

2009 CPN Group, Aarhus University

Advanced State Space Methods and ASAP

Michael Westergaard **Department of Computer Science** Aarhus University mw@cs.au.dk

 $W := \{ S_0 \}$ while $W \neq \emptyset$ do Select an $s \in W$ $W := W \setminus \{s\}$ if $\neg I(s)$ then return false for all t, s' such that $s \rightarrow t s' do$ if $s' \notin V$ then $V := V \cup \{ s' \}$ $W := W \cup \{ s' \}$ return true

 $V := \{ S_0 \}$

Time

Thu Ion 01 18.44.16 (

O Please ask questions along the way!

State space exploration is a main approach to computeraided verification:

State space exploration is a main approach to computeraided verification:

State space exploration is a main approach to computeraided verification:

State space exploration is a main approach to computeraided verification:

State space exploration is a main approach to computeraided verification:

State space exploration is a main approach to computeraided verification:

State space exploration is a main approach to computeraided verification:

State space exploration is a main approach to computeraided verification:

State space exploration is a main approach to computeraided verification:

Nodes: Reachable states Arcs: Transition executions Paths: Execution sequences

✓ Highly automatic behavioural properties ✓ Diagnostic information

State space exploration is a main approach to computeraided verification:

÷State spaces are large

✓ Highly automatic behavioural properties ✓ Diagnostic information

State space exploration is a main approach to computeraided verification:

A main research challenge is techniques for alleviating the state explosion problem

÷State spaces are large

behavioural properties ✓ Diagnostic information

✓ Highly automatic

Philosophers

The State Explosion Problem

State Space Methods

Store states compactly Delete states during exploration Store only some states Use external memory

State Space Method Zoo

State Space Method Zoo

Symbolic Model Checking

Partial order reduction

µ-calculus Sweep-line method State caching LTL Symmetry reduction Modular state spaces Bit-state hashing Hash compaction

Exploits system characteristics

No method works well in general

Trade-off between memory, time, and expressive power

State Space Method Zoo

Symbolic Model Checking

Time

Partial order reduction

Sweep-line method State caching LTL Modular state spaces Bit-state hashing

Exploits system characteristics

No method works well in general

Trade-off between memory, time, and expressive power

µ-calculus Symmetry reduction Hash compaction

Observations

State space methods can now be used to validate industrial-sized practical systems

Active research: better method are devised all the time

Implications for computer tools

A tool must support a wide range of methods

A tool must be extensible

Next generation tool for state space analysis

 \bigcirc ASAP = <u>A</u>SCoVeCo <u>State</u> space <u>A</u>nalysis <u>P</u>latform

ASCoVeCo = <u>Advanced</u> State space Methods and Computer Tools for Verification of Communication Protocols

3 year research project

Aim and Vision

Support 3 (4) usage scenarios **Research**: Implementation and experiments **Education**: User and implementation perspective **Industrial use**: Ease of use, stability, highly automatic, pragmatic methods and expressiveness **(Facilitator for other tools:** Building blocks that are easy to use in other contexts)

Challenge: How to facilitate all of this in a single tool

Outline for Rest of Tutorial **O** ASAP Practical Use Overification jobs and JoSEL Architecture of ASAP Simple methods **Break** O Advanced Methods Extending ASAP Status and Outlook