eCo State space

51S Platforml 9
Advanced S
Methods and ASAP:
Practical Use

Michael Westergaard
,*;;j,;‘, Department of Computer Science
;/,3;,:,’,22’,: Aarhus University
:///jf’”:,, mMw@cs.au.dk
_
)/

mailto:mw@cs.au.dk
mailto:mw@cs.au.dk

Verirication Jobs

— Verification of a a model IS done using a
Verification project consisting of

— CPN Models to be analyzed

— Queries expressing the properties we
are interested in

— Verification jobs coupling models,
gueries, and state space methods

— Reports reflecting results of executing
verification jobs

Example:
DININg
Philosophers

— Simple execution of
the model —

' (p +1) mod n = ¢,
- ¢ <> old]

[p = c orelse
(p +1) mod n =]

Done
- 1 p++1 ((p + 1) mod n)

3 "V al e | | n
D\Q.U}Oj

4

| { o B B
4D444
1€

= Do a bit of simple simulation

800 ASAP @)
v v [5 fahoma = 9 = . - vy —v _5_:3 v OBviav ‘ N FHv | 100% v
i £ Debug [Verification [Edit
i 0% Y T 0| *srh % | IS *Safety Checker | i *dsfn =
&% . Palette P>
v (= jobs N @ E
» I dsfn [safety Checker | : 3 s
[Input Instantiate Model | [Simple Report || . ,
v 5 srh tr P i Model Answe I JJ < Connection
: I |e|}—|> Model file Mode Results
» < Macro: S‘afety Checker Property Error trace ~ Macro
» < Macro: Simple Report [No Dead States] e Coambnle s
v (= models Model Safety propert . .
| protocol.model . Explorations
| QueueSystem.model . Graph
> queries = Misc
v (= reports =
» (= Execution 1 = Models
» (=~ Execution 2 > Queries

» (=~ Execution 3
» = Execution 4
» = Execution 5

_ Properties &2 | 8K Problems E! Console
dfb/jobs/dsfn.josel

" Property
Resource

¥Info

derived
editable
last modified
linked
location
name

Value

false
true
August 19, 2009 6:02:00 PM
false

dsfn.josel

/Users/michael /ASAP_Workspace/dfb/jobs/dsfn.josel

Example:

Check for Deadlocks

=~ Reporting v

- v = g

= lLoading models .
= Creating a Verification job from a template
= Executing a job template

= Reporting

J 4 ""1_!" - J’(rlj |
£ [Verification [Edit

»,scs ASAP oy

[Project Explorer &2 ’

&~ =0|

@ Results %

@ Statistics

¥ checker @ Configuration

vdemo
v (= jobs
v I checker
» < Macro: Safety Checker
» < Macro: Simple Report
v = models
v | deadlocking philosophers.mod
» [#2 Declarations
— New Page
L queries
v (= reports
v (= Execution 1
‘@ Configuration.rptdocument

¢ Results.rptdocument

@ Statistics.rptdocument

&——m—-——g)4 I
C Progress 23‘ %~ =0

No operations to display at this time.

No Dead States false

New_Page.Has_One: '00) ++ I'(1,D)++ 1'2,2) ++ I'(3,3) ++ 1'(4 4)
New_Page.Philosophers: 1°5

Error trace

New_Page.Has_One: I'(0,1) ++ I'(1,2) ++ I'(23) ++ ' (34) ++ 1" (4,0)
New_Page.Philosophers: 1°5

Error trace

L3

& Console & E"N:

Simulator Console
- let open Javabxecute in
case (SafetyChecker.explore true @ (CPN'Structure'MLExplicitRemoveStorage'4.emptyStorage { init_size = @ }(O) ((
of [] =» execute "result" []
I - == QO
end
val 1t = (O : unit

9

T4 »

o ———

@ Configuration | @ Statistics | @ z

No Dead States false

Error trace New_Page.Has_One: I'00) ++ I'(1,1) ++ 1"'(2,2) ++ ' (3,3) ++ 1" (4 4)
New_Page Philosophers: 1°5

Error trace New_Page.Has One: I'(O,) ++ I'(1,2) ++ 1I'(23) ++ '3 4) ++ 1'(4,0)
New_Page Philosophers: 1°5

L3

£l Console &3

Simulator Console
- let open Javabxecute in
case (SafetyChecker.explore true @ (CPN'Structure'MLExplicitRemoves
of [] => execute "result" []
LT sy Second
end
val it = (O : unit

f -

= ASAP Supports a wide range of state space methods:

™ Depth-first and breadth-first traversal

= On-line and off-line analysis

= Bit-state hashing and hash compaction
= Sweep-line and ComBack methods

- Safety properties, CTL, LTL

JOSEL: Background

— Applying a state space methods consIsts of

1. Specifying a model to analyze

2. Making queries expressing desired properties
3. Select method to use for verification
4

. Set parameters of and instantiate the
selected method

5. Execute the traversal
6. Post-process and interpret the results

-~ = Develop a high-level language mak

: possible to tie the model, queries and
desired state space method together

= Support research, education and industrial
application scenarios

JOSEL: Requirements

Abstraction:; Hide details from users

Low-level control: Make it possible to access
details when required for performance

The-hash function-used to-hash states when

Modularity: Facilitate construction and use of
building blocks (templates) in verification jobs

Extendibility: Allow extension for hew
methods as needed

JOSEL Overview

— Graphical language
Inspired by data-flow

diagrams and hierarchy
of CP-nets |

~ Basic unit is a task

~ Tasks have typed input
and output ports

JOSEL Overview

— Graphical language
Inspired by: data-flow

diagrams and hierarchy — gliemer
of CP-nets |

~ Basic unit is a task

~ Tasks have typed input
and output ports

JOSEL Overview

~ Graphical language
Inspired by: data-flow

diagrams and hierarchy — gliemer

Of CP-netS > Model Exploration T|¢ |
> Storage |
D Basic unit is a task 7y Malting set >/

~ Tasks have typed input
and output ports

f Instantiate Mode| W f Waiting Set Exploration
> Model file Model ¢ > Model Exploration T| ¢

[Hash Table Storage | > Storage
Model Storage > Waiting set

Hash function

Initial size

f Queue

nine Waiting sef

& Output and input ports can be connected

& A verification job (job) is a set of tasks and
their connections

f Instantiate Mode| W f Waiting Set Exploration
> Model file Model ¢ > Model Exploration T| ¢

[Hash Table Storage | > Storage
Model Storage > Waiting set

Hash function
\ S

Initial size

f Queue T ~

nine Waiting sef

& Output and input ports can be connected

& A verification job (job) is a set of tasks and
their connections

B — Jobs can have

l':?| ' exported ports

> Exploration ST AnswerlBe

> Property Error Tracele

> Build traces
'} Maximum of errors

¢ & Jobs can be
Safety Checker _ represented by
Answe macro tasks
- (macros)

B — Jobs can have

l':?| ' exported ports

> Exploration ST AnswerlBe

> Property Error Tracel®

> Build traces
'} Maximum of errors

¢ & Jobs can be
Safety Checker _ represented by
Answe macro tasks
- (macros)

B — Jobs can have

l':?| ' exported ports

> Exploration ST AnswerlBe

> Property Error Tracel®

> Build traces
'} Maximum of errors

¢ & Jobs can be
Safety Checker _ represented by
Answe macro tasks
- (macros)

®00 ASAP =

v &l [%5 || Tahoma +119 : A iy 0F v o ‘ N H | 100% v
i £ Debug [Verification [Edit
' 5% Y T 0| *srh R »E‘ *Safety Checker | [*dsfn | =
. . Palette P>
v@{éb; ¢ (Safety Checker] k&
el [Input Instantiate Model | [Simple Report || . ,
v [srh Model Answe <> Connection
> ¢ Macro: Safety Checker l |FI|QH Model file Model Results JJ
' S rmabe 4 Property Error trace © Macro
» <+ Macro: Simple Report I No Dead States | i N _ Checkers
v (= models Model Safety propert = S
_ protocol.model . Explorations
» QueueSystem.model .~ Graph
> queries | — Misc
v (= reports |~
» (= Execution 1 ~ Models
» (= Execution 2 . Queries "
» (= Execution 3 - Reporting nz
» .~ Execution 4 — — = —
» (= Execution 5 | Properties &3 »{L Problems4 El Co_nsole‘ R 8
dfb/jobs/dsfn.josel
= " Property Value
esource . .
derived false
editable true
last modified August 19, 2009 6:02:00 PM
linked false
location /Users/michael /ASAP_Workspace/dfb/jobs/dsfn.josel
name dsfn.josel

Deadlock Checker

[Safety Checker |

f Input f Instantiate Model Simple Report |
Model Answe }
IFild >— > Model file Model ¢ | }} Results
> Property Error trace o
[No Dead States - — 4
| > Model Safety property| ¢

Deadlock Checker

\Loadamodel

[Safety Checker |

f Input f Instantiate Model Simple Report |
Model Answe }
IFild > > Model file Model ¢ | »} Results
> Property Error trace o
[No Dead States - — 4
| > Model Safety propertyl ¢

Deadlock Checker

Load a model

...from
- this file
[Input (" Instantiate Model [Safety Checker |

i Model A } Simple Report |
ode nswe
IFild > > Model file Model ¢ |> property Error trace }’} Results
\—J

f No Dead States
> Model Safety property| o

Deadlock Checker

Load @a model [nstantiate the
from “no deadlock”

this file ~ Property

f Input f Instantiate Model
IFil >—> Model file Model ¢ -
f No Dead States
| > Model Safety property| ¢

[Safety Checker |

Simple Report
Model Answe } & P]
| }} Results

Deadlock Checker

‘Load a model [nstantiate the
_from “no deadlock”

this file property

f Input f Instantiate Model

[Safety Checker |
IFilef>—{> Model file ~ Model ¢ -
[No Dead States

Simple Report
Model Answe } & P]
| }} Results
> Model Safety property| o

...check the

safety property
fo_r the model

Deadlock Checker

Load a model Instantiate the ..and dump
_from “no deadlock” the results in a
this file - property e report

[Safety Checker |
f No Dead States

Simple Report
Model Answe } & P]
| }} Results
> Model Safety property| o

...check the

safety property
for the model

f Input f Instantiate Model
IFil >—> Model file Model ¢ a

Deadlock Checker

[

> In

Pipe 1 *

Out

Queue

e

Engine Waiting

Waiting Set Exploration

V] t}
0

Exploration T -> ST

of 3 Model Exploration T| ¢ Exploration T Exploration ST| 2 (On-the-fly Safety Checker
Storage > Exploration ST Answerll®
Waiting set [> Property Error Tracefle
_ Model
e Storage
[Input l _—{> Build traces
Boolean) o= _{> Maximum of errors
f Input -

Integer &~

Safety Checker

f Queue (Waiting Set Exploration (Exploration T -> ST

| > Engine Waiting set_2 Model Exploration T| ¢ Exploration T Exploration ST| ¢ (" On-the-fly Safety Checker

[&> Storage > Exploration ST Answe
Pipe ..

SyT——— (" Hash Storage | > Waiting set > Property Error Trace

| > Model Storage Model

| Storage
[Input l > Build traces
Boolean ¢

| > Maximum of errors
f nput ~ ’ |
Ilntpege - é i
. Check the given

property using
the given

Safety @[]/« exploration

Queue (Waiting Set Exploration (Exploration T -> ST

Engine Waitin Model Exploration Exploration T Exploration S (On-the-fly Safety Checker

: Storage Exploration ST Answe
Pipe iti
P [Hash Storage] Waiting set [> Property Error Trac__l

> In Ou

Model Storag — Model

Storage
[_Input Build traces
Boolea

[Input
[y _—
Stop after finding ey CheCk the given

at most 10 errors property using
the given

Safety @ p[=Tef« exploration

Queue (Waiting Set Exploration (Exploration T -> ST

Engine Waiting set_2 Model Exploration T| ¢ Exploration T Exploration ST| ¢ (On-the-fly Safety Checker
() / t} Storage > Exploration ST Answe
ipe “ M Hash Storage) | > Waiting set B> Property Error Tracel®
[In Ou Model
Storage
[Input > Build traces

LBoolea > > Maximum of errors

] =
Stop after finding 5 g CNeCK the given
at most 10 errors property using

the given
S « Build error-traces ,¢ exploration
during exploration

Technical — just make
‘sure the letters match

[Queue (Waiting Set Exploration (Exploration T -> ST
Engine Waiting set_2 Model Exploration T ¢ Exploration T Exploration ST| 2 (" On-the-fly Safety Checker
o el
/' ﬁ> Storage > Exploration ST Answe
Pipe 3 (Hash Storage | > Waiting set > Property Error Tracel?

In Out

‘ Model Storaged ¢ Model

Storage
[Input > Build traces

LBoolea > > Maximum of errors

e —
Stop after finding 5 gy ChECK the given
at most 10 errors property using

the given
S - Build error-traces ,¢ exploration
during exploration

Exploration

sure the letters match

[Queue (Waiting Set Exploration (Exploration T -> ST
Engine Waiting set 2 Model Exploration T| ¢ Exploration T Exploration ST| ¢ (On-the-fly Safety Checker
() / t} Storage > Exploration ST Answe
ipe | M Hash Storage) | > Waiting set B> Property Error Tracel®
R In_Outs ‘ Model Storagd — Model
Storage
[Input > Build traces

M f > Maximum of errors

e —
Stop after finding o g ChECk the given
at most 10 errors property using

the given
S - Build error-traces)¢ exploration
during exploration

Temporary Exploration
storageisa algorithm
queue

Technical — just make
sure the letters match

Queue [Waiting Set Exploration (Exploration T -> ST

Engine Waiting set_2 Model Exploration T| ¢ Exploration T Exploration ST| ¢ (On-the-fly Safety Checker
() / t} Storage > Exploration ST Answe
ipe | M Hash Storage) | > Waiting set B> Property Error Tracel®
R In_Outs | > Model Storagd ¢ Model
Storage
[Input > Build traces

LBoolea > > Maximum of errors

(L'I:t:te'f A
Check the given
property using

the given
¢ exploration

Stop after finding
at most 10 errors

S « Build error-traces
during exploration

Temporary Exploration
storage is a algorithm
queue

Queue [Waiting Set Exploration (Exploration T -> ST

Technical — just make
sure the letters match

Engine Model Exploration T| ¢ Exploration T Exploration ST| ¢ (" On-the—fly Safety Checker
. / ‘.P Storage o Exploration ST Answe
[Pipe ‘ ™ Hash Storage) > Waiting set [> Property Error Tracele
R In_Outs | > Model Storagd ¢ — Model
Storage

[Input > Build traces

Permanent storage [_soolearl L viaximur of errors

IS @ hash table inpu \
L Integer] A

Check the given

property using
the given
¢ exploration

e

“ Stop after finding .,
at most 10 errors

S « Build error-traces
during exploration

Temporary Exploration

storageisa algorithm lechnical = just make

sure the letters match

(Queue [Waiting Set Exploration (Exploration T -> ST
Engine Waiting set 3 Model Exploration T| ¢ Exploration T Exploration ST/ ¢ (On-the-fly Safety Checker
/ ‘} Storage } Exploration ST Answe
Pipe 3 ™ Hash Storage) > Waiting set > Property Error Trace
n Out
— | > Model Storagd ¢ Model
Storage
P t t [Input > Build traces
erl I |anen S Orage M > | > Maximum of errors

= is a hash table —
- B

Technical — | Stop after finding = s Check the given
allows us to | at most 10 errors property using
only specify the given
the model ¢ exploration
once on the
level above

S « Build error-traces
during exploration

\

W Hash Table Storage

f Pipe

[}% n Ou } Model Storage[:l>>

f CPN Tools Hash Function 1 W Hash function
Model Hash functio Initial size

r

Input W
Intege

.

Hash Storage

Hash Table Storage

[Pipe |
[}% n Ou } Model Storage[:l>>
f CPN Tools Hash Function 1 W Hash function
Model Hash functio Initial size 5

i Input W

 Intege Instantiate the
- per manent

Hash Storage

...using this

(built-in) hash :
D function Hash Table Storage
[:l>£ N |p2u W — - } Model Storage[:1>>
[CPN Tools Hash Function 1 | Hash function

Model Hash functio Initial size 5
i Input W

 Intege Instantiate the

permanent

storage

Hash Storage

...using this
(built-in) hash \
([Pipe) function : Hash Table Storage

> Model Storage[:l>>

[:[% In QOu
f CPN Tools Hash Function 1 W Hash function
Model Hash;y Initial size _

i Input W
K Intege

Instantiate the

- permanent
...and initially make storage

room for 1000 states
(expands automatically)

Hash Storage

...using this
(built-in) hash

. - Hash Table Storage
[l>£ InPIpZu W funCtlon > Model Storage[:[»
&\é CPN Tools Hash Function 1 M Hash function
Model Hash functio Initial size 5
r Input [;/l}
Technical — Intege Instantiate the
allows us to o permanent
only specify ~ ---and initially make storage

the model | room for 1000 states __
once on the | (€xpands automatically)

level above Hash StOI‘age

tate >pace visualization

2 Statistics 52 |

Execution time 0.183
Nodes 30 »
Arcs 56 +

@ Configuration &3 |

Time Thu Jan 01 18:44:16 CET 1970
Model hyman

Traversal BES

Traversal BES

Storage Hash Table

Hash function CPNTools HashFunction 1

@ Results 22

Example:

Playing with JOSEL

Demo:

|

21avVing Wi

» o el e e D

: = Displaying error trace

= Displaying multiple error traces in a single
window

= Some times we may want to check
- properties other than absence of deadlocks

= Custom properties are created using SML
= ASAP automatically generates a template
formula tailored to a specific model

(No Dead States l
> Model Safety property ¢

[Safety Checker |
(Instantiate Model ﬁ ' Model A
ode nswer
> Model file Model} \{ [l

T nput [SML Safety Property \ Property Error trace o
Fildy > Model Safety Property| ¢
> > SML file
Input

Example:
Mutual Exclusion

Example:
Mutual Exclusion

— We want to check that two adjacent
philosophers cannot be eating at the same time

— I.e., that they are not allowed access to a
shared resource (chop-stick) at the same time

— This is equivalent to checking that if philosopher
p IS eating, then philosopher p+1 is not (mod n)

: | ‘—’1 3 [- " o
y | D | y | | ‘ y ‘
N | H \) 4) 4)

-~ O Checkif *p + 1 mod n” beIOngs to a I|st—“Ist” =

\\ 77 ;

= Check if there is an element “p” in “Ist” such
that "p + 1 mod n” belongs to “lst™:

Yes, this is inefficient; we can sort

“Ist” and only compare neighbors

H\\um pie
1 1al Exclusion

= Ve Yeala) oyl

EXalll _,‘:)Jﬁ "

RA.Lovoal s [l om— S——
Mutual Exclusion

not (List.exists (fn p => List.exists
(fnp' =>p’ =

(p + 1) mod (List.hd Philosophers)
) Eating) Eating)

%Dsm@“

Mu QD [|

) = Create property

“Edit JoSEL job

—
—
—
-

“Run checker

f Sweep Line Exploration

— — > Model Exploration TU& [Exploration T -> ST
> Storage > Exploration T Exploration ST| ¢
i

f On-the-fly Safety:
> Exploration ST

> Progress Measure

N > Persistent initial states > Property
g I > Model
_ —{ > Storage
Input
> Build traces
Boolean o

{> Maximum of error

r

Input

Intege)

Example:

The Sweep-line Method

0 o)jojla

| |

elete states during exploration

U) U

tore only some states

“Use external memory

State Space Methoc

A--‘A .A‘

- O Store states compactly

Delete states during exploration

Store only some states

A=
-
A=
-y

Use external memory

Briefly:
The Sweep-linhe Method

— Uses notion of progress in model identified
Dy a progress measure

— A conceptual sweep-line marks a border
between states that have already been
discovered

= Only states in front of the sweep-line is
kept iIn memory

= ASAP automatically generates a template
progress measure (much like queries)

= We just have to fill in the blanks

= Let’s use the number of eating philosophers
as the progress value

Example:
Progress Meassure

List.length Eating =

—

-~ = (Change safety-checker to use sweep-line
method instead (06)

= Note no change at top level
= Run check

-~ Move up progress measure

//

/E'
B

D
(>

Drawing SS Graphs

———SS-graphs——————————’ ——

= ASAP supports automatic drawing of SS
graphs

= Only all of the graph (or predefined
subsets)

-~ = (Change safety checker to draw SS graph

~—

= Change model size to 2 philosophers
= Play with layouts

- Export to DOT and GML

Simple Protocol

=

o
mt
g ©
ca
G o

o
n

£

7

Example
Simple Protocol

’T.*r'T
] e,
K o W sald
"d“}“ "“ i ‘I : a : / .
. 1] R R -
T T ST L p—
il - 3000-nodes
il ssisesiiit
et IS
ay‘ {I ‘;fi;;;‘ :f{.
i

B

£
=

- e
]

“:“ 22— T — T —
4 > \ 7 V - 'jm it == ‘:N::Y_ e =
10-packets e

Example:
Simple Protocol

