
Advanced State Space
Methods and ASAP:

Practical Use
Michael Westergaard

Department of Computer Science
Aarhus University

mw@cs.au.dk

V := { s0 }
W := { s0 }
while W ≠ ∅ do
Select an s ∈ W
W := W ∖ { s }
if ¬I(s) then

return false
for all t, s’ such that s →t s’ do

if s’ ∉ V then
V := V ∪ { s’ }
W := W ∪ { s’ }

return true

mailto:mw@cs.au.dk
mailto:mw@cs.au.dk

Verification Jobs

Verification of a a model is done using a
verification project consisting of

CPN Models to be analyzed

Queries expressing the properties we
are interested in

Verification jobs coupling models,
queries, and state space methods

Reports reflecting results of executing
verification jobs

p

1`p++1`((p + 1) mod n)

p

c

p

(p, old)

(p, c)
c

p

Done

Take
Second

[p = c orelse
 (p +1) mod n = c,
 c <> old]

Take
First

[p = c orelse
 (p +1) mod n = c]

Chopsticks

CHOP

Eating

PHIL

Has One

PHILxCHOP

Waiting

PHIL

5

1`0++
1`1++
1`2++
1`3++
1`4

51`0++
1`1++
1`2++
1`3++
1`4

Example:
Dining
Philosophers

Simple execution of
the model

Demo:
Dining Philosophers (01)

Do a bit of simple simulation

Example:
Check for Deadlocks

Demo:
Check for Deadlocks (02)

Creation of Verification project

Loading models

Creating a Verification job from a template

Executing a job template

Reporting

p

1`p++1`((p + 1) mod n)

p

c

p

(p, old)

(p, c)
c

p

Done

Take
Second

[p = c orelse
 (p +1) mod n = c,
 c <> old]

Take
First

[p = c orelse
 (p +1) mod n = c]

Chopsticks

CHOP

Eating

PHIL

Has One

PHILxCHOP

Waiting

PHIL

5

1`0++
1`1++
1`2++
1`3++
1`4

51`0++
1`1++
1`2++
1`3++
1`4

JoSEL: Background

ASAP Supports a wide range of state space methods

Depth-first and breadth-first traversal

On-line and off-line analysis

Bit-state hashing and hash compaction

Sweep-line and ComBack methods

Safety properties, CTL, LTL

JoSEL: Background

Applying a state space methods consists of

1. Specifying a model to analyze

2. Making queries expressing desired properties

3. Select method to use for verification

4. Set parameters of and instantiate the
selected method

5. Execute the traversal

6. Post-process and interpret the results

JoSEL: Aim

Develop a high-level language making it
possible to tie the model, queries and
desired state space method together

Support research, education and industrial
application scenarios

JoSEL: Requirements

Abstraction: Hide details from users

Low-level control: Make it possible to access
details when required for performance

Modularity: Facilitate construction and use of
building blocks (templates) in verification jobs

Extendibility: Allow extension for new
methods as needed

The hash function used to hash states when
storing in a hash table

JoSEL Overview

Graphical language
inspired by data-flow
diagrams and hierarchy
of CP-nets

Basic unit is a task

Tasks have typed input
and output ports

JoSEL Overview

Graphical language
inspired by data-flow
diagrams and hierarchy
of CP-nets

Basic unit is a task

Tasks have typed input
and output ports

JoSEL Overview

Graphical language
inspired by data-flow
diagrams and hierarchy
of CP-nets

Basic unit is a task

Tasks have typed input
and output ports

Output and input ports can be connected

A verification job (job) is a set of tasks and
their connections

Output and input ports can be connected

A verification job (job) is a set of tasks and
their connections

Jobs can have
exported ports

Jobs can be
represented by
macro tasks
(macros)

Jobs can have
exported ports

Jobs can be
represented by
macro tasks
(macros)

Jobs can have
exported ports

Jobs can be
represented by
macro tasks
(macros)

Deadlock Checker

Deadlock Checker

Deadlock Checker

Load a model

Deadlock Checker

Load a model

…from
this file

Deadlock Checker

Load a model

…from
this file

Instantiate the
“no deadlock”

property

Deadlock Checker

Load a model

…from
this file

Instantiate the
“no deadlock”

property

…check the
safety property
for the model

Deadlock Checker

Load a model

…from
this file

Instantiate the
“no deadlock”

property

…check the
safety property
for the model

…and dump
the results in a

report

Safety Checker

Safety Checker

Check the given
property using

the given
exploration

Safety Checker

Check the given
property using

the given
exploration

Stop after finding
at most 10 errors

Safety Checker

Check the given
property using

the given
exploration

Stop after finding
at most 10 errors

Build error-traces
during exploration

Safety Checker

Check the given
property using

the given
exploration

Stop after finding
at most 10 errors

Build error-traces
during exploration

Technical – just make
sure the letters match

Safety Checker

Check the given
property using

the given
exploration

Stop after finding
at most 10 errors

Build error-traces
during exploration

Technical – just make
sure the letters match

Exploration
algorithm

Safety Checker

Check the given
property using

the given
exploration

Stop after finding
at most 10 errors

Build error-traces
during exploration

Technical – just make
sure the letters match

Exploration
algorithm

Temporary
storage is a

queue

Safety Checker

Check the given
property using

the given
exploration

Stop after finding
at most 10 errors

Build error-traces
during exploration

Technical – just make
sure the letters match

Exploration
algorithm

Temporary
storage is a

queue

Permanent storage
is a hash table

Safety Checker

Check the given
property using

the given
exploration

Stop after finding
at most 10 errors

Build error-traces
during exploration

Technical – just make
sure the letters match

Exploration
algorithm

Temporary
storage is a

queue

Permanent storage
is a hash table

Technical –
allows us to
only specify
the model

once on the
level above

Hash Storage

Hash Storage

Instantiate the
permanent

storage

Hash Storage

Instantiate the
permanent

storage

…using this
(built-in) hash

function

Hash Storage

Instantiate the
permanent

storage

…using this
(built-in) hash

function

…and initially make
room for 1000 states

(expands automatically)

Hash Storage

Instantiate the
permanent

storage

…using this
(built-in) hash

function

…and initially make
room for 1000 states

(expands automatically)

Technical –
allows us to
only specify
the model

once on the
level above

Example:
Playing with JoSEL

Demo:
Playing with JoSEL (03)

Displaying error trace

Displaying multiple error traces in a single
window

Custom Properties

Some times we may want to check
properties other than absence of deadlocks

Custom properties are created using SML

ASAP automatically generates a template
formula tailored to a specific model

Example:
Mutual Exclusion

Example:
Mutual Exclusion

We want to check that two adjacent
philosophers cannot be eating at the same time

I.e., that they are not allowed access to a
shared resource (chop-stick) at the same time

This is equivalent to checking that if philosopher
p is eating, then philosopher p+1 is not (mod n)

A Bit of SML
Check if there is an element “p” in “lst” that
satisfies the predicate “f(p)”:
List.exists (fn p => f(p)) lst

Check if “2 + 1 mod 7” belongs to a list, “lst”:
List.exists (fn p' => p’ = (2 + 1) mod 7) lst

Check if “p + 1 mod n” belongs to a list, “lst”:
List.exists (fn p' => p’ = (p + 1) mod n) lst

Check if there is an element “p” in “lst” such
that “p + 1 mod n” belongs to “lst”:
List.exists (fn p => List.exists
 (fn p' => p' = (p + 1) mod n) lst) lst

Yes, this is inefficient; we can sort
“lst” and only compare neighbors

Example:
Mutual Exclusion

fun query (state, events) =
	 let
	 	 fun query'New_Page { Waiting, Has_One, Eating,
 Philosophers, Initialized,
 Chopsticks } = true
	 	 fun query'state { New_Page} = query'New_Page New_Page
	 in
	 	 query'state state
	 end

fun query (state, events) =
	 let
	 	 fun query'New_Page { Waiting, Has_One, Eating,
 Philosophers, Initialized,
 Chopsticks } =
 not (List.exists (fn p => List.exists
 (fn p' => p’ =
 (p + 1) mod (List.hd Philosophers)
) Eating) Eating)
	 	 fun query'state { New_Page} = query'New_Page New_Page
	 in
	 	 query'state state

Example:
Mutual Exclusion

Demo:
Mutual Exclusion (04)

Create property

Edit JoSEL job

Run checker

Example:
The Sweep-line Method

State Space Methods

Store states compactly

Delete states during exploration

Store only some states

Use external memory

State Space Methods

Store states compactly

Delete states during exploration

Store only some states

Use external memory

Briefly:
The Sweep-line Method

Uses notion of progress in model identified
by a progress measure

A conceptual sweep-line marks a border
between states that have already been
discovered

Only states in front of the sweep-line is
kept in memory

Briefly:
A Progress Measure

ASAP automatically generates a template
progress measure (much like queries)

We just have to fill in the blanks

Let’s use the number of eating philosophers
as the progress value

fun query (state, events) =
	 let
	 	 fun query'New_Page { Waiting, Has_One, Eating,
 Philosophers, Initialized,
 Chopsticks } =
 List.length Eating
	 	 fun query'state { New_Page} = query'New_Page New_Page
	 in
	 	 query'state state
	 end

Example:
Progress Meassure

Demo:
The Sweep-line Method

Create new from template (05)

Change safety-checker to use sweep-line
method instead (06)

Note no change at top level

Run check

Move up progress measure

Example:
Drawing SS Graphs

Drawing SS Graphs

CPN Tools supports interactive drawing of
SS graphs

ASAP supports automatic drawing of SS
graphs

Only all of the graph (or predefined
subsets)

Demo:
Drawing SS Graphs (07)

Change safety checker to draw SS graph

Change model size to 2 philosophers

Play with layouts

Export to DOT and GML

Example:
Simple Protocol

Example:
Simple Protocol

10 packets

Example:
Simple Protocol

10 packets

Example:
Simple Protocol

3000 nodes

10 packets

