK-8000 Aarhus C, Denmark

Phone: +45 89 42 32 34, Telefax: +45 89 42 32 55
E-mail: kjensen@daimi.aau.dk, WWW: http://www.daimi.aau.dk/~kjensen/

Abstract: The development of Coloured Petri Nets (CP-nets or CPN) has been
driven by the desire to develop a modelling language – at the same time theoreti-
cally well-founded and versatile enough to be used in practice for systems of the
size and complexity found in typical industrial projects. To achieve this, we have
combined the strength of Petri nets with the strength of programming languages.
Petri nets provide the primitives for describing synchronisation of concurrent proc-
esses, while programming languages provide the primitives for definition of data
types and manipulation of their data values.

The paper focuses on the practical use of Coloured Petri Nets. It introduces the
basic ideas behind the CPN language, and it illustrates how CPN models can be
analysed by means of simulation, state spaces and condensed state spaces. The paper
also describes how CP-nets can be extended with a time concept. In this way it is
also possible to use CP-nets for performance evaluation, i.e., to evaluate the speed
by which a system operates. Finally, we describe a set of computer tools that sup-
port the use of CP-nets. This tool set is used by more than three hundred organisa-
tions in forty different countries – including seventy-five commercial companies. It
is available free of charge, also for commercial use.

The present paper does not contain any formal definitions. Instead all ideas and
concepts are introduced by means of a number of small examples. Readers who
want to consult the formal definitions can find these in [1], [2], [3], and [4]. The lat-
ter is a 3-volume text book providing a detailed description of CP-nets and their
use. Volume 1 introduces the basic concepts and definitions. Volume 2 describes the
different analysis methods. Volume 3 describes experiences from nineteen projects
in which CP-nets and the CPN tools have been put to practical use. Most of the
projects have been carried out in an industrial setting.

Keywords: High-level Petri Nets, Coloured Petri Nets, Practical Use, Modelling,
Validation, Verification, State Spaces, Tool Support.

Table of Contents
1 Introduction to CP-nets...2
2 Simulation of CP-nets..14
3 State Space Analysis of CP-nets..22
4 Performance Analysis of CP-nets...34
5 Hierarchical CP-nets...41
6 Condensed State Spaces..49
7 Conclusions..54
References...56

2

1 Introduction to CP-nets

This section contains an informal introduction to CP-nets. This is done by means of
an example that models a simple protocol, Fig. 1. The example is far too small to
illustrate the typical practical use of CP-nets, but it is large enough to illustrate the
basic concepts of the CPN modelling language and the basic ideas behind the analy-
sis methods, such as simulation and state spaces. Throughout this paper we shall de-
velop a number of protocol models and use these to illustrate different aspects of
CP-nets. We do not claim that the described protocols are optimal (they are not).
However, the protocols are interesting enough to deserve a closer investigation, and
they are also complex enough for such an investigation to be non-trivial.

In contrast to most specification languages, Petri nets are state and action ori-
ented at the same time – providing an explicit description of both the states and the
actions. This means that the modeller can determine freely whether – at a given
moment of time – he wants to concentrate on states or on actions.

The states of a CP-net are represented by means of places (which are drawn as
ellipses or circles). In the protocol system there are ten different places. By con-
vention we write the names of the places inside the ellipses. The names have no
formal meaning – but they have large practical importance for the readability of a
CP-net (just like the use of mnemonic names in traditional programming). A simi-
lar remark applies to the graphical appearance of the places, i.e., the line thickness,
size, colour, font, position, etc.

Send
Packet

Transmit
Packet

Receive
Packet

Receive
Acknow.

Transmit
Acknow.

Send

INTxDATA
1`(1,"Modellin")+
1`(2,"g and An")+
1`(3,"alysis b")+
1`(4,"y Means ")+
1`(5,"of Colou")+
1`(6,"red Petr")+
1`(7,"i Nets")+
1`(8,"###")

NextSend
INT

1

D
INT

A

INTxDATA

Received
DATA

""

NextRec
INT

1

B

INTxDATA

C
INT

Sender Network Receiver

SP
8

Ten0

SA
Ten0

8

(n,p) (n,p)

if Ok(s,r)
then 1`(n,p)
else empty

(n,p)

(n,p)

if n=k
andalso
p<>stop
then str^p
else str

if n=k
then k+1
else k

n

k

if n=k
then k+1
else k

if Ok(s,r)
then 1`n
else empty

n

k n

n

str

s

s

Fig. 1. CP-net describing a simple protocol

3

Each place has an associated type determining the kind of data that the place
may contain (by convention the type name is written in italics, next to the place). In
the protocol system we use four different types. Places Send, A, and B have the type
INTxDATA. This type is the cartesian product of INTegers and DATA. The ele-
ments of the type represent packets to be transmitted over the Network. Each packet
is a pair, where the first element is the packet number (of type INT), while the sec-
ond element is the data contents of the packet, i.e., a text string (of type DATA).

During the execution of a CP-net each place will contain a varying number of
tokens. Each of these tokens carries a data value that belongs to the type associated
with the place. As an example, Fig. 1 shows that place Send starts with the follow-
ing eight token values, which each represents a packet to be transmitted over the
Network:

(1,"Modellin")
(2,"g and An")
(3,"alysis b")
(4,"y Means ")
(5,"of Colou")
(6,"red Petr")
(7,"i Nets")
(8,"### ").

In Fig. 1 there is a 1` in front of each token value. This tells us that there is exactly
one token that carries the value. In general, several tokens may have the same token
value, and then we have a multi-set of token values, such as:

1`(2,"g and An") + 2`(3,"alysis b") + 1`(5,"of Colou")

in which we have one token with value (2,"g and An"), two tokens with value
(3,"alysis b"), and one token with value (5,"of Colou"). A multi-set is similar to a
set, except that there may be several appearances of the same element. If we add the
element (3,"alysis b") to the set:

{(2,"g and An"), (3,"alysis b"), (5,"of Colou")}

nothing happens, because the element already belongs to the set. However, if we add
the element (3,"alysis b") to the multi-set:

1`(2,"g and An") + 1`(3,"alysis b") + 1`(5,"of Colou")

we get a multi-set with four elements instead of three:

1`(2,"g and An") + 2`(3,"alysis b") + 1`(5,"of Colou").

The integers in front of the `-operator are called coefficients. In our example
(2,"g and An") and (5,"of Colou") have one as coefficient, while (3,"alysis b") has
two as coefficient. All other values of the type have zero as coefficient (and hence
they are omitted).

For multi-sets, we define operations for addition, scalar-multiplication, compari-
son, size and subtraction as illustrated in Fig. 2, where all multi-sets have elements
from the set {a,b,c,d,e}. Notice that subtraction of two multi-sets m2 – m1 only is
defined when m2 ≥ m1.

Now let us consider the remaining nine places in Fig. 1. The place A represents
packets that have been given to the Network by the Sender part of the protocol (but

4

not yet transmitted by the Network). Analogously, place B represents packets that
have been transmitted by the Network (but not yet taken by the Receiver part of the
protocol). These two places have the same type as place Send, and initially they
contain no tokens. Place Received will contain a single token representing the data
in those packets that have been received (ignoring the contents of duplicates and
packets received out of order). Initially, no data has been received and hence there
is a token with the empty text string "" (of type DATA). At the end of the transmis-
sion we expect Received to contain the text string:

"Modelling and Analysis by Means of Coloured Petri Nets".

Places C and D are analogous to places A and B, except that they represent ac-
knowledgements being sent from the Receiver to the Sender. Each acknowledge-
ment carries a number and no other data. Hence the types of C and D are INT. The
places Next Send and Next Rec represent counters that keep the number of the next
packet to be sent/received. They have the type INT and each of them starts with a
single token with value 1. The two last places SP and SA have the type Ten0, which
contains all integers between zero and ten. The use of these places will be explained
later.

A state of a CP-net is called a marking . It consists of a number of tokens posi-
tioned on the individual places. Each token carries a value which belongs to the type
of the place on which the token resides. The tokens that are present at a particular

+ =a
e

c
c a

b
b

e
c

c
c a

b
b

e

c
c

a
e

c
c

c

a
e

c
c

*3 = a

e

c
a

e

c
ca c

c c

e

≤ =a
e

c
c a

b
b

e
c

c
c true

= 7

a
b

b

e
c

c
c

a
e

c
c– b

b
c=

Addition (element-wise)

Scalar multiplication (element-wise)

Comparison (element-wise)

Size (number of elements)

Subtraction (only if m2 ≥ m1)

m1 m2 m1 + m2

m1 3 * m1

m1 m2

m2

m2 m1 m2 – m1

a
b

b

e
c

c
c

Fig. 2. Some operations on multi-sets

5

place are called the marking of that place. By convention we write the initial
marking with an underline, next to the place. When the specification of the initial
marking is lengthy, we may omit the underlining (as done for Send).

For historical reasons we sometimes refer to token values as token colours and
we also refer to data types as colour sets. This is a metaphoric picture where we
consider the tokens of a CP-net to be distinguishable from each other and hence
“coloured” – in contrast to ordinary low-level Petri nets which have “black” indis-
tinguishable tokens. The types of a CP-net can be arbitrarily complex, e.g., a record
where one field is a real, another a text string and a third a list of integers. Hence, it
is much more adequate to imagine a continuum of colours (like in physics) instead
of a few discrete colour values (like red, green and blue).

The actions of a CP-net are represented by means of transitions (which are
drawn as rectangles). In the protocol system there are five different transitions. An
incoming arc indicates that the transition may remove tokens from the correspond-
ing place while an outgoing arc indicates that the transition may add tokens. The ex-
act number of tokens and their data values are determined by the arc expressions
(which are positioned next to the arcs). Transition Send Packet has three surround-
ing arcs with two different arc expressions: (n,p) and n. Two of the arcs are double
arcs. Each of these is a shorthand for two opposite directed arcs with identical arc
expression. Hence there are really five different arcs (two incoming arcs and three
outgoing). The arc expressions contain two free variables: n of type INT and p of
type DATA. To talk about an occurrence of the transition Send Packet we need to
bind n to a value from INT and p to a value from DATA. Otherwise, we cannot
evaluate the arc expressions (n,p) and n.

Now let us assume that we bind the variable n (of transition Send Packet) to the
value 1, while we bind the variable p to the value "Modellin". This gives us the
binding:

< n = 1, p = "Modellin">

for which the arc expressions evaluate to:

(n,p) → (1,"Modellin")
 n → 1.

This tells us that an occurrence of transition Send Packet (with the above binding)
will remove a token with value (1,"Modellin") from place Send and a token with
value 1 from place Next Send. Both tokens are available, i.e., present at the two
places, and hence transition Send Packet is enabled with the given binding. This
means that the transition may occur. When the transition occurs, the two specified
tokens will be removed from the input places Send and Next Send. Simultaneously,
three tokens will be added to the output places: Send and A will get a token with
value (1,"Modellin"), while Next Send will get a token with value 1. Hence the total
effect of the occurring transition is to add a token representing packet number one
to place A. Intuitively, this means that the Sender part of our model transfers a
copy of packet number one to the input buffer of the Network. We do not remove
the packet from place Send. This is because it may be necessary to retransmit it.
Neither do we increase the counter Next Send. This is because our protocol is pes-
simistic, in the sense that it will keep retransmitting a packet, until it gets a positive
acknowledgement confirming that the packet has been received.

6

There are of course many other bindings that we may try for transition
Send Packet. However, none of these are enabled in the initial marking of the proto-
col system. This can be seen as follows. Place Next Send has only one token and this
token carries the value 1. Hence, we need to bind the variable n to 1. This means
that the arc expression on the incoming arc from place Send will evaluate to a value
on the form (1, …). However, Send only has one token on this form:
(1,"Modellin"), and hence the variable p must be bound to "Modellin".

A pair consisting of a transition and a binding (for the variables appearing on
the surrounding arcs) is called a binding element. Above, we have seen that the
binding element:

(Send Packet, < n = 1, p = "Modellin">)

is enabled in the initial marking. We have also seen that it will lead to a marking
which is identical to the initial marking, except that a new token with value
(1,"Modellin") has been added to place A. The new marking is shown in Fig. 3,
which is a screen dump taken from the CPN simulator. The number of tokens on
each place is indicated in the small circle next to the place, while the detailed token
values are indicated in the text string next to the small circle. The token values can
be shown or hidden. This is convenient, e.g., when the values are complex. As an
example, there are CPN models in which a typical token value is a list of up to
50,000 bank records. When this is the case, no one will like to have the token value
displayed directly on the CPN diagram.

Send
Packet

Transmit
Packet

Receive
Packet

Receive
Acknow.

Transmit
Acknow.

Send

INTxDATA
8 1`(1,"Modellin")

+ 1`(2,"g and An")
+ 1`(3,"alysis b")
+ 1`(4,"y Means ")
+ 1`(5,"of Colou")
+ 1`(6,"red Petr")
+ 1`(7,"i Nets")
+ 1`(8,"###")

NextSend
INT

1

1 1`1

D
INT

A

INTxDATA

1 1`(1,"Modellin")

Received
DATA

1 1`""

""

NextRec
INT

1

1 1`1

B

INTxDATA

C
INT

Sender Network Receiver

SP
8

Ten0 1 1`8

SA
1 1`8

Ten0

8

(n,p) (n,p)

if Ok(s,r)
then 1`(n,p)
else empty

(n,p)

(n,p)

if n=k
andalso
p<>stop
then str^p
else str

if n=k
then k+1
else k

n

k

if n=k
then k+1
else k

if Ok(s,r)
then 1`n
else empty

n

k n

n

str

s

s

Fig. 3. Marking after occurrence of Send Packet

7

In Fig. 3, transitions Send Packet and Transmit Packet have a thicker border line.
In this way the CPN simulator indicates that these two transitions have enabled
bindings, while the other transitions have not. For Send Packet, we can use the
binding which we used above (and no others). This corresponds to a retransmission
of packet number one. For Transmit Packet, the situation is slightly more complex,
since we now have four different variables: n of type INT, p of type DATA, s of
type Ten0 and r of type Ten1. Ten0 contains all integers between zero and ten,
while Ten1 contains all integers between one and ten (all the mentioned values in-
cluded). In the marking of Fig. 3, place A has a single token with value
(1,"Modellin"). From this it follows that n must be bound to 1 while p must be
bound to "Modellin". Place SP has a single token with value 8. From this it follows
that s must be bound to 8. The variable r only appears on an outgoing arc, and
hence it can be bound to any value of its type – without influencing the enabling of
the transition. This means that we get ten different enabled bindings:

< n = 1, p = "Modellin", s = 8, r = 1 >
< n = 1, p = "Modellin", s = 8, r = 2 >
< n = 1, p = "Modellin", s = 8, r = 3 >
…………………………………………
…………………………………………
< n = 1, p = "Modellin", s = 8, r = 9 >
< n = 1, p = "Modellin", s = 8, r = 10 > .

Send
Packet

Transmit
Packet

Receive
Packet

Receive
Acknow.

Transmit
Acknow.

Send

INTxDATA
8 1`(1,"Modellin")

+ 1`(2,"g and An")
+ 1`(3,"alysis b")
+ 1`(4,"y Means ")
+ 1`(5,"of Colou")
+ 1`(6,"red Petr")
+ 1`(7,"i Nets")
+ 1`(8,"###")

NextSend
INT

1

1 1`1

D
INT

A

INTxDATA

Received
DATA

1 1`""

""

NextRec
INT

1

1 1`1

B

INTxDATA

1 1`(1,"Modellin")

C
INT

Sender Network Receiver

SP
8

Ten0 1 1`8

SA
1 1`8

Ten0

8

(n,p) (n,p)

if Ok(s,r)
then 1`(n,p)
else empty

(n,p)

(n,p)

if n=k
andalso
p<>stop
then str^p
else str

if n=k
then k+1
else k

n

k

if n=k
then k+1
else k

if Ok(s,r)
then 1`n
else empty

n

k n

n

str

s

s

Fig. 4. Marking after occurrence of Send Packet and Transmit Packet

8

The function call Ok(s,r) compares the values of r and s, and it returns true if and
only if r ≤ s. This means that Ok(s,r) will evaluate to true for the first eight bind-
ings, while it will evaluate to false for the last two bindings. When Ok(s,r) is true
the transition adds a token (1,"Modellin") to B, otherwise no token is added (empty
denotes the empty multi-set). The CPN simulator will make a fair selection between
the ten enabled binding elements. Hence, the probability for successful transmission
is 80%, while the probability for losing the packet is 20%. By changing the value of
the token on SP, we can change the probabilities. If the token value is 10, we never
lose packets. If it is 0 we lose all packets. SP is a shorthand for success rate for
packets.

Now, let us assume that transition Transmit Packet occurs with one of the first
eight bindings. This will lead to the marking shown in Fig. 4. Again we have two
enabled transitions. We can either retransmit packet number one by means of the
binding element:

(Send Packet, < n = 1, p = "Modellin">),

or we can receive packet number one by means of the binding element:

(Receive Packet, < n = 1, p = "Modellin", k = 1, str = "">).

When the latter binding element occurs, we remove/add the tokens shown in Fig. 5,
which again is (part of) a screen dump from the CPN simulator. It is taken at a
breakpoint during the occurrence of transition Receive Packet.

The arc expressions on the three outgoing arcs compare the number n of the in-
coming packet with the number k of the expected packet. If the values are identical

NextRec
INT

1

C
INT

Receive
Packet

B

INTxDATA

Received
DATA

""

(n,p)
1

1`(1,"Modellin")

if n=k
andalso
p<>stop
then str^p
else str

1
1`"Modellin"

if n=k
then k+1
else k

1
1`2

k

1
1`1

if n=k
then k+1
else k

1
1`2

str

1
1`""

Fig. 5. Tokens involved in an occurrence of Receive Packet

9

(as in our situation) the packet is the expected one. Then the Receiver adds the data
p in the new packet to the data str which already has been Received (unless p is
equal to stop which denotes the constant "###"). The token value at Next Rec is in-
creased by one, and an acknowledgement is sent via place C. By convention the ac-
knowledgement contains the number of the next packet that the Receiver wants to
get (i.e., the value at Next Rec). If the values of n and k differ from each other, the
packet is not the expected one. Then the packet is ignored. Received and Next Rec
remain unaltered, and an acknowledgement is sent via C. As before, the acknow-
ledgement contains the number of the next packet which the Receiver wants to get
(i.e., the value at Next Rec).

After the occurrence shown in Fig. 5, we have a marking in which place C has a
token with value 2. The token represents an acknowledgement and it can be trans-
mitted (or lost) by means of Transmit Acknowledgement. This transition works in a
similar way as Transmit Packet. This means that the acknowledgement may be lost,
with a probability determined by the token at place SA.

If the acknowledgement reaches place D, transition Receive Acknowledgement
becomes enabled. It updates the number in Next Send by replacing the old value k
with the number n contained in the acknowledgement (in our case 2). This means
that the Sender now starts sending packet number two, i.e., (2,"g and An").

After the occurrence of approximately fifty binding elements, the CP-net may
reach the intermediate marking shown in Fig. 6. From the left-hand part of the net,
we see that the Sender is sending packet number three. We also see that a copy of

Send
Packet

Transmit
Packet

Receive
Packet

Receive
Acknow.

Transmit
Acknow.

Send

INTxDATA
8 1`(1,"Modellin")

+ 1`(2,"g and An")
+ 1`(3,"alysis b")
+ 1`(4,"y Means ")
+ 1`(5,"of Colou")
+ 1`(6,"red Petr")
+ 1`(7,"i Nets")
+ 1`(8,"###")

NextSend
INT

1

1 1`3

D
INT

1 1`4

A

INTxDATA

Received
DATA

1 1`"Modelling and
Analysis b"

""

NextRec
INT

1

1 1`4

B

INTxDATA

1 1`(3,"alysis b")

C
INT

Sender Network Receiver

SP
8

Ten0 1 1`8

SA
1 1`8

Ten0

8

(n,p) (n,p)

if Ok(s,r)
then 1`(n,p)
else empty

(n,p)

(n,p)

if n=k
andalso
p<>stop
then str^p
else str

if n=k
then k+1
else k

n

k

if n=k
then k+1
else k

if Ok(s,r)
then 1`n
else empty

n

k n

n

str

s

s

Fig. 6. Intermediate marking

10

this packet is present at place B. From the right-hand part of the net, we see that the
string "Modelling and Analysis b" has been Received. This is the contents of the
first three packets and the Receiver is now waiting for packet number four. Hence
the packet on B will be ignored by the Receiver. We also see that an acknowledge-
ment is present at place D. When Receive Acknowledgement occurs, Next Send will
be updated to 4, and this means that the Sender will start sending packet number
four.

Notice that there is no guarantee that tokens are removed from a place in the
same order as they were added. During a simulation place A may contain several
tokens and any of these may be selected as the next one to be transmitted to B.
Analogously, for places B, C, and D. Hence packets may overtake each other at A
and B, while acknowledgements may overtake each other at C and D. If desired, it
is easy to specify a queuing discipline. To do this we equip the places A, B, C, and
D with a type that contains all lists over the previous type of the place. Each of the
places always has a single token. The initial value is the empty list, and we insert
packets at one end of the list and remove packets from the other end. This con-
struction is used so often that it will probably be directly supported in one of the
next versions of the CPN tools. Then a place can be specified as being a queuing
place, and there will be no need to make the explicit insert and remove operations.
This will make the model more readable and faster to create. However, it is only
syntactical sugar for the list construction explained above, and hence it does not al-
ter the simulation or the state space analysis.

Send
Packet

Transmit
Packet

Receive
Packet

Receive
Acknow.

Transmit
Acknow.

Send

INTxDATA
8 1`(1,"Modellin")

+ 1`(2,"g and An")
+ 1`(3,"alysis b")
+ 1`(4,"y Means ")
+ 1`(5,"of Colou")
+ 1`(6,"red Petr")
+ 1`(7,"i Nets")
+ 1`(8,"###")

NextSend
INT

1

1 1`9

D
INT

A

INTxDATA

Received
DATA

1 1`"Modelling and
Analysis by Means
of Coloured Petri
Nets"

""

NextRec
INT

1

1 1`9

B

INTxDATA

C
INT

Sender Network Receiver

SP
8

Ten0 1 1`8

SA
1 1`8

Ten0

8

(n,p) (n,p)

if Ok(s,r)
then 1`(n,p)
else empty

(n,p)

(n,p)

if n=k
andalso
p<>stop
then str^p
else str

if n=k
then k+1
else k

n

k

if n=k
then k+1
else k

if Ok(s,r)
then 1`n
else empty

n

k n

n

str

s

s

Fig. 7. Final marking in which no transitions are enabled

11

When the last packet (with "###") is successfully received by the Receiver,
Next Rec gets the value 9 (one larger than the number of packets). This value will
(via an acknowledgement) be communicated to the Sender. Then Next Send will be
updated to nine and sending will stop – since no packet with this number exists. Af-
ter a few more steps, where the places A, B, C, and D are cleared for packets/
acknowledgements, the CP-net will reach the final marking shown in Fig. 7. This
marking is dead, which means that it has no enabled transitions.

Even though the protocol is rather simple, it is not that easy to see that it actually
works correctly. What happens, for instance, if the “last” acknowledgement gets
lost? By making a number of simulations the user can greatly increase his confi-
dence in the protocol. He may also prove the correctness by using the state space
tool or investigate the performance by means of timed CP-nets. We shall return to
this in Sects. 2, 3, and 4, respectively.

In this paper, we do not model how the Sender splits a message into a sequence
of packets or how the Receiver reassembles the packets into a message. Neither do
we model how the tokens at Send and Received are removed at the end of the
transmission or how the packet numbers in Next Send and Next Rec are reset to 1.
These details can easily be added, but they are not necessary for the discussion in
this paper.

In addition to the arc expressions, it is possible to attach a boolean expression
(with variables) to each transition. The boolean expression is called a guard. It
specifies that we only accept bindings for which the boolean expression evaluates to
true. As an example, we could add a guard n ≤ 100 to transition Send Packet. This
would prevent the sending of messages that have more than one hundred packets.

Above, we have seen that several binding elements may be enabled in a marking.
As an example, we saw that the marking in Fig. 4 has two enabled binding elements
(one involving transition Send Packet and the other involving transition Receive
Packet). Actually, these two binding elements are concurrently enabled, which
means that they may occur concurrently . The rule for concurrency is very sim-
ple. A set of binding elements are concurrently enabled, if there are so many tokens
that each binding element can get those tokens that it needs (i.e., those specified by
the input arc expressions) – without sharing the tokens with other binding elements.
In general, it is possible for a transition to be concurrently enabled with itself
(using two different bindings or using the same binding twice). Hence, a step, from
one marking to the next, may involve a multi-set of binding elements. The multi-set
is demanded to be finite and non-empty. In the protocol example, each transition
has at least one input place with only one token. Two binding elements involving the
same transition will both need this single token. Hence the binding elements will be
in conflict with each other, and no transition can occur concurrently with itself.

An execution of a CP-net is described by means of an occurrence sequence. It
lists the markings that are reached and the steps that occur. Above, we have consid-
ered an occurrence sequence with five steps. We started in the initial marking and
ended in a marking where the value of Next Send and Next Rec had been increased
to 2. To reach this marking we used five steps, which each contained a single bind-
ing element. First we used a binding for Send Packet, then a binding for Transmit
Packet, a binding for Receive Packet, a binding for Transmit Acknowledgement, and
finally a binding for Receive Acknowledgement.

12

There are many other occurrence sequences. When a marking has several en-
abled binding elements, any non-empty and non-conflicting subset of these may be
chosen for the next step. This means that the CP-net has a non-deterministic behav-
iour. As an example, the CP-net for the protocol specifies that retransmissions may
take place, but without providing details about when and how often this happens.
Transition Send Packet is enabled in all reachable markings (except those where the
value at Next Send has passed the number of the last packet). This means that re-
transmissions may take place at any time, and with any frequency. Hence, we have
occurrence sequences with no retransmissions (as the one we considered above) and
we also have occurrence sequences with a lot of retransmissions.

At first glance, it may seem strange that we do not specify the conditions under
which retransmissions occur. However, for a lot of purposes this is not necessary.
Most CP-nets are used to investigate the logical and functional correctness of a sys-
tem design. For this purpose it is often sufficient to describe that retransmissions
may appear, e.g., because the network is slow. However it is not necessary, or even
beneficial, to consider how often this happens – the protocol must be able to cope
with all kinds of networks, both those which work so well that there are no re-
transmissions and those in which retransmissions are frequent. Later on we will see
that CP-nets can be extended with a time concept that allows us to describe the du-
ration of the individual actions and states. This will allow us to investigate the per-
formance of the modelled system, i.e., how fast and effectively it operates. Then we
will give a much more precise description of retransmissions (e.g., that they occur
when no acknowledgement has been received inside two hundred microseconds).

It can be shown that each CP-net can be translated into a behavioural equivalent
Place/Transition Net (PT-net) and vice versa. Since the expressive power of the two
formalisms are the same, there is no theoretical gain by using CP-nets. However, in
practice, CP-nets constitute a more compact, and much more convenient, modelling
language than PT-nets – in a similar way as high-level programming languages are
much more adequate for practical programming than assembly code and Turing
machines.

Attaching a data value to each CP-net token allows us to use much fewer places
than needed in a PT-net. In a CP-net we can attach data values to the individual to-
kens. In a PT-net the only way we can distinguish between tokens is by positioning
them at different places. When a CP-net uses complex types (such as integers, reals,
products, records, and lists), the equivalent PT-net often has an infinite or astro-
nomical number of places.

The use of variables in arc expressions means that each CP-net transition can oc-
cur with different bindings, i.e., in many slightly different ways – in a similar way
as a procedure can be executed with different parameters. Hence, we can use a sin-
gle transition to describe a class of related activities, while in a PT-net we need a
transition for each instance of such an activity. As an example, our CPN model of
the protocol only has one Send Packet transition. This transition is able to handle all
packets, even though they have different packet numbers and different data con-
tents. Analogously, there are only one Receive Packet transition. This transition
handles all packets, both those where the packet number matches and those where it
does not.

13

The above informal explanation of the enabling and occurrence rules tells us
how to understand the behaviour of a CP-net, and it explains the intuition on which
CP-nets build. However, it is very difficult (probably impossible) to make an in-
formal explanation which is totally complete and unambiguous. Thus it is extremely
important for the soundness of the CPN language and the CPN tools that the intui-
tion is complemented by a more formal definition, which can be found in [1], [2],
and [4]. However, it is not necessary for the users to know the formal definition.
The correct use of the syntax is enforced by the syntax checker in the CPN editor,
while the correct use of the semantics is enforced by CPN simulator and the CPN
tool for state space analysis. This is analogous to programming languages, which
often are very successfully applied by users who are not familiar with the formal,
mathematical definitions of the languages.

In this paper we only consider different versions of the protocol system, and
they are all quite simple. However, it is possible to use much more complex types,
arc expressions and guards. The CPN tools described in [5] provide computer sup-
port for modelling and analysis by means of CP-nets. The CPN tools use the func-
tional language Standard ML [7], [8], and [9] to specify types and net inscriptions.
For the protocol example the declarations look as follows (which should be rather
self-explanatory):

color INT = int;
color DATA = string;
color INTxDATA = product INT * DATA;
var n, k: INT;
var p, str: DATA;
val stop = "###";

color Ten0 = int with 0. .10;
color Ten1 = int with 1. .10;
var s: Ten0; var r: Ten1;
fun Ok(s:Ten0, r:Ten1) = (r<=s);

Examples of much more complex CPN models can be found in Vol. 3 of [4]. There
we give a quite detailed description of nineteen projects in which CP-nets and
Design/CPN have been used. Most of the projects have been carried out in an in-
dustrial setting, and they have been performed by many different user groups.

Please notice that it is only the CPN tools in [5] that rely on Standard ML. The
general definition of CP-nets is independent of a concrete syntax and semantics for
net inscriptions, and there exists a number of other tools that rely on other lan-
guages. Information about these tools can be found on the Petri Net WWW pages,
[10]. Here you can also find a lot of other information about high-level Petri nets
and other kinds of Petri nets.

14

2 Simulation of CP-nets

As the individual parts of a CP-net are constructed they are investigated and de-
bugged by means of the CPN simulator – in a similar way as a programmer tests
and debugs new parts of his program. As indicated by the examples in Sect. 1, the
modeller is able to inspect all details of the reached markings. He can see the set of
enabled transitions and he can choose the binding elements that he wants to occur.
This is the most manual and interactive simulation mode. It is by nature very slow
– no human being can investigate more than a few markings per minute. This work
mode is similar to single step debugging in an ordinary programming language, and
it is often used for the first investigation of a new CPN model (or new parts of a
large model). The purpose is to see whether the individual net components work as
expected.

Later on it is typical to use other kinds of simulations. Some of the graphical
feedback may be turned off and it may be left to the CPN simulator to choose be-
tween the enabled binding elements (by means of a random number generator). In
this way it is possible to obtain much faster simulations. A totally automatic simu-
lation is executed with a speed of several thousand steps per second (depending on
the nature of the CPN model and the power of the computer on which the CPN
simulator runs). It is obvious that no human being is able to observe the details of

1 A SendPack@(1:Top#1)
{ n = 1, p = "Modellin"}

2 A SendPack@(1:Top#1)
{ n = 1, p = "Modellin"}

3 A TranPack@(1:Top#1)
{ n = 1, p = "Modellin", r = 2, s = 8}

4 A TranPack@(1:Top#1)
{ n = 1, p = "Modellin", r = 6, s = 8}

5 A RecPack@(1:Top#1)
{ k = 1, n = 1, p = "Modellin", str = ""}

6 A SendPack@(1:Top#1)
{ n = 1, p = "Modellin"}

7 A TranPack@(1:Top#1)
{ n = 1, p = "Modellin", r = 5, s = 8}

8 A RecPack@(1:Top#1)
{ k = 2, n = 1, p = "Modellin", str = "Modellin"}

9 A SendPack@(1:Top#1)
{ n = 1, p = "Modellin"}

10 A TranAck@(1:Top#1)
{ n = 2, r = 3, s = 8}

11 A TranAck@(1:Top#1)
{ n = 2, r = 4, s = 8}

12 A RecAck@(1:Top#1)
{ k = 1, n = 2}

13 A TranPack@(1:Top#1)
{ n = 1, p = "Modellin", r = 3, s = 8}

14 A RecPack@(1:Top#1)
{ k = 2, n = 1, p = "Modellin", str = "Modellin"}

15 A SendPack@(1:Top#1)
{ n = 2, p = "g and An"}

Fig. 8. Simulation report

15

such a simulation by watching the CP-net and its marking. Hence, the simulation re-
sults must be shown in some other way. A straightforward possibility is to use the
simulation report . It is a text file containing detailed information about all the
occurred binding elements. For the protocol model a report of the first 15 steps
may look as shown in Fig. 8. The “A” following the step number indicates that the
binding element was executed in automatic mode. The information after the @-sign
specifies the page, i.e., the part of the CP-net to which the occurring transition be-
longs. For the protocol model this is not very interesting, since the model is so
small that it only has one page. However, for a large complex model this informa-
tion becomes very useful.

Another way to record the results of a simulation is to add a number of report
places to the CPN model. Such places gather historical information about the
simulation runs, without influencing the simulation.

In Fig. 9, we have added three places to the Sender part. The place Sent Pack
tells us how many times the individual packets have been sent. In our example,
packet number one has been sent four times, packet number two six times and
packet number three twice. The place Rec Ack tells us which acknowledgements the
Sender has received. Each acknowledgement is recorded as a pair, where the first
element is a sequence number while the second is the contents of the acknowledge-

Send
Packet

Receive
Acknow.

Send

INTxDATA
8 1`(1,"Modellin")

+ 1`(2,"g and An")
+ 1`(3,"alysis b")
+ 1`(4,"y Means ")
+ 1`(5,"of Colou")
+ 1`(6,"red Petr")
+ 1`(7,"i Nets")
+ 1`(8,"###")

NextSend
INT

1

1 1`3

D
INT

A

INTxDATA

RecAck
INTxINT

7 1`(1,2)+
1`(2,2)+
1`(3,2)+
1`(4,2)+
1`(5,3)+
1`(6,3)+
1`(7,3)

Count
INT

1
1 1`8

SentPack
INT

12 4`1+ 6`2+ 2`3

(n,p)

(n,p)

n

k n

n

(i,n)

i

i+1

n

Fig. 9. Report places for Sender

16

ment. The sequence number is obtained from the place Count. In our example, we
have first received four acknowledgements with value 2 and then three acknow-
ledgements with value 3.

In Fig. 10, we have added two places to the Network part. The place Lost Pack
tells us about the lost packets. In our example, we have only lost one copy of packet
number two. The place Lost Ack tells us how many acknowledgements we have
transmitted/lost. In our example, we have lost one acknowledgement and success-
fully transmitted eight.

In Fig. 11, we have added the place Rec Pack. It records the successfully re-
ceived packets. The type PackSeq contains all lists of INTxDATA values. The
^^ operator at the arc from Receive Packet to Rec Pack concatenates two lists. In
our example, we have received three packets. First we received (1,"Modellin"),
then (2,"g and An"), and finally (3,"alysis b").

A third way to record the results of a simulation is to use a message sequence
chart (also called an event trace). It provides a graphical overview of the activities
in the CP-net and may look as shown in Fig. 12. An occurrence of the Send Packet
transition is shown by a horizontal arrow between the first and second vertical
lines. The arrow is labelled with the packet being transferred to the Network.
Analogously, a successful occurrence of Transmit Packet is indicated by a horizontal
arrow between the second and third vertical lines. However, if the packet is lost, we

Transmit
Packet

Transmit
Acknow.D

INT

A

INTxDATA

B

INTxDATA

C
INT

SP
8

Ten0 1 1`8

SA
1 1`8

Ten0

8

LostPack
INT

1 1`2

LostAck
BOOL

9 1`false+ 8`true

(n,p)

if Ok(s,r)
then 1`(n,p)
else empty

nif Ok(s,r)
then 1`n
else empty

s

s

if Ok(s,r)
then empty
else 1`n

if Ok(s,r)
then true
else false

Fig. 10. Report places for Network

17

only get a small square at the second line. An occurrence of Receive Packet is indi-
cated by two arcs (one for the packet received and one for the acknowledgement
being sent). If the packet is the correct one, we also get a small square between the
two arcs. Occurrences of Transmit Acknowledgement are indicated in a similar way
as occurrences of Transmit Packet (but the arrows are now drawn from right to left
while the square dots are positioned at the third vertical line). Occurrences of
Receive Acknowledgement are indicated as occurrences of Send Packet (with arrows
from right to left).

In Fig. 12 we have an arc (or a square) for each step. This means that the mes-
sage sequence chart contains all the information in the simulation report. However,
it is much more common only to record a few key activities, e.g., the transmission
of packets and acknowledgements. In this way we can obtain a condensed overview
of a lengthy simulation. By extracting the key activities and representing them in a
graphical way, it becomes fast to interpret the simulation results. We can see
whether the CPN model behaves as expected. If this is not the case, we can see
where discrepancies appear. Then we can use interactive simulations or the simula-
tion report to make a closer investigation of these situations.

The message sequence charts are created by means of a standard library pro-
vided together with the CPN tools. The calls to the library functions are positioned
in code segments, which are pieces of sequential Standard ML code attached to the
individual transitions. When a transition occurs, the corresponding code segment is
executed. It may, e.g., read and write text files, update graphics or even calculate
values to be bound to some of the variables of the transition. In this way the code
segments provide a very convenient interface between the CPN model and its envi-
ronment, e.g., the file system.

Receive
Packet

Received
DATA

1 1`Modelling and
Analysis b""

""

NextRec
INT

1

1 1`4

B

INTxDATA

C
INT

RecPack

PackSeq

[]

1 1`[(1,"Modellin"),
(2,"g and An"),
(3,"alysis b")]

(n,p)

if n=k
andalso
p<>stop
then str^p
else str

if n=k
then k+1
else k

k

if n=k
then k+1
else k

str

plist^^(if n=k
 then [(n,p)]
 else [])

plist

Fig. 11. Report place for Receiver

18

To update the message chart in Fig. 12, we give Send Packet and Transmit Packet
the code segments shown in Fig. 13. MSCdiagram is a pointer to the message se-
quence chart, while mkst_col'INTxDATA is a predeclared function providing a
string representation of the ML value (n,p). The code segments of the remaining
three transitions are similar.

Code segments can also be used to update different kinds of business charts.
For the simple protocol we may use the three charts shown in Fig. 14.

The first chart is a line chart showing how fast the individual packets are suc-
cessfully received (as a function of the step number). From the line chart, we can
see that packet number one was received after less than ten steps, packet number
two after approximately twenty-five steps, packet number three after approximately

Sender
Sender Side
of Network

Packet Lost:
(1,"Modellin")

Receiver Side
of Network Receiver

RecSucc:
"Modellin"

SendPack:
(1,"Modellin")

SendPack:
(1,"Modellin")

SendPack:
(1,"Modellin")

TranPack:
(1,"Modellin")

RecPack:
(1,"Modellin")

SendAck:
2

TranPack:
(1,"Modellin")

TranAck:
2

RecPack:
(1,"Modellin")

SendAck:
2

SendPack:
(1,"Modellin")

SendPack:
(2,"g and An")

TranAck:
2

Rec Ack:
2

TranPack:
(1,"Modellin")

Fig. 12. Message sequence chart

19

forty-five steps, and so on. The line chart is updated each time a new packet is suc-
cessfully received. This is done by a few lines in the code segment of Receive
Packet.

The second chart is a bar chart . It tells us how many times each of the packets
has been sent and with which result. From the bar chart we see that packet number
one has been sent six times. One of these was lost, four were received as failures
(i.e., out of order) and the last was successfully received. Analogously, we can see
that packet number two has been sent six times, while packets number three and
four have been sent five times each. Finally, we see that packet number five has
been sent twice, and that both of these are en route (i.e., on one of the Network
places A and B). The third chart is similar to the second, but shows the progress of
acknowledgements. The two bar charts are updated periodically, with intervals
specified by the modeller, e.g., for each fifty steps.

The three charts in Fig. 14 give us a lot of valuable information about the be-
haviour of the protocol. As an example, it is straightforward to see that failures
(i.e., overtaking) often cause more retransmissions than lost packets. It is also easy
to see that we need more than ninety steps to successfully transmit the first five
packets, while it with a perfect network (and no overtaking) should be possible to
do this in twenty-five steps.

input (n,p);
action

MSC.Message (!MSCdiagram)
{sender = "sender",
 receiver = "sendernet",
 label = "SendPack:"^NEWLINE^

(mkst_col'INTxDATA(n,p))};

input (n,p,s,r);
action

if Ok(s,r) then
MSC.Message (!MSCdiagram)

{sender = "sendernet",
 receiver = "receivernet",
 label = "TranPack:"^NEWLINE^

(mkst_col'INTxDATA(n,p))}
else

MSC.Processmark (!MSCdiagram)
{process = "sendernet",
 label = "Packet Lost:"^NEWLINE^

(mkst_col'INTxDATA(n,p))};

Fig. 13. Code segments to produce the message sequence chart in Fig. 12

20

Packets Received

Step No.
0 20 40 60 80 100 120 140 160 180 200

Packet No

0

1
2
3
4
5
6
7
8
9
10

 Packetspack1

pack2

pack3

pack4

pack5

pack6

pack7

pack8

6

6

5

5

2

0 1 2 3 4 5 6 7 8 9 10

0 1 2 3 4 5 6 7 8 9 10

 Successes

 Failures

 Lost

 Enroute

Acknow.

 Received

 Lost

Enroute

ack1 (n=2)

ack2 (n=3)

ack3 (n=4)

ack4 (n=5)

ack5 (n=6)

ack6 (n=7)

ack7 (n=8)

ack8 (n=9)

5

6

5

4

0

0

0

0

0 1 2 3 4 5 6 7 8 9 10

0 1 2 3 4 5 6 7 8 9 10

Fig. 14. A line chart and two bar charts

21

Code segments can also be used to create and update more model specific repre-
sentations of the marking (i.e., the state of the modelled system). As an example,
Fig. 15 represents the state of a simple telephone protocol. It contains ten different
phones. For each phone, we see the state, e.g., Inactive for u(9), Ringing for u(6)
and Connected for u(7) and u(8). Moreover, we see the relationships between the
phones. A thin dashed arrow indicates that a connection has been requested, i.e.,
that a number has been dialled. The calling phone u(10) has No Tone, while the
called phone u(2) may be in any state. A thicker non-dashed arrow indicates that the
request has been accepted and that the connection is being attempted. The calling
phone u(2) has a tone with Long intervals between beeps, while the called phone
u(6) is Ringing. Finally, connections can be established, as indicated by the very
thick arrow from u(8) to u(7). Both phones are Connected.

As mentioned above, code segments can be used to write text files. In this way
selected results can be recorded, e.g., on a form which can be directly used as input
to a standard spreadsheet/charting program. This is a very efficient way of obtain-
ing customised high-quality representations of complex simulation results.

Code segments can also be used to read text files. This is, e.g., used to initialise a
model. In this way it becomes possible to change the initial marking without modi-
fying the CPN model itself.

u(1)

Short

u(3)

Short

u(4)

Inac

u(6)

Ring

u(10)

NoTo

u(9)

Inac

u(8)

Conn

u(7)

Conn

u(5)

Short

u(2)

Long

Fig. 15. A more system specific representation of the system state

22

3 State Space Analysis of CP-nets

As explained in Sect. 2 it is customary to debug and investigate a CPN model by
means of simulation. This works in a similar way as program testing and hence it
can never prove the correctness of a model (unless it is trivial). Hence, we often
complement simulation with the construction of one or more state spaces.

The basic idea behind a state space is to construct a graph which has a node for
each reachable marking and an arc for each occurring binding element. State spaces
are also called occurrence graphs or reachability graphs/trees. The first of
these names reflects the fact that a state space contains all the possible occurrence
sequences, while the two latter names reflect that the state space contains all reach-
able markings.

To be able to construct a state space of reasonable size, we often have to modify
the CP-net. For our protocol system, we make three modifications. Firstly, we re-

color INT = int;
color DATA = string;
color INTxDATA = product INT * DATA;
var n, k : INT;
var p,str : DATA;
val stop = "###";

color E = with e;
color BOOL = bool;
var Ok : BOOL;

Send
Packet

Transmit
Packet

Receive
Packet

Receive
Acknow.

Transmit
Acknow.

Send

INTxDATA

1`(1,"Modellin")+
1`(2,"g and An")+
1`(3,"alysis")+
1`(4,"###")

NextSend
INT

1

D
INT

A

INTxDATA

Received
DATA

""

NextRec
INT

1

B

INTxDATA

C
INT

Sender Network Receiver

Limit
E

2`e

(n,p) (n,p)

if Ok
then 1`(n,p)
else empty

(n,p)

(n,p)

if n=k
andalso
p<>stop
then str^p
else str

if n=k
then k+1
else k

n

k

if n=k
then k+1
else k

if Ok
then 1`n
else empty

n

k n

n

str

e
if Ok
then empty
else 1`e

e
if Ok
then empty
else 1`e

 Fig. 16. Modified CP-net suitable for state space analysis

23

duce the number of packets from eight to four. Secondly, we introduce a new place
to Limit the number of packets/acknowledgements which can be present simultane-
ously at the Network, i.e., at one of the places A, B, C, and D. The new place has a
type E with only one possible value e. Intuitively, this means that tokens of this type
carry no data. Finally, we simplify the decision mechanism for transmitting/losing
packets and acknowledgements. For state spaces it does not make sense that packets
are transmitted/lost with a certain probability. Hence, we replace the Ok function
with a boolean variable Ok. The modified CPN model for the protocol can be seen
in Fig. 16.

Having made the modifications described above, we are ready to construct state
spaces. Let us start with the situation where the initial marking of place Limit is 1`e.
This means that the Network (i.e., the places A, B, C, and D) contains at most one
packet/acknowledgement at a time. Hence overtaking is impossible. The state space
is small. It has 33 nodes and 44 arcs. The initial and final parts of it are shown in
Figs. 17 and 18.

The rounded boxes are the nodes of the state space. Each of them represents a
reachable marking, and the content of this marking is described in the dashed box
next to the node – places with an empty marking are omitted and we also omit the
markings of Send and Limit (the first one never changes, the second is only added
to limit the size of the state space). At the top of Fig. 17, we have a node with a
thicker borderline. This node represents the initial marking. The text inside the
node tells us that this is node number one and that it has one predecessor and one
successor (the latter information may be useful when we have drawn only a part of
a state space). Analogously, we see that node number two has one predecessor and
two successors. By convention we use Mn to denote the marking of node number n.

Each arc represents the occurrence of the binding element listed in the dashed
box on top of the arc. In M1 the only enabled binding element is transition
Send Packet with binding < n = 1, p = "Modellin">. When this binding element
occurs, we reach marking M2, in which there are two enabled binding elements. An
occurrence of Transmit Packet with the variable Ok bound to true will lead to
marking M3, while an occurrence of Transmit Packet with Ok bound to false will
lead back to the initial marking M1. By convention we do not include arcs that cor-
respond to steps with more than one binding element. Such arcs would give us in-
formation about the concurrency between binding elements, but they are not neces-
sary for the verification of standard behavioural properties.

From Figs. 17 and 18, we can see that the state space has a regular structure, in
the sense that some patterns are repeated. The subgraph of nodes
{4, 5, 7, 9} has the same form as the subgraph of nodes {28, 29, 31, 33}. The only
difference is that the latter is “three packets ahead” of the former. If we draw the
middle part of the state space, we will find two additional copies of the pattern.

Now let us investigate the more complex situation in which overtaking is possi-
ble. To do this, we construct a state space for the situation where the initial marking
of place Limit is 2`e. The new state space is considerably larger than the first one,
and hence we do not make any attempt to draw it. Instead we ask the state space tool
to make a state space report providing some key information about the behaviour
of the CP-net. The state space report has four parts.

24

1
1:1

NextSend: 1`1
NextRec: 1`1
Received: 1`""

2
1:2

NextSend: 1`1
NextRec: 1`1
A: 1`(1,"Modellin")
Received: 1`""

3
1:1

NextSend: 1`1
NextRec: 1`1
B: 1`(1,"Modellin")
Received: 1`""

4
2:2

NextSend: 1`1
NextRec: 1`2
C: 1`2
Received: 1`"Modellin"

5
2:1

NextSend: 1`1
NextRec: 1`2
Received: 1`"Modellin"

6
1:1

NextSend: 1`1
NextRec: 1`2
D: 1`2
Received: 1`"Modellin"

8
2:1

NextSend: 1`2
NextRec: 1`2
Received: 1`"Modellin"

7
1:2

NextSend: 1`1
NextRec: 1`2
A: 1`(1,"Modellin")
Received: 1`"Modellin"

10
1:2

NextSend: 1`2
NextRec: 1`2
A: 1`(2,"g and An")
Received: 1`"Modellin"

9
1:1

NextSend: 1`1
NextRec: 1`2
B: 1`(1,"Modellin")
Received: 1`"Modellin"

SendPack:
{p="Modellin",n=1}

TranPack:
{p="Modellin",n=1,Ok=false}

TranPack:
{p="Modellin",n=1,Ok=true}

RecPack:
{str="",p="Modellin",
n=1,k=1}

TranAck:
{n=2,Ok=false}

TranAck:
{n=2,Ok=true}

RecAck:
{n=2,k=1}

SendPack:
{p="Modellin",n=1}

SendPack:
{p="g and An",n=2}

TranPack:
{p="Modellin",n=1,Ok=true}

RecPack:
{str="Modellin",
p="Modellin",n=1,k=2}

Fig. 17. Initial part of state space

25

32
1:0

NextSend: 1`5
NextRec: 1`5
Received: 1`"Modelling
and Analysis"

30
1:1

NextSend: 1`4
NextRec: 1`5
D: 1`5
Received: 1`"Modelling
and Analysis"

28
2:2

NextSend: 1`4
NextRec: 1`5
C: 1`5
Received: 1`"Modelling
and Analysis"

27
1:1

NextSend: 1`4
NextRec: 1`4
B: 1`(4,"###")
Received: 1`"Modelling
and Analysis"

33
1:1

NextSend: 1`4
NextRec: 1`5
B: 1`(4,"###")
Received: 1`"Modelling
and Analysis"

26
1:2

NextSend: 1`4
NextRec: 1`4
A: 1`(4,"###")
Received: 1`"Modelling
and Analysis"

31
1:2

NextSend: 1`4
NextRec: 1`5
A: 1`(4,"###")
Received: 1`"Modelling
and Analysis"

29
2:1

NextSend: 1`4
NextRec: 1`5
Received: 1`"Modelling
and Analysis"

RecAck:
{n=5,k=4}

TranAck:
{n=5,Ok=true}

RecPack:
{str="Modelling
and Analysis",
p="###",n=4,k=4} RecPack:

{str="Modelling
and Analysis",
p="###",n=4,k=5}

TranPack:
{p="###",
n=4,Ok=true}

TranPack:
{p="###",n=4,Ok=true
}

SendPack:
{p="###",n=4}

TranAck:
{n=5,Ok=false}

Fig. 18. Final part of state space

26

The first part looks as shown in Fig. 19. It contains statistical information
about the size of the state space. We see that the state space has 428 nodes and 1130
arcs. We have calculated the full state space, and this took only 1 second. The statis-
tical part also contains information about the SCC-graph of the state space, i.e., the
number of strongly connected components and the number of arcs that start in
one component and end in another. A strongly connected component is a maximal
subgraph in which it is possible to find a path from any node to any other node.
Strongly connected components are very useful to determine certain kinds of be-
havioural properties, and they can be calculated by standard algorithms (which are
linear in time and space). From Fig. 19 we see that there are 182 strongly con-
nected components and 673 arcs that start in one component and end in another.
Hence there are less strongly connected components than state space nodes. This im-
plies that the system has at least one strongly connected component with more than
one node, and hence infinite occurrence sequences exist. In other words, we cannot
be sure that the protocol terminates – to achieve termination one usually limits the
number of retransmissions.

The second part of the state space report contains information about the integer
and multi-set bounds. The upper part of Fig. 20 shows the upper and lower integer
bounds, i.e., the maximal and minimal number of tokens which the individual
places may have. We see that each of the places A, B, C, D, and Limit always has
between zero and two tokens. We also see that Next Rec, Next Send, and Received
always have exactly one token each. Finally, we see that Send always has exactly
four tokens. None of this is surprising, but it is reassuring, because it indicates that
the system is working as expected.

The lower parts of Fig. 20 show the multi-set bounds. By definition, the up-
per multi-set bound of a place is the smallest multi-set which is larger than all
reachable markings of the place. Analogously, the lower multi-set bound is the
largest multi-set which is smaller than all reachable markings of the place. The in-
teger bounds give us information about the number of tokens, while the multi-set
bounds give us information about the values which the tokens may carry. From the
multi-set bounds we see that places A and B may contain all four different packets,

 Statistics

 State Space

 Nodes: 428

 Arcs: 1130

 Secs: 1

 Status: Full

 Scc Graph

 Nodes: 182

 Arcs: 673

 Secs: 1

Fig. 19. Size of state space and the SCC-graph

27

 Integer Bounds

 Upper Lower

 A 2 0

 B 2 0

 C 2 0

 D 2 0

 Limit 2 0

 NextRec 1 1

 NextSend 1 1

 Received 1 1

 Send 4 4

 Upper Multi-set Bounds

 A 2`(1,"Modellin")+ 2`(2,"g and An")+

 2`(3,"alysis")+ 2`(4,"###")

 B 2`(1,"Modellin")+ 2`(2,"g and An")+

 2`(3,"alysis")+ 2`(4,"###")

 C 2`2+ 2`3+ 2`4+ 2`5

 D 2`2+ 2`3+ 2`4+ 2`5

 Limit 2`e

 NextRec 1`1+ 1`2+ 1`3+ 1`4+ 1`5

 NextSend 1`1+ 1`2+ 1`3+ 1`4+ 1`5

 Received 1`""+ 1`"Modellin"+ 1`"Modelling and An"+

 1`"Modelling and Analysis"

 Send 1`(1,"Modellin")+ 1`(2,"g and An")+

 1`(3,"alysis")+ 1`(4,"###")

 Lower Multi-set Bounds

 A empty

 B empty

 C empty

 D empty

 Limit empty

 NextRec empty

 NextSend empty

 Received empty

 Send 1`(1,"Modellin")+ 1`(2,"g and An")+

 1`(3,"alysis")+ 1`(4,"###")

Fig. 20. Integer and multi-set bounds

28

while places C and D may contain all four possible acknowledgements. Remember
that an acknowledgement always specifies the number of the next packet to be sent
(hence we never have an acknowledgement with value 1). We also see that no other
token values are possible at these four places.

Notice that the upper multi-set bound of A is a multi-set with eight elements, al-
though the upper integer bound tells us that there never can be more than two to-
kens on A at a time. The two tokens can take the following four token values:
(1,"Modellin"), (2,"g and An"), (3,"alysis"), and (4,"###"). Hence, we can, e.g.,
have the markings:

1`(1,"Modellin")
1`(1,"Modellin") + 1`(3,"alysis")
2`(3,"alysis").

By this kind of argument, it is easy to see that the smallest multi-set which is larger
than all possible markings of A is the multi-set:

2`(1,"Modellin") + 2`(2,"g and An") + 2`(3,"alysis") + 2`(4,"###").

A similar remark applies to the multi-set bounds of B, C, D, Next Rec, Next Send,
and Received.

The two counter places Next Send and Next Rec can take all values between 1 and
5. Place Received may contain four different values – corresponding to the situa-
tions where we have received data from zero, one, two or three packets (packet
number four contains "###" which we never copy to Received). Finally, place Send
has identical upper and lower multi-set bounds. This means that the marking of this
place never changes. Also the multi-set bounds are as expected, and this indicates
that the protocol works as intended. However, the multi-set bounds also give us
some new knowledge. As an example, there are probably many readers who did not
notice, until now, that acknowledgements never carry the value 1.

The third part of the state space report is shown in Fig. 21. It provides informa-
tion about home and liveness properties. A home marking is a marking which is
reachable from all reachable markings, i.e., a marking which always can be reached
– independently of what has happened up to now. We see that the protocol has a
single home marking, M235. A dead marking is a marking with no enabled transi-
tions. We see that the protocol has a single dead marking, and that the dead marking

 Home Properties

 Home Markings: [235]

 Liveness Properties

 Dead Markings: [235]

 Dead Transitions Instances: None

 Live Transitions Instances: None

Fig. 21. Home and liveness properties

29

is identical to the home marking. Hence, let us take a closer look at this marking.
To do this we ask the state space tool to draw the node 235. It looks as follows:

235
12:0

NextSend: 1`5
NextRec: 1`5
Received: 1`"Modelling and Analysis"

Dead Marking / Home Marking

From this we see that the marking M235 corresponds to the state where all four
packets have been successfully received (and no tokens are left at places A, B, C,
and D). The fact that M235 is dead tells us that the protocol is partial correct, i.e.,
if it terminates, we have the correct result. The fact that M235 is a home marking
tells us that the protocol has the nice property that it never can reach a state from
which it is impossible to terminate with the correct result.

From the liveness properties we also see that there are no dead transitions.
This means that each transition is enabled in at least one reachable marking (which
is a rather weak property). We also see that there are no l ive transitions. A live
transition is a transition that always, no matter what happens, can become enabled
once more. When there are dead markings (as in our protocol), there cannot be any
live transitions. At first glance, one might think that the existence of dead markings
would prevent the existence of home markings. However, by definition, a marking
is always reachable from itself, and hence a dead marking may be a home marking
(provided that it is the only dead marking). This is the case for the protocol system.

The fourth and final part of the state space report is shown in Fig. 22. It pro-
vides information about the fairness properties, i.e., how often the individual tran-
sitions occur. We see that Send Packet and Transmit Packet are impartial . This
means that each of them occurs infinitely often in any infinite occurrence sequence.
In other words, if one of these transitions ceases to occur, then the protocol must
terminate (after some final number of additional steps). There are two other kinds
of fairness properties, called fair and just . They are weaker properties than im-
partiality, and hence they are automatically fulfilled by Send Packet and Transmit
Packet. From Fig. 22 we see that none of the remaining three transitions are im-
partial, fair or just.

 Fairness Properties

 SendPack Impartial

 TranPack Impartial

 RecPack No Fairness

 TranAck No Fairness

 RecAck No Fairness

Fig. 22. Fairness properties

30

The state space report is produced in a few seconds – totally automatic. It con-
tains a lot of highly useful information about the behaviour of the CPN model.
Hence it is usually the first thing that the modeller asks for, when he has constructed
a state space. By studying the state space report the modeller gets a first rough idea,
whether his model works as expected. If the system contains errors they are often
reflected in the state space report. As an example, one may be designing a system in
which the initial marking is expected to be a home marking. However, one may
forget to return a resource after its use. Then it is no longer possible to return to
the initial marking, and this will be evident from the state space report. To make a
closer investigation of the problem, the user can ask the state space tool to find one
of those markings from which it is impossible to return to the initial marking. The
modeller can also ask the system to find a path from the initial marking to the
marking which has the problem. In this way a counter example has been provided.
Then it is, usually, easy to spot and correct the error.

Above, we have seen that M235 is the desired final marking, and we have also
seen that it can be reached from any reachable system state. Now let us investigate
how fast it can be reached from the initial marking. To do this we ask the system to
construct a path from the initial marking M1 to M235. This is done by means of the
following query – the question is in the rectangular box, while the result is in the
rounded box.

length(ArcsInPath(1,235)); > 20 : int

Length of Shortest Path

Arcs In Path is a predeclared Standard ML function provided by the state space tool.
It returns a list of arcs constituting a shortest path between the two nodes specified
as arguments to the function. From the result, we see that at least twenty transitions
must occur, in order to reach M235 from M1. This is not surprising. The shortest
path must be one in which we have no retransmissions and no overtaking. We have
four packets and to process a packet (plus the corresponding acknowledgement) we
need one occurrence of each of the five transitions.

Next let us investigate the way in which we update the Next Send counter. One
might expect that this counter is always increased (or left unchanged). However, the
following query tells us that there are a number of transition occurrences that actu-
ally decrease the value of Next Send.

let
 fun Value_NextSend(n) =
 ms_to_col(Mark.Top'NextSend 1 n)
in
 PredAllArcs(fn a =>
 Value_NextSend(DestNode(a)) <
 Value_NextSend(SourceNode(a)))
end;

>
[973,951,934,921,920,895
,894,845,844,818,817,753
,729,663,648,587,573,567
,517,499,497,429,428,360
,310,271,233] : Arc list

Is NextSend Ever Decreased?

31

The result of the query is a list containing all those arcs that fulfil the predicate
specified as the argument to the function Pred All Arcs. For an arc a, the predicate
evaluates to true, if and only if the token value at Next Send in the destination node
of a is strictly less than the token value in the source node of a. The token value is
found by means of the local function Value_ NextSend. It uses the predeclared ML
function Mark.Top’NextSend to find the marking of Next Send (in the specified
node n). The marking is a multi-set. It is converted into an integer by means of the
function ms_to_col (which converts a multi-set with one element into that element,
e.g., 1`3 into 3).

368
2:2

NextSend: 1`4
NextRec: 1`5
B: 1`(4,"###")
D: 1`3
Received: 1`"Modelling
and Analysis"

385
4:2

NextSend: 1`3
NextRec: 1`5
B: 1`(4,"###")
Received: 1`"Modelling
and Analysis"

347
2:3

351
1:3

320
1:4

316
3:2

281
3:3

284
2:3

249
2:4

NextSend: 1`4
NextRec: 1`5
C: 1`3+ 1`5
Received: 1`"Modelling
and Analysis"

RecAck:
{n=3,k=4}

TranPack:
{p="###",n=4,Ok=true}

TranAck:
{n=3,Ok=true}

TranPack:
{p="###",n=4,Ok=true}

SendPack:
{p="###",n=4}

TranAck:
{n=3,Ok=true}

TranAck:
{n=5,Ok=false}

TranAck:
{n=3,Ok=true}

SendPack:
{p="###",n=4}

TranAck:
{n=3,Ok=true}

TranAck:
{n=5,Ok=false}

Fig. 23. A small interesting part of the state space

32

To investigate why Next Send is decreased, we make the drawing in Fig. 23. We
ask the system to display the first arc in the result of the above query, i.e., arc
number 973 (from node 368 to node 385). Moreover, we use the Display Predeces-
sors command to draw some of the nearest predecessors of node 368. After a few
“backwards” steps we find marking M249, which is of interest. In this marking
Next Send has the value 4 while Next Rec has the value 5. There is an acknowledge-
ment with value 5 positioned at place C. However, C has also an “old” acknow-
ledgement with value 3. This acknowledgement has existed for quite a while. It was
created when packet number three was expected. The old acknowledgement has
been overtaken by several “younger” acknowledgements. However, it may still pro-
ceed and cause Next Send to be decreased to 3.

Another way to investigate the possible decrease of Next Send, is to ask how
much Next Send can differ from the Next Rec. This is done by means of the fol-
lowing query, which tells us that the difference can be 3, 2, 1, and 0. This result is
consistent with our analysis above. Next Rec can be at most five while Next Send is
at least one, but Next Send can never be reset to less than two – because we never
have acknowledgements with value 1.

Difference Between Counters

let
 fun Value_NextSend(n) =
 ms_to_col(Mark.Top'NextSend 1 n);
 fun Value_NextRec(n) =
 ms_to_col(Mark.Top'NextRec 1 n)
in
 remdupl(
 EvalAllNodes(fn n =>
 Value_NextRec(n) - Value_NextSend(n)))
end;

> [3,2,1,0] : INT list

From our analysis above, it is quite obvious that an easy way to improve our proto-
col is to avoid decreasing Next Send. This can be achieved by modifying the arc ex-
pression of the arc from Rec Acknowledgement to Next Send – so that it becomes
max(n,k) instead of n.

The algorithms used to generate the state space report and to answer the more
system dependent queries build upon a number of proof rules. Each proof rule
states a relationship between a behavioural property of a CP-net and a property of
its state space. As an example, it is straightforward to see that a marking is dead if
and only if the corresponding state space node has no outgoing arcs. As a more
complex example, it can be seen that a marking is a home marking if and only if the
strongly connected component to which it belongs is the only one with no outgoing
arcs. A detailed description of the proof rules and the mathematical proofs of them
can be found in Vol. 2 of [4].

In this section, we have demonstrated that state spaces is a very efficient way to
investigate the dynamic behaviour of a system. The construction and analysis of
state spaces are totally automatic. From the state space report the modeller gets a lot
of knowledge about the dynamic behaviour of the system. However, he can also
formulate his own queries. This can be done in two different ways. Either by using

33

a large number of predeclared query functions written in Standard ML (as those
used above) or by using a library that support queries in a CTL-like temporal logic.
The first approach is the easiest for most users, while the second is the most gen-
eral. For complex systems the state space may be quite large, and the construction
may take several hours. This is, however, not a big problem since it is totally auto-
matic and hence can be done overnight or in the lunch break. It is often faster to
make a state space analysis than it is to make a thorough investigation by means of
simulations.

One of the main drawbacks of the state space method is the so-called state explo-
sion problem. For many systems, the state space becomes so large that it cannot be
fully constructed. Our present state space tool supports state spaces with up to half a
million nodes and one million arcs (when the tool runs a machine with three hun-
dred Megabytes of memory). One of the ways to be able to handle larger state
spaces is a more condensed storage of the multi-sets encountered during the state
space construction. Our present representation is identical to the representation used
in the CPN simulator. This is far from being optimal, and we expect to be able to
improve it with as much as a factor one hundred.

A number of methods exist to alleviate the state explosion problem, i.e., to con-
struct smaller state spaces without losing too much analytic power. Some of these
methods take a modular approach, while other avoids construction of all the se-
quences in which concurrent binding elements can be interleaved. There are also
methods that exploit the inherent symmetries found in many systems. These meth-
ods are described in Sect. 6.

Another drawback of the state space method is the fact that a state space is al-
ways constructed for a particular initial marking, which often corresponds to only
one out of many different possible system configurations. Above, we have shown
that the protocol works when we have at most two simultaneous packets on the
Network. With the present capacity of the state space tool, we can perform a similar
analysis for state spaces with up to five simultaneous packets. These state spaces
have the sizes shown in Fig. 24. They are constructed on a Sun Ultra Sparc Enter-
prise 3000. This machine has also been used for all the other simulations and state
spaces reported in this paper.

However, how can we know that the protocol still works when we allow more
than five simultaneous packets? Unfortunately the general answer is discouraging.
In theory, we cannot know this for sure. However, in practice the situation is not
that bad. If the protocol works for five simultaneous packets it is very likely that it
also works when more packets are allowed. Other analysis methods are more gen-

Limit Nodes Arcs Time

1 33 44 « 1 sec.
2 428 1,130 1 sec.
3 3,329 12,825 14 secs.
4 18,520 91,220 3 mins.
5 82,260 483,562 47 mins.

Fig. 24. Sizes of state spaces for the simple protocol

34

eral and provide a full proof that a system works as expected – for all configura-
tions. This is e.g., the case for place invariant analysis. However, such analysis
methods are often much less automatic. They usually involve a good deal of human
reasoning in the form of one or more mathematical proofs. This implies that the
methods are time-consuming and difficult to use by engineers. Moreover, they are
error-prone. What do you prefer? A sequence of automatically constructed and
automatically analysed state spaces showing that the protocol works for all cases
where there are five or less simultaneous packets – or a five to ten page manual
proof based on rather complex mathematical arguments.

With our present knowledge and technology, we cannot hope to verify large
systems by means of state spaces. However, we can use state spaces on selected sub-
nets. This is a very effective way to locate errors. A small mistake will often imply
that we do not get, e.g., an expected marking bound or an expected home marking.
It is also possible to investigate rather complex CP-nets by means of partial state
spaces, where we only develop, e.g., a fixed number of outgoing arcs for each
node. Such a method will very often catch design errors – although it cannot count
as a full proof of the desired system properties. A partial state space corresponds to
making a large number of simulation runs – the state space represents the results in
a systematic way.

4 Performance Analysis of CP-nets

To investigate the performance of systems, i.e., the speed at which they operate, it
is convenient to extend CP-nets with a time concept. To do this, we introduce a
global clock. The clock values represent model time, and they may either be in-
tegers (i.e., discrete) or reals (i.e., continuous). In addition to the token value, we
allow each token to carry a time value, also called a time stamp. Intuitively, the
time stamp describes the earliest model time at which the token can be used, i.e.,
removed by a binding element.

In a timed CP-net a binding element is said to be colour enabled when it sat-
isfies the requirements of the enabling rule for untimed CP-nets (i.e., when there
are the required tokens at the input places and the guard evaluates to true). How-
ever, to be enabled, the binding element must also be ready. This means that the
time stamps of the tokens to be removed must be less than or equal to the current
model time.

To model that an activity/operation takes r time units, we let the corresponding
transition t create time stamps for its output tokens that are r time units larger than
the clock value at which t occurs. This implies that the tokens produced by t are un-
available for r time units. It can be argued that it would be more natural to delay
the creation of the output tokens, so that they did not come into existence until r
time units after the occurrence of t had begun. However, such an approach would
mean that a timed CP-net would get “intermediate” markings which do not corre-
spond to markings in the corresponding untimed CP-net, because there would be
markings in which input tokens have been removed but output tokens not yet gener-
ated. Hence we would get a more complex relationship between the behaviour of
timed and untimed nets.

35

The execution of a timed CP-net is time driven, and it works in a similar way to
that of the event queues found in many other languages for discrete event simula-
tion. The system remains at a given model time as long as there are colour enabled
binding elements that are ready for execution. When no more binding elements can
be executed, at the current model time, the system advances the clock to the next
model time at which binding elements can be executed. Each marking exists in a
closed interval of model time (which may be a point, i.e., a single moment). The
occurrence of a binding element is instantaneous.

Send
Packet

@+9

Transmit
Packet

@+Delay()

Receive
Packet

@+17

Receive
Acknow.

@+7

Transmit
Acknow.

@+Delay()

Send

INTxDATA

1`(1,"Modellin")+
1`(2,"g and An")+
1`(3,"alysis b")+
1`(4,"y Means ")+
1`(5,"of Colou")+
1`(6,"red Petr")+
1`(7,"i Nets")+
1`(8,"###")

NextSend
INT

1

A

INTxDATA

D
INT

C
INT

B

INTxDATA

Received
DATA

""

NextRec
INT

1

Sender Network Receiver

SP
8

Ten0

SA
Ten0

8

Wait

TIME

100

color INT = int timed;
color DATA = string;
color INTxDATA = product INT * DATA;
var n, k : INT;
var p,str : DATA;
val stop = "###";

color Ten0 = int with 0..10;
color Ten1 = int with 1..10;
var s : Ten0; var r:Ten1;
fun Ok(s:Ten0,r:Ten1) = (r<=s);

color NetDelay = int with 25..75 declare ran;
fun Delay() = ran'NetDelay();
var wait : TIME;

(n,p) (n,p)

if Ok(s,r)
then 1`(n,p)
else empty (n,p)

if n=k
andalso
p<>stop
then str^p
else str

if n=k
then k+1
else k

n

k

if n=k
then k+1
else k

if Ok(s,r)
then 1`n
else empty

n

k n

n

str

(n,p)
(n,p)@+wait

s

s

wait

 Fig. 25. Timed CP-net for the simple protocol

36

A timed CP-net for the protocol system is shown in Fig. 25. The timed net has
the same net structure as the untimed net – except that a new place Wait has been
added (in the left-hand side). This place is used to specify how long time transition
Send Packet should wait before retransmitting a packet.

From the declarations it can be seen that type INT is timed. This means that the
corresponding tokens carry time stamps. The types DATA, Ten0 and Ten1 are not
timed. Tokens of these types do not carry time stamps, and hence they are always
available. By convention, the structured type INTxDATA is timed – because it
contains a component INT which is timed. Hence, we conclude that the four places
Received, SP, SA, and Wait have tokens without time stamps, while the remaining
seven places have tokens with time stamps. For this system we use an integer clock,
starting at zero. Hence, all time stamps in the initial marking are equal to zero.

We have added a time inscription (starting with @+) to each of the five tran-
sitions. Intuitively, the time inscription describes how long time the corresponding
operation takes. Now let us take a closer look at the five different transitions in the
protocol system.

Send Packet has a time inscription: @+ 9. This implies that the tokens created at
A and Next Send get time stamps which are 9 time units larger than the time r* at
which the transition occurs. The output arc to place Send specifies an additional
time delay to be used for the tokens added to Send. This token will get a time
stamp which is r* + 9 + 100 (since the variable wait is bound to 100). Intuitively, 9
represents the time used to send a packet, while 100 is the time that has to elapse be-
fore a retransmission is done, i.e., before Send Packet occurs once more for the
same packet. Hence, a retransmission will only happen if the number in Next Send
remains unaltered for 9 + 100 time units, i.e., if no acknowledgement for the packet
is received inside this time period.

Transmit Packet has a time inscription: @+ Delay(), where Delay is declared to
be an ML function returning a random element from the type NetDelay (i.e., a ran-
dom integer in the interval between 25 and 75). This implies that the duration of a
transmit operation may vary inside this interval.

Receive Packet and Receive Acknowledgement have time inscriptions specifying a
fixed duration (17 and 7 time units respectively), while Transmit Acknowledgement
has a variable duration time, between 25 and 75. All time delays are specified by
means of Standard ML expressions. Hence, it is easy to use statistical functions
specifying more complex types of delays (e.g., exponential distributions).

Note that the token in Next Send carries a time stamp. Intuitively, this means that
the Sender cannot start a new Send Packet or a new Receive Acknowledgement as
long as one of these operations is already ongoing. If the Sender has multiple
threads, allowing an unlimited number of Sender operations to be performed at the
same time, we simply make the type of Next Send untimed. A similar remark ap-
plies for the operations of the Receiver and the type of Next Rec.

In general, the time delays may depend upon the binding in question, i.e., upon
the values of the input and output tokens. As an example it might, on some net-
works, be faster to lose a packet than it is to transmit it.

For a timed CP-net we require that each step consists of binding elements which
are both colour enabled and ready. Hence the possible occurrence sequences of a
timed CP-net always form a subset of the possible occurrence sequences of the cor-

37

responding untimed CP-net. This means that we have a well-defined and easy-to-
understand relationship between the behaviour of a timed CP-net and the behaviour
of the corresponding untimed CP-net.

In the timed CP-net for the protocol, we have only illustrated one of the simplest
ways in which time stamps can be used. All removed tokens for a binding element
were required either to be without time stamps or to have time stamps which were
less than or equal to the time value r* at which the binding element occurs. At a
given place, all added tokens either got no time stamps or got identical time stamps
which were equal to r* plus a delay r . In general, the situation can be considerably
more complex. For details see Vol. 2 of [4].

After a number of simulation steps the timed CP-net may reach a dead final
marking with the contents shown in Fig. 26. In the markings displayed next to the
places, we separate the time stamps from the token values by an @ sign (which usu-
ally is read as “at”). From the time stamp of Next Rec it can be seen that the last
packet was received at time 1790. Analogously, the time stamp at Next Send tells us
that the last operation of the Sender was finished at time 1832. The time stamps at
place Send tell us the times at which the individual packets would have been re-
transmitted (had this become necessary). As an example, we can see that the first
packet would have been retransmitted at time 109, the second at time 331, the third
at 359, and so on.

By means of our timed CPN model we can investigate the performance of the
protocol, e.g., experiment with different values for the retransmission delay speci-
fied by Wait. A short delay increases the chance of making unnecessary retransmis-

Send
Packet

@+9

Transmit
Packet

@+Delay()

Receive
Packet

@+17

Receive
Acknow.

@+7

Transmit
Acknow.

@+Delay()

Send

INTxDATA

8 1`(1,"Modellin")@[109]+
1`(2,"g and An")@[331]+
1`(3,"alysis b")@[359]+
1`(4,"y Means ")@[583]+
1`(5,"of Colou")@[939]+
1`(6,"red Petr")@[1486]+
1`(7,"i Nets")@[1611]+
1`(8,"###")@[1845]

NextSend
INT

1

1 1`9@[1832]

A

INTxDATA

D
INT

C
INT

B

INTxDATA

Received
DATA

1 1`"Modelling and
Analysis by Means
of Coloured Petri
Nets"

""

NextRec
INT

1

1 1`9@[1790]

Sender Network Receiver

SP
8

Ten0 1 1`8

SA
Ten0

1 1`88

Wait

TIME

100

1 1`100

(n,p) (n,p)

if Ok(s,r)
then 1`(n,p)
else empty (n,p)

if n=k
andalso
p<>stop
then str^p
else str

if n=k
then k+1
else k

n

k

if n=k
then k+1
else k

if Ok(s,r)
then 1`n
else empty

n

k n

n

str

(n,p)
(n,p)@+wait

s

s

wait

Fig. 26. Final marking of the timed CP-net

38

sions. It also increases the chance of overtaking and the chance that a Receive
Acknowledgement operation is postponed, because the Sender process is engaged in
a retransmission. A long delay means it may take too long before the Sender recog-
nises that a packet or an acknowledgement has been lost. By making a number of
simulations, with different token values at Wait, we can determine the optimal value
for the retransmission delay.

To obtain reliable results we increase the number of packets from eight to one
hundred. We also want to be able to describe more realistic success rates, and hence
we change the types Ten0 and Ten1 to Hun0 and Hun1 (containing the integers in
the intervals 0. .100 and 1. .100, respectively). With this change, we would have one
hundred different enabled bindings for transition Transmit Packet – for each token
on place A with a ready time stamp. Instead of calculating all these bindings and
then choosing one of them, we now use a predeclared function ran’Hun1() to draw a
random element from the type Hun1. The new randomisation method gives the
same result as the old one, but it is more effective, since we do not calculate bind-
ings which we do not use.

With these modifications, we get the simulation results shown in Fig. 27. Each
simulation took 2-10 seconds, and it was repeated ten times to obtain the mean value
and the standard deviation of the time and steps used to transfer one hundred pack-
ets. The number of steps is a measure of the computational resources used by the
protocol. It is proportional to the number of occurrences of Transmit Packet and
Transmit Acknowledgement and hence proportional to the use of bandwidth on the
network.

Success Rate: 90 %

Wait Time used Number of steps

20 13,092 ± 345 2,154 ± 54

50 13,931 ±275 1,260 ±22

100 14,850 ±510 871 ±18

200 16,983 ±1,275 565 ±17

Success Rate: 99 %

Wait Time used Number of steps

20 13,750 ±177 2,405 ±38

50 13,576 ±317 1,341 ±26

100 13,867 ±246 916 ±22

200 13,416 ±308 504 ±4

Fig. 27. Simulation results for the simple protocol

39

From the simulation results it can be seen that a poor network (with 10% losses)
has a clear trade-off between use of bandwidth and transmission time. If we make
more frequent retransmissions, we use more bandwidth, but we also achieve faster
transmission times. For a better network (with 1% losses) the situation is different.
Here, we do not obtain any gain in transmission time by making frequent retrans-
missions.

In the simple protocol, analysed above, we use a pessimistic strategy. This means
that we keep transmitting a packet until we receive an acknowledgement for it. Now
let us consider the more optimistic protocol shown in Fig. 28. In this protocol we
assume that most packets will arrive without problems, and hence we transmit the

color INT = int timed;
color DATA = string;
color INTxDATA = product INT * DATA;
color INTxINTxINT = product INT * INT * INT;
var n, k, a, d : INT;
var p,str : DATA;
val stop = "###";

color Hun0 = int with 0..100;
color Hun1 = int with 1..100 declare ran;
var s : Hun0;
fun Ok(s:Hun0,r:Hun1) = (r<=s);
fun r()= ran'Hun1();

color NetDelay = int with 25..75 declare ran;
color TIMExTIME = product TIME * TIME timed;
fun Delay() = ran'NetDelay();
var w1,w2 : TIME;

local
 fun InitMark 0 = empty
 | InitMark n = 1`(n,"."^makestring(n)) + (InitMark (n-1));
in
 fun Initialise(n) = 1`(n,stop) + (InitMark (n-1))
end;

Send
Packet

@+9

Transmit
Packet

@+Delay()

Receive
Packet

@+17

Receive
Acknow.

@+7

Transmit
Acknow.

@+Delay()

Send
INTxDATA

Initialise(100)

NextSend
INTxINTxINT

(1,1,3)

A

INTxDATA

D
INT

C
INT

B

INTxDATA

Received
DATA

""

NextRec
INT

1

Sender Network Receiver

SP
99

Hun0

SA
Hun0

99

Wait

TIMExTIME

(40,100)
(n,p) (n,p)

if Ok(s,r())
then 1`(n,p)
else empty (n,p)

if n=k
andalso
p<>stop
then str^p
else str

if n=k
then k+1
else kn

k

if n=k
then k+1
else k

if Ok(s,r())
then 1`n
else empty

n

(k,a,d) (max(k,max(n,a)),
 max(n,a),d)

(n,a,d)

if (n-a < d-1
andalso p<>stop)
then (n+1,a,d)
else (a,a,d)

str

(n,p) (n,p)@+w2

s

s

(w1,w2)

(w1,w2)
 @+w1

Fig. 28. A second and slightly more complex protocol

40

next packet without waiting for an acknowledgement of the packet which we have
just sent. Now NextSend contains a triple of integers. The first element is the num-
ber n of the next packet to be sent. The second element is the number of the last ac-
knowledgement a which the Sender has received. The third element is the window
size, i.e., the maximal distance d which we allow between n and a. During a simula-
tion the first two values will change, while the third remains constant.

Now let us consider the arc expression on the arc from Send Packet to
Next Send. It determines the number of the next packet to be sent. As long as the
distance between n and a is less than d –1 and we have not reached the last packet
(with p = stop) we increase n by one. Otherwise, n is set to a which is the first
packet not yet known to be received by the Receiver. Whenever a new acknow-
ledgement n is received the value of a is updated to max(n,a). Simultaneously, we
update the first element in Next Send from k to max(k,max(n,a)).

For the new protocol, place Wait has the type TIMExTIME. This means that the
place now specifies two different time values. The first time value determines the
delay between the sending of two different packets, while the second determines the
delay between retransmissions of a packet.

The performance of the optimistic protocol is investigated in a similar way as
the performance of the simple protocol. This gives the simulation results shown in
Fig. 29. A comparison of Figs. 27 and 29 shows us that the performance of the op-
timistic protocol is much better than the performance of the pessimistic protocol.
Hence, we could start a more detailed investigation of the optimistic protocol, e.g.,
to determine a good balance between the two delays specified by Wait. We could
also try to optimise the window size specified by the third element in the Next Send
token. However, such investigations are outside the scope of this paper.

Success Rate: 90 % Window Size: 3

Wait Time used Number of steps

(20,20) 7,192 ± 256 1,102 ±37

(40,50) 8.960 ±556 831 ±42

(40,100) 9,288 ±489 804 ±33

(40,200) 10,270 ±790 615 ±42

Success Rate: 99 % Window Size: 3

Wait Time used Number of steps

(20,20) 6,668 ±130 1,088 ±23

(40,50) 8,127 ±144 806 ±12

(40,100) 8,335 ±165 766 ±18

(40,200) 7,904 ±230 510 ±10

Fig. 29. Simulation results for the optimistic protocol

41

5 Hierarchical CP-nets

The basic idea behind hierarchical CP-nets is to allow the modeller to construct a
large model by using a number of small CP-nets which are related to each other in
a well-defined way. This is similar to the situation in which a programmer con-
structs a large program by means of a set of modules. Many CPN models consist of
more than one hundred individual CP-nets with a total of many hundred places and
transitions. Without hierarchical structuring facilities, such a model would have to
be drawn as a single (very large) CP-net, and it would become totally incomprehen-
sible.

In a hierarchical CP-net it is possible to relate a transition (and its surrounding
arcs and places) to a separate CP-net – providing a more precise and detailed de-
scription of the activity represented by the transition. The idea is analogous to the
hierarchy constructs found in many graphical description languages (e.g., data flow
diagrams). It is also, in some respects, analogous to the module concepts found in
many modern programming languages. At one level, we want to give a simple de-
scription of the modelled activity without having to consider internal details about
how it is carried out. At another level, we want to specify the more detailed behav-
iour. Moreover, we want to be able to integrate the detailed specification with the
more crude description – and this integration must be done in such a way that it be-
comes meaningful to speak about the behaviour of the combined system.

Now let us consider a hierarchical version of our protocol. The most Abstract
description of the protocol is shown in Fig. 30. As before we have a Sender and a
Network, but now we have two different Receivers: Rec No 1 and Rec No 2. The
CP-net in Fig. 30 has eight places and four transitions. Each of the transitions is
marked with an HS-tag indicating that it is a substitution transition (HS ≈ Hier-
archy + Substitution). The dashed boxes next to the HS-tags are called hierarchy
inscriptions and they define the details of the substitutions.

The first line of each hierarchy inscription specifies the subpage, i.e., the
CP-net that contains the detailed description of the activity represented by the cor-
responding substitution transition. In our example, we see that transition Sender has
a subpage with the same name as itself, and so has transition Network. Transitions
Rec No 1 and Rec No 2 both have a subpage called Receiver. During an execution of
the CP-net, there will be two separate instances of the Receiver page, one for each
substitution transition. Each of these page instances will have its own marking
which is totally independent of the marking of the other page instance (in a similar
way that procedure calls have private copies of local variables).

Now let us consider the subpages for our substitution transitions. They are
shown in Fig. 31, and it can be seen that they are similar to the Sender, Network
and Receiver parts of the simple protocol in Fig. 1. Each subpage has a number of
places which are marked with an In-tag, Out-tag or I/O-tag. These places are called
port places and they constitute the interface through which the subpage communi-
cates with its surroundings. Through the input ports the subpage receives tokens
from the surroundings. Analogously, the subpage delivers tokens to the surround-
ings through the output ports. A place with an I/O-tag is both an input port and an
output port at the same time.

42

Substitution transition Sender in Fig. 30 has a single input place D and a single
output place A. These places are called socket places. More precisely, D is an in-
put socket for the Sender transition while A is an output socket. To specify the re-
lationship between a substitution transition and its subpage, we must describe how
the port places of the subpage are related to the socket places of the substitution
transition. This is done by providing a port assignment. For the Sender subpage,
we relate the input port D in Fig. 31 to the input socket D in Fig. 30. Analogously,
we relate the output port A in Fig. 31 to the output socket A in Fig. 30. The rela-
tionship between ports and sockets are listed in the hierarchy inscriptions. However,
to increase readability and brevity, we omit port assignments where the port and the
socket have identical names. Hence we do not list the assignments A –>A and D –>D
in the hierarchy inscription of Sender.

Next let us consider the Network subpage. Here, A, C1, and C2 are input sock-
ets, while B1, B2, and D are output sockets. The subpage has six port places, which
each has the same name as the socket to which it is assigned (and hence we do not
list the assignments in the hierarchy inscription). For the remaining two substitution
transitions the situation is a bit more interesting. For Rec No 1 we have the port as-
signment B1–>B, C1–>C, and Received1–>Received. For Rec No 2 we have the port
assignment B2–>B, C2–>C, and Received2–>Received.

When a port place is assigned to a socket place, the two places become identical.
The port place and the socket place are just two different representations of a single
conceptual place. In particular this means that the port and the socket places always
have identical markings. When an input socket receives a token from the surround-
ings of the substitution transition that token also becomes available at the input port
of the subpage, and hence the token can be used by the transitions on the subpage.
Analogously, the subpage may produce tokens on an output port. Such tokens are
also available at the corresponding output socket and hence they can be used by the

D

INTxINT

A

INTxDATA

Received1
DATA

""

B1

INTxDATA

C1
INT

Sender

HS

Sender

Network

HS

Network

RecNo1

HS

Receiver
B1->B
C1->C
Received1->Received

B2

INTxDATA

C2
INT

RecNo2

HS

Receiver
B2->B
C2->C
Received2->Received

Received2
DATA

""

 Abstract

Fig. 30. Most abstract page in a hierarchical version of the simple protocol

43

surroundings of the substitution transition. In our example, we have three different
representations of place A: one in the most Abstract net, one in the Sender subpage
and one in the Network subpage. A similar remark applies to B1, B2, C1, C2, and
D, while Received1 and Received2 only have two representations each.

Now let us consider the three subpages in Fig. 31 in some more detail. The basic
idea is that the Sender sends messages which the Network broadcasts to the two
Receivers. Analogously, the Receivers send acknowledgements which the Network
transmits to the Sender.

The Sender subpage is similar to the Sender part in Fig. 1. The main difference
is that Next Send now models two counters – one for each Receiver. Each acknow-
ledgement is a pair where the first element specifies whether the acknowledgement
came from Rec No 1 or Rec No 2, while the second element contains the number of
the next packet which the Receiver wants to get. When an acknowledgement (rec,n)
is received, we update the counter for the corresponding Receiver. Based on our
discussion in Sect. 3, we replace the old counter value k with the value max(n,k).
Since packets are sent by means of broadcasts, the Sender has to send the same
packet to both Receivers – even in the case where the two counters at Next Send
have different values. An obvious solution is to demand the Sender to use the mini-
mum of the two counter values, i.e., to follow the acknowledgements of the most
unlucky Receiver. However, instead we shall allow the Sender to use an arbitrary of
the two counter values. For a Network with many losses this is less efficient. How-
ever, it allows one of the Receivers to get the entire message, even if the other Re-
ceiver stops to work, e.g., due to a crash.

Send
Packet

NextSend
RECxINT

1`(Rec1,1)+
1`(Rec2,1)

Receive
Acknow.

Send

INTxDATA

1`(1,"Modellin")+
1`(2,"g and An")+
1`(3,"alysis b")+
1`(4,"y Means ")+
1`(5,"of Colou")+
1`(6,"red Petr")+
1`(7,"i Nets")+
1`(8,"###")

D

RECxINT

A

INTxDATA

Transmit
Packet

SP
8

Ten0

SA1
Ten0

8

Transmit
Acknow.

D
RECxINT

C1
INT

B2

INTxDATA
A

INTxDATA

B1

INTxDATA

SA2
Ten0

8

Transmit
Acknow. C2

INT

NextRec
INT

1
Receive
Packet

C
INT

Received
DATA

""

B

INTxDATA

 Sender Receiver Network

Out

Out

Out

Out

In

In

In

Out

In

In

I/O

(n,p)

(rec,k) (rec,max(n,k))

(rec,n)

(n,p)

(rec,n)

s

s

(n,p)

if Ok(s,r)
then 1`(n,p)
else empty

n
if Ok(s,r)
then 1`(Rec1,n)
else empty

if Ok(s,r)
then 1`(n,p)
else empty

s

nif Ok(s,r)
then 1`(Rec2,n)
else empty

k

if n=k
then k+1
else k

(n,p)

if n=k
andalso
p<>stop
then str^p
else str

if n=k
then k+1
else k

str

Fig. 31. Three subpages used by the substitution transitions in Fig. 30

44

The Network subpage is similar to the Network part in Fig. 1. However, again
there are a few differences. Transmit Packet produces packets at two different out-
put places B1 and B2. The packets at B1 are for Rec No 1, while the packets at B2
are for Rec No 2. It should be noted that we use the same variable r to determine
whether the packets for B1 and B2 are lost or not. This means that we model a
broadcast in which it is guaranteed that all Receivers get the same packets. If we re-
place r with two different variables r1 and r2, we get a broadcast where one
Receiver may get a packet while the other does not. Transition Transmit Acknow-
ledgement has now been split into two. The upper transition handles acknowledge-
ments from Rec No 1 while the lower handles those from Rec No 2. Both transitions
add information specifying where the acknowledgement came from.

The Receiver subpage is totally identical to the Receiver part of Fig. 1. How-
ever, it should be noted that the Receiver page is used by two substitution transi-
tions, Rec No 1 and Rec No 2. As explained above, this means that we will have two
instances of the subnet – during an execution. The two instances may have different
markings and different enabling. Otherwise they will be identical.

In the protocol example, we only have two levels in the page hierarchy – the
Abstract page in Fig. 30 and the three subpages in Fig. 31. However, in practice
there are often up to ten different hierarchical levels. A subpage may contain sub-
stitution transitions and thus have its own subpages. It is often the case that a page
both has ordinary transitions and substitution transitions, i.e., that some activities
are described in full detail, while other activities are described in a more coarse
way – deferring the detailed description to a subpage.

To give an overview of the relationship between the different pages in a CPN
model, we use a page hierarchy graph as the one shown in Fig. 32. It contains a
node for each page. An arc between two pages indicates that the latter is a subpage
of the former, i.e., that the source page contains a substitution transition that uses
the destination page as subpage. Each node is inscribed with a text that specifies the
page name and the page number. Analogously, each arc may have a text that speci-
fies the name of the substitution transition in question. As an example, Fig. 32
shows us that page User_Top#2 has thirteen substitution transitions. One of these U4
use Call_Del#16 as subpage.

The page hierarchy graph shows the different pages and their hierarchical rela-
tionship. However, in the CPN tools it is also an active device by which the user can
manipulate the pages. As an example, he can open a page by double-clicking the
corresponding page node. He can delete a page by deleting the page node and he can
remove the relationship between a substitution transition and its subpage by deleting
the arc representing the relationship.

The page hierarchy graph in Fig. 32 is taken from a CPN model that describes a
protocol for ISDN telephone networks. The big bracket indicates that each of the
five pages to the right of the bracket is a subpage of all (or nearly all) of the twelve
pages to the left of the bracket. Hence there are nearly sixty page instances, only for
these five pages. We also see that some of the pages in the rightmost part of the
page hierarchy graph have multiple instances. One of them has eight page instances,
while two other pages have three instances each. Altogether the CPN model has
forty-two pages with a total of approximately one hundred page instances. Page
ISDN#1 (in the upper left corner) has a small Prime next to it. This indicates that

45

ISDN#1 is a prime page, i.e., a page on the most abstract level. A CPN model has
a page instance for each prime page. For each substitution transition on a prime
page we get a page instance of the corresponding subpage. If these page instances
have substitution transitions, we get page instances for these, and so on – until we
reach the bottom of the page hierarchy (which is demanded to be acyclic).

It can be shown that each hierarchical CP-net has a behavioural equivalent
non-hierarchical CP-net. To obtain the non-hierarchical net, we simply replace each
substitution transition (and its surrounding arcs) by a copy of its subpage – “gluing”
each port place to the socket place to which it is assigned.

It should be noted that substitution transitions never become enabled and never
occur. Substitution transitions work as a macro mechanism. They allow subpages to
be conceptually inserted at the position of the substitution transitions – without do-
ing an explicit insertion in the model. In Fig. 30 we have not provided any arc ex-
pressions for the arcs that surround the substitution transitions. These are not neces-
sary for the simulation and state space analysis, since the substitution transitions
never become enabled or occur. However, nevertheless they can be very useful.
They can give the reader of a model a first impression of the functionality of the
subpage. Moreover, the CPN simulator allows the modeller to specify that the sub-
page of one or more substitution transition shall be temporarily ignored. Then the
transition behaves as an ordinary transition – and the guard and arc expressions be-
come significant. By using this facility, and by changing the set of prime pages, it is
easy to debug selected pages of a large hierarchical CPN model without having to
“cut them out” of the model.

ISDN#1

USER_TOP#2

NULL#3

DECLARE#4

CALL_REC#11

CONNECT#12

INCOMING#13

CALL_INI#6

OVERLAP#9

OUTGOING#15

CALL_DEL#16

NULL_SET#5

ACTIVE#7

DISCONNE#8

RELEASE#17

DISC_IND#18

NET_TOP#19

NULL#20 U_SETUP#21

N_SETUP#22ROUTING#24

OUTGOING#26

N_E_PART#27

CALL_DEL#28

OVERLAP#29

CONNECT#30

N_D_PART#31

CALL_REC#32

DISCONNE#33

DISCONNE#34

RELEASE#35

ACTIVE#36

INCOMING#37

CALL_PRE#38

UREQ_GEN#39

U_DISC#23

U_REL#25

U_REL_CO#40

U_PROG#41

U_INFO#42

N_HOLD#44

U_HOLD#45

{

Prime

Users

U1

U7

U8

U9

U0

U2

U3

U4

U10

U11

U19

U12

N0

N3

N4

N2

N8

N7

N11

N12

N19

N10

N9

N6

Networks

Fig. 32. Example of a more complex page hierarchy

46

It may be argued that it is adequate to force the modeller to create a one-to-one
correspondence between the arc expressions of a substitution transition and the be-
haviour of the corresponding subpage – because this will make it easier to develop
methods allowing modular analysis. We think it is very important to develop such
incremental analysis methods, built upon behavioural equivalence between the dif-
ferent levels of description. However, we do not think that strict behavioural
equivalence is the only interesting relationship between the different abstraction
levels. As an example, there are protocol models in which the arc expressions and
guards of a typical substitution transition specify the normal behaviour of an activ-
ity, while the subpage specifies the more complex behaviour which is necessary
when time-outs, retransmissions and special services are added.

The protocol system in Figs. 30 and 31 was described in a top-down manner, but
this does not necessarily mean that it was constructed in this way. It could just as
well have been constructed bottom-up or (more likely) by mixing the two strate-
gies.

The CPN editor supports the creation of hierarchical nets, and it is very easy to
add new subpages – or rearrange the page hierarchy in other ways. When a page
gets too many places and transitions, we can move some of them to a new subpage.
This is done by a single editor operation. The user selects the nodes to be moved
and invokes the Move to Subpage command. Then the editor:

• checks the legality of the selection (it must form a subnet bounded by transitions),
• creates the new page,
• moves the subnet to the new page,
• creates the port places by copying those places which were next to the selected

subnet,
• calculates the port types (In, Out, or I/O),
• creates the corresponding port tags,
• constructs the necessary arcs between the port nodes and the selected subnet,
• prompts the user to create a new transition which becomes the substitution transi-

tion for the new subpage,
• draws the arcs surrounding the new transition,
• creates a hierarchy inscription for the new transition,
• updates the page hierarchy.

As may be seen, a lot of rather complex checks, calculations and manipulations are
involved in the Move to Subpage command. However, almost all of these are auto-
matically performed by the CPN editor. The user only selects the subnet, invokes
the command and creates the new substitution transition. The rest of the work is
done by the CPN editor. This is of course only possible because the CPN editor
recognises a CPN diagram as a hierarchical CP-net, and not just as a mathematical
graph or as a set of unrelated objects. Without this property the user would have to
do all the work by means of the ordinary editing operations (which allow him to
copy, move and create the necessary objects). This would be possible – but it would
be much slower and much more error-prone.

There is also an editor command which turns an existing transition into a sub-
stitution transition – by relating it to an existing page. Again, most of the work is

47

done by the editor. The user selects the transition and invokes the command. Then
the editor:

• makes the hierarchy page active,
• prompts the user to select the desired subpage; when the mouse is moved over a

page node it blinks, unless it is illegal (because selecting it would make the page
hierarchy cyclic),

• waits until a blinking page node has been selected,
• tries to deduce the port assignment by means of a set of rules which looks at the

port/socket names and the port/socket types (In, Out, or I/O),
• creates the hierarchy inscription with the name and number of the subpage and

with those parts of the port assignment which could be automatically deduced,
• updates the page hierarchy.

Finally, there is an editor command that replaces a substitution transition by the en-
tire content of its subpage. Also, this operation involves a lot of complex calcula-
tions and manipulations, but again all of them are done by the CPN editor. The user
simply selects the substitution transition, invokes the command and uses a simple
dialogue box to specify the details of the operation (e.g., whether the subpage shall
be deleted when no other substitution transition uses it).

The three hierarchy commands described above can be invoked in any order. A
user with a top-down approach would typically start by creating a page where each
transition represents a rather complex activity. Then a subpage is created for each
activity. The easiest way to do this is to use the Move to Subpage command. Then
the subpage automatically gets the correct port places, i.e., the correct interface to
the substitution transition. As the new subpages are modified, by adding places and
transitions, the subpages may become so detailed that additional levels of subpages
must be added. This is done in exactly the same way as the first level was created.

Hierarchical CP-nets also offer a concept known as fusion places. This allows
the modeller to specify that a set of places are considered to be identical, i.e., they
all represent a single conceptual place even though they are drawn as a number of
individual places. When a token is added/removed at one of the places, an identical
token will be added/removed at all the other places in the fusion set. From this de-
scription, it is easy to see that the relationship between the members of a fusion set
is (in some respects) similar to the relationship between two places which are as-
signed to each other by a port assignment.

When all members of a fusion set belong to a single page and that page only has
one page instance, place fusion is nothing other than a drawing convenience that al-
lows the user to avoid too many crossing arcs. However, things become much more
interesting when the members of a fusion set belong to several different pages or to
a page that has several page instances. In that case, fusion sets allow the user to
specify a behaviour which it may be cumbersome to describe without fusion.

There are three different kinds of fusion sets: global fusion sets are allowed to
have members from many different pages, while page fusion sets and instance fu-
sion sets only have members from a single page. The difference between the last
two is the following. A page fusion unifies all the instances of its places
(independently of the page instance at which they appear), and this means that the
fusion set only has one “resulting place” which is “shared” by all instances of the

48

corresponding page. In contrast, an instance fusion set only identifies place instances
that belong to the same page instance, and this means that the fusion set has a
“resulting place” for each page instance. The semantics of a global fusion set is
analogous to that of a page fusion set – in the sense that there is only one “resulting
place” (which is common for all instances of all the participating pages). To allow
modular analysis of hierarchical CP-nets, global fusion sets should be used with
care.

It is important to understand that the basic idea behind hierarchical CP-nets is to
allow the modeller to construct a large model by combining a number of small
CP-nets into a single model. This is similar to the situation in which a programmer
constructs a large program from a set of modules and subroutines. However, the
idea is different from those approaches that relate two or more separate subnets to
each other – in order to compare their behaviour – but without combining them
into a single model. Such approaches are analogous to program transformations,
and the individual subnets are alternative descriptions of the same system.

As mentioned above, it is always possible to translate a hierarchical CP-net into a
non-hierarchical CP-net – which in turn can be translated into a PT-net. This means
that the theoretical modelling powers of these three classes of nets are the same.
However, from a practical point of view, the three net classes have very different
properties. To cope with large systems we need to develop strong structuring and
abstraction concepts. The first very substantial step on this path was to replace
low-level Petri nets with high-level nets. The second step is to introduce hierarchi-
cal nets. In terms of programming languages, the first step can be compared to the
introduction of types – allowing the programmer to work with structured data ele-
ments instead of single bits. The second step may then be compared to the develop-
ment of programming languages with subroutines and modules – allowing the pro-
grammer to construct a large model as a set of smaller models which are related to
each other in a well-defined way. From a theoretical point of view, machine lan-
guages (or even Turing machines) are equivalent to the most powerful modern pro-
gramming languages. From a practical point of view, this is of course not the case.
One of the most important limitations that system developers face today is their own
inability to cope with many details at the same time. In order to develop and analyse
complex systems, they need structuring and abstraction concepts that allow them to
work with a selected part of the model without being distracted by the low-level
details of the remaining parts. Hierarchical nets provide the Petri net modeller with
such abstraction mechanisms.

The concept of hierarchical nets is much younger than the concept of high-level
nets, and this means that the hierarchy concepts are likely to undergo many im-
provements and refinements (in the same way that the first very simple concept of
subroutines has undergone dramatic changes to become the procedure concept of
modern programming languages). In other words, we do not claim that our current
proposal will be the “final solution”. However, we do think that it constitutes a good
starting point for further research and practical experiences in the area of hierar-
chical nets.

The intention has been to make a set of hierarchy constructs which is general
enough to be used with many different development methods and with many differ-
ent analysis techniques. When new methods are developed, they will influence the

49

definition of the hierarchy constructs in the same way that modern programming
languages have been influenced by the progress in the areas of programming meth-
odology and verification techniques.

To evaluate the strength of the existing hierarchy constructs, the reader is en-
couraged to consult some of the industrial CPN models described in Vol. 3 of [4].
They illustrate that substitution transitions and fusion places can be used in many
different ways, and that they are quite efficient mechanisms to structure a large and
complex CPN model.

6 Condensed State Spaces

In this section we illustrate how the symmetries inherent in many systems can be
exploited to obtain a more succinct state space analysis.

To illustrate the basic idea, let us again consider the hierarchical protocol from
Sect. 5 – the one with two Receivers. It should be obvious that the two receivers be-
have in a similar way. Hence, we can interchange them without influencing the be-
haviour of the system. To make this a bit more explicit, consider the two markings
shown in Fig. 33. We do not list the markings of the places Send, SP, SA1 and SA2,

Marking M1

Sender
Next Send: 1`(Rec1,2) + 1`(Rec2,3)
A: 1`(3,"alysis b")
D: 1`(Rec2,3)

Receiver Rec No 1 Rec No 2
Next Rec: 1`2 1`3
Received: 1`"Modellin" 1`"Modelling and An"
B: 2`(2,"g and An") empty
C: empty empty

Marking M2

Sender
Next Send: 1`(Rec2,2) + 1`(Rec1,3)
A: 1`(3,"alysis b")
D: 1`(Rec1,3)

Receiver Rec No 1 Rec No 2
Next Rec: 1`3 1`2
Received: 1`"Modelling and An" 1`"Modellin "
B: empty 2`(2,"g and An")
C: empty empty

Fig. 33. Two symmetrical markings

50

since they never change. Neither do we list the markings of the Network places A ,
B1, B2, C1 C2, and D. Due to the port assignments these places have markings that
are identical to the markings of the corresponding places in the Sender and Receiver
parts. An analogous remark applies to all the places in the Abstract part.

It is easy to see that marking M1 can be mapped into M2 (and vice versa) by per-
forming a systematic interchange of the two receivers – including the token values
at places Next Send, A, and D. Hence, we say that M1 and M2 are symmetric. How-
ever, the two markings not only look symmetric – they also behave in a symmetric
way. To illustrate this let us consider the enabled binding elements which are shown
in Fig. 34.

For each binding element b1 which is enabled in M1 , we can find a symmetric
binding element b2 which is enabled for M2. Again this is done by a systematic in-
terchange of the two receivers. Moreover, the binding element b1 will lead to a new
marking M’1 which is symmetric to the marking M’2 to which b2 will lead. By re-
peating this argument, we can see that each occurrence sequence starting in M1 de-
termines a symmetric occurrence sequence starting in M2 (and vice versa). This

Enabled binding elements in M1

Sender
(Send Packet, < rec = Rec1, n = 2, p = "g and An">)
(Send Packet, < rec = Rec2, n = 3, p = "alysis b">)
(Receive Acknowledgement, < rec = Rec2, k = 3, n = 3 >)

Network
(Transmit Packet, < n = 3, p = "alysis b", s = 8, r = … >)

Rec No 1
(Receive Packet, < n = 2, p = "g and An", k = 2, str = " Modellin ">)

Rec No 2
none

Enabled binding elements in M2

Sender
(Send Packet, < rec = Rec2, n = 2, p = "g and An">)
(Send Packet, < rec = Rec1, n = 3, p = "alysis b">)
(Receive Acknowledgement, < rec = Rec1, k = 3, n = 3 >)

Network
(Transmit Packet, < n = 3, p = "alysis b", s = 8, r = … >)

Rec No 1
none

Rec No 2
(Receive Packet, < n = 2, p = "g and An", k = 2, str = " Modellin ">)

Fig. 34. Two symmetrical sets of enabled binding elements

51

means that M1 and M2 have symmetrical behaviours. If we know what can happen
from one of these markings, we also know what can happen from the other, and
hence it is sufficient to investigate one of the two markings.

Now let us consider the number of symmetry mappings, i.e., the number of
ways in which a marking/binding element can be mapped into symmetrical mark-
ings/binding elements. There is a symmetry mapping for each possible permutation
of the receivers, i.e., two mappings for two receivers, six mappings for three re-
ceivers, 24 mappings for four receivers, 120 mappings for five receivers, and so
on. This means that a marking/binding element may have many symmetrical mark-
ings/binding elements. Hence, we may obtain a significant gain if it is sufficient to
consider one of these.

The symmetries determine equivalence classes of states (markings) and equiva-
lence classes of state changes (binding elements). They make it possible to construct
a condensed state space where each node represents an equivalence class of states
while each arc represents an equivalence class of state changes. Such a condensed
state space is often much smaller than the ordinary state space and it is usually also
faster to construct.

To illustrate the strength and limitations of the symmetry method, we construct
state spaces for the hierarchical protocol with different numbers of receivers. To do
this, we modify the CPN model as described in the beginning of Sect. 3. We reduce
the number of packets to be sent, we limit the number of simultaneous packets on
the Network, and we replace the boolean function Ok with a boolean variable. Fig.
35 shows the sizes of the different state spaces and the time used to construct them.
In the lower part, we also show the reduction factor for nodes and arcs (i.e., how
many times the condensed state space is smaller than the ordinary state space). The
reduction factor should be compared to the number of symmetry mappings shown
in the rightmost column.

For some of the ordinary state spaces the construction time is unknown. These
state spaces are so big that it is impossible to construct them with the present ver-
sion of our state space tool. However, it is possible to calculate their size from the
condensed state spaces. The construction of condensed state spaces is still on a quite
experimental level, and hence there is still plenty of room for improvement of the
construction algorithm, in particular the efficiency of the ML function that deter-
mines whether two markings are equivalent to each other.

Although the condensed state spaces are smaller than the ordinary state spaces,
they contain almost the same information – represented in a more condensed way.
Hence, we do not lose analytical power. Condensed state spaces can be used to prove
the same kind of behavioural properties as ordinary state spaces. The proof rules of
condensed state spaces are similar to the proof rules of ordinary state spaces, but a
bit more complicated since they have to deal with equivalence classes of markings
and equivalence classes of binding elements.

An introduction to the theory of condensed state spaces can be found in [3],
while a more detailed description can be found in Vol. 2 of [4]. The latter defines
three different kinds of condensed state spaces. In state spaces with equivalence
classes, the modeller directly specifies an equivalence relation for the set of
markings and an equivalence relation for the set of binding elements. In state spaces
with symmetries the equivalence relations are defined implicitly, by specifying a

52

set of symmetry mappings, similar to those used for our protocol example. The
symmetry mappings constitute an algebraic group, and this is sufficient to guarantee
that they induce equivalence relations on the set of markings and on the set of
binding elements. In state spaces with permutation symmetries the symmetry
mappings are implicitly defined. This is done by specifying how the values of the
individual types used in the CPN model can be permuted. The permutations used
for a given type must be a subgroup of all permutations on that type. This guaran-
tees that the permutations induce symmetry mappings which form an algebraic
group. Each of the three kinds of condensed state spaces has its own set of proof
rules and its own set of soundness criteria. A detailed description of these can be
found in Vol. 2 of [4].

Ordinary State Spaces

Recs. Limit Packets Nodes Arcs Time

2 2 4 921 1,832 2 secs.

2 3 3 14,025 44,826 2 mins.

2 3 4 35,909 115,676 9 mins.

3 3 4 22,317 64,684 4 mins.

3 4 2 104,258 427,696 77 mins.

4 4 2 39,617 154,752 14 mins.

4 4 3 172,581 671,948 3 hours

5 5 2 486,767 2,392,458 - - -

6 6 2 5,917,145 35,068,448 - - -

7 7 2 71,479,607 495,935,350 - - -

Condensed State Spaces

Recs. Limit Packets Nodes Arcs Time Recs!

2 2 4 477 1.9 924 2.0 3 secs. 2

2 3 3 7,037 2.0 22,360 2.0 4 mins. 2

2 3 4 17,991 2.0 57,743 2.0 23 mins. 2

3 3 4 4,195 5.3 11,280 5.7 2 mins. 6

3 4 2 18,253 5.7 72,929 5.9 31 mins. 6

4 4 2 2,559 15.5 8,085 19.1 1 mins. 24

4 4 3 9,888 17.5 32,963 20.4 8 mins. 24

5 5 2 8,387 58.0 31,110 76.9 8 mins. 120

6 6 2 24,122 245.3 101,240 346.41 hour 720

7 7 2 62,625 1,141 290,018 1,710 10 hours 5,040

Fig. 35. Sizes of state spaces and condensed state spaces
(using interchanging of receivers)

53

Above, we have illustrated how state spaces for our protocol can be condensed
by interchanging the different receivers. However, as shown in [6], the state spaces
for our protocol may also be condensed using a different equivalence relation.
Here, we consider two markings to be equivalent, if they are identical when we ig-
nore the values of those packets and acknowledgements that are “old”. A packet is
considered to be old if it has a packet number which is less than the value at
Next Rec. It is easy to see that two different old packets have the same effect, since
none of them match the current value of Next Rec. Analogously, an acknowledge-
ment is considered old if it contains a number which is less than or equal to the
value at Next Send. This means that the acknowledgement will have no effect be-
cause we never decrease the value of Next Send. To illustrate the strength of this
equivalence relation, Fig. 36 shows the sizes of some state spaces and the time used
to construct them. All state spaces are for a single receiver. The two condensation
techniques illustrated in Figs. 35 and 36 can be combined with each other, and with
other condensation techniques. Theoretical and practical work with this integration
is in progress, but outside the scope of this paper.

Ordinary State Spaces

Limit Nodes Arcs Time

1 33 44 « 1 sec.

2 293 764 1 sec.

3 1,829 6,860 6 secs.

4 9,025 43,124 56 secs.

5 37,477 213,902 11 mins.

6 136,107 891,830 2 hours

Condensed State Spaces

Limit Nodes Arcs Time

1 33 1.0 44 1.0 « 1 sec.

2 155 1.9 383 2.0 1 sec.

3 492 3.7 1,632 4.2 7 secs.

4 1,260 7.1 5,019 8.6 36 secs.

5 2,803 11.2 12,685 16.9 3 mins.

6 5,635 24.2 28,044 31.8 9 mins.

7 10,488 --- 56,203 --- 29 mins.

8 18,366 --- 104,442 --- 81 mins.

9 30,605 --- 182,754 --- 3 hours

10 48,939 --- 304,445 --- 8 hours

Fig. 36. Sizes of state spaces and condensed state spaces
(using equivalence relation for “old” packets and acknowledgements)

54

7 Conclusions

Below, we list a number of reasons for using CP-nets. We do not claim that CP-nets
are superior to all other modelling languages. Such claims are, in our opinion,
made far too often – and they nearly always turn out to be ridiculous. However, we
do think that for some purposes CP-nets are extremely useful, and that, together
with some of the other modelling languages, they should be a standard part of the
repertoire of advanced system designers and system analysts.

1. CP-nets have a graphical representation. The graphical form is intuitively
very appealing. It is very easy to understand and grasp – even for people who are
not familiar with the details of CP-nets. This is due to the fact that CPN diagrams
resemble many of the informal drawings that designers and engineers make while
they construct and analyse a system.

2. CP-nets have a well-defined semantics which unambiguously defines the be-
haviour of each CP-net. The presence of the semantics makes it possible to imple-
ment simulators for CP-nets, and it also forms the foundation for the formal analy-
sis methods.

3. CP-nets are very general and can be used to describe a large variety of differ-
ent systems. The applications of CP-nets range from informal systems (such as the
description of work processes) to formal systems (such as communication proto-
cols). They also range from software systems (such as distributed algorithms) to
hardware systems (such as VLSI chips). Excerpts from a number of industrial CPN
models can be found in Vol. 3 of [4]. They cover a wide range of application areas.

4. CP-nets have very few, but powerful, primitives. The definition of CP-nets is
rather short and it builds upon standard concepts which many system modellers al-
ready know from simple mathematics and programming languages. This means that
it is relatively easy to learn to use CP-nets. However, the small number of primi-
tives also means that it is possible to develop strong analysis methods.

5. CP-nets have an explicit description of both states and actions. This is in con-
trast to most system description languages which describe either the states or the
actions – but not both. Using CP-nets, the reader may easily change the point of fo-
cus from states to actions, or vice versa.

6. CP-nets have a semantics which builds upon true concurrency instead of in-
terleaving. In an interleaving semantics it is impossible to have two actions in the
same step, and thus concurrency only means that the actions can occur after each
other, in any order. A true-concurrency semantics is easier to work with – because
it is closer to the way human beings think about concurrent actions.

7. CP-nets offer hierarchical descriptions. This means that we can construct a
large CP-net by relating a number of small CP-nets to each other, in a well-defined
way. The hierarchy constructs of CP-nets play a role similar to that of subroutines,
procedures and modules of programming languages. The existence of hierarchical
CP-nets makes it possible to model large systems in a manageable and modular way.

55

8. CP-nets integrate the description of control and synchronisation with the de-
scription of data manipulation. This means that on a single sheet of paper it can be
seen what the environment, enabling conditions and effects of an action are. Many
other graphical description languages work with graphs that only describe the envi-
ronment of an action – while the detailed behaviour is specified separately (often by
means of unstructured prose).

9. CP-nets can be extended with a time concept. This means that it is possible to
use the same modelling language for the specification/validation of functional/
logical properties (such as absence of deadlock) and performance properties (such
as throughput, bottlenecks and waiting times).

10. CP-nets are stable towards minor changes of the modelled system. This is
proved by many practical experiences and it means that small modifications of the
modelled system do not completely change the structure of the CP-net. In particu-
lar, it is possible to add a new sequential process without changing the net structure
representing existing processes.

11. CP-nets offer interactive simulations where the results are presented directly
on the CPN diagram. The simulation makes it possible to debug a large model while
it is being constructed – analogously to a good programmer debugging the individ-
ual parts of a program as he finishes them. The data values of the moving tokens
can be inspected.

12. CP-nets have a number of formal analysis methods by which properties of
CP-nets can be proved. The two most important analysis methods are known as state
spaces and place invariants. The first of these is described in this paper. The second
is very similar to the use of invariants in program verification.

13. CP-nets have an elaborated set of computer tools supporting their drawing,
simulation and formal analysis. This makes it possible to handle even large nets
without drowning in details and without making trivial calculation errors. The ex-
istence of such computer tools is very important for the practical use of CP-nets.

Acknowledgements

Many students and colleagues – in particular at Aarhus University and Meta Soft-
ware – have influenced the development of CP-nets, their analysis methods and
their tool support. The development has been supported by several grants from the
Danish Natural Science Research Council. A more detailed description of individual
contributions can be found in the prefaces of [4].

56

References

 [1] K. Jensen: Coloured Petri Nets: A High-level Language for System Design
and Analysis. In: G. Rozenberg (ed.): Advances in Petri Nets 1990, Lecture
Notes in Computer Science Vol. 483, Springer-Verlag 1991, 342– 416. Also
in: K. Jensen and G. Rozenberg (eds.): High-level Petri Nets. Theory and
Application, Springer-Verlag, 1991, 44 –122.

[2] K. Jensen: An Introduction to the Theoretical Aspects of Coloured Petri Nets.
In: J.W. de Bakker, W.-P. de Roever, G. Rozenberg (eds.): A Decade of
Concurrency, Lecture Notes in Computer Science Vol. 803, Springer-Verlag
1994, 230–272.

[3] K. Jensen: Condensed State Spaces for Symmetrical Coloured Petri Nets.
Formal Methods in System Design 9 (1996), Kluwer Academic Publishers,
7–40.

[4] K. Jensen: Coloured Petri Nets. Basic Concepts, Analysis Methods and
Practical Use. Vol. 1: Basic Concepts, 1992. Vol. 2: Analysis Methods, 1994.
Vol. 3: Practical Use, 1997. Monographs in Theoretical Computer Science,
Springer-Verlag.

[5] K. Jensen, et al: Design/CPN Manuals. Meta Software Corporation and De-
partment of Computer Science, University of Aarhus, Denmark. On-line ver-
sion: http://www. daimi.aau.dk/designCPN/.

[6] J.B. Jørgensen, L.M. Kristensen: Verification of Coloured Petri Nets Using
State Spaces with Equivalence Classes. In: B. Farwer, D. Moldt and M-O.
Stehr (eds.): Proceedings of Workshop on Petri Nets in System Engineering
(PNSE'97) Modelling, Verification, and Validation, Hamburg, Germany,
Publication No. 205, Universität Hamburg, Fachberich Informatik, 1997,
20 –31.

[7] R. Milner, R. Harper, M. Tofte: The Definition of Standard ML. MIT Press,
1990.

[8] R. Milner, M. Tofte: Commentary on Standard ML. MIT Press, 1991.
[9] L. Paulson: ML for the Working Programmer. Cambridge University Press,

1991.
[10] Petri Net WWW pages. URL: http://www.daimi.aau.dk/PetriNets/.

