
Handling Massive Terrains and
Unreliable Memory

Thomas Mølhave

PhD Dissertation

Department of Computer Science
Aarhus University

Denmark

Handling Massive Terrains and Unreliable
Memory

A Dissertation
Presented to the Faculty of Science

of Aarhus University
in Partial Fulfilment of the Requirements for the

PhD Degree

by
Thomas Mølhave
August 14, 2009

Abstract

Recent technological advances have greatly increased the ability to acquire,
store, and analyze data. These developments have significantly improved the
potential of many commercial and scientific applications, and lead to many
new scientific discoveries. We are growing accustomed to accessing massive
amounts of information from almost anywhere using devices ranging from cell
phones and tiny GPS navigation systems, to ordinary computers and beyond.
The large amount of information available presents a number of problems and
opportunities. One of the main obstacles is most software is not designed to
handle large amounts of data, resulting in crashes or running for a very long
time on even moderately-sized data sets.

Another problem is contemporary memory devices can be unreliable due to
a number of factors, such as power failures, radiation, and cosmic rays. The
content of a cell in unreliable memory can be silently altered and this can
adversely affect most traditional algorithms.

The focus of this dissertation is on the algorithms and data structures
specifically designed for solving a number of the problems involving large data
sets and unreliable memory devices. The dissertation is divided into two parts.

In Part I we use the classical external memory model by Aggarwal and
Vitter, and the cache-oblivious model recently proposed by Frigo et al., to design
cache-efficient algorithms. We focus on problems involving terrain models which,
due to modern terrestrial scanning techniques, can be very large. We present
the TerraStream software package, which solves many common computational
problems on big terrains. We also present an I/O-efficient algorithm for com-
puting contour maps of a terrain and a cache-oblivious algorithm for finding
intersections between two sets of internally non-intersecting line segments.

In Part II we use the faulty memory RAM, proposed by Finocchi and Italiano,
to model unreliable memory circuits and design algorithms that are resilient to
memory faults. We present a resilient priority as well as an optimal comparison-
based resilient algorithm for searching in a sorted array. We also show how to
use this algorithm to get a dynamic resilient dictionary. Finally, we present
a model that combines the standard external memory model with the faulty
memory RAM and present lower and upper bounds for I/O-efficient resilient
dictionaries, an I/O-efficient resilient sorting algorithm and an I/O-efficient
resilient priority queue.

v

Acknowledgements

I want to thank my advisor, Lars Arge, for four years of serious work, discussions
about life, and lots of fun inside and outside the walls of the university as well
as at various soccer stadiums. I also want to thank Pankaj Agarwal for hosting
and working with me during my 2007 visit to Duke University, and Adam
Buchsbaum for hosting and working with me during my summer internship at
AT&T Research Labs in 2007. My visits to AT&T and Duke meant a lot to
me personally and professionally, and I am grateful for the opportunity it gave
me to explore a new country and gain many new friends. Also, I want to thank
Ivan Damg̊ard, Ian Munro and Ulrich Meyer for agreeing to be on my PhD
committee.

My papers have not been written in isolation and I would like to express
my sincere gratitude to my coauthors that have worked with me through the
years; they have all taught me a lot about the art of computer science and the
craftsmanship required to write good scientific papers. First I want to thank the
coauthors of all my currently published papers and those that form the backbone
of this dissertation: Lars Arge, Gerth Brodal, Norbert Zeh, Allan Jørgensen, Ke
Yi, Helena Mitasova, Bardia Sadri, Pankaj Agarwal, Rolf Fagerberg, Gabriel
Moruz, Fabrizio Grandoni, Irene Finocchi and Giuseppe Italiano. I would also
like to thank my coauthors on those of my papers that are still in preparation and
those that are under review: Lasse Deleuran, Kasper Larsen, Morten Revsbæk,
Jesper Eshøj, Peter Bøcher and Jens-Christian Svenning.

I want to thank my good friends and office mates at Aarhus University, in
particular: Lars Petersen, Mikkel Krøigaard, Martin Geisler, Rune Thorbek,
Allan Grøndlund Jørgensen, Gabriel Moruz, Christian Schaffner, Henrik Blunck,
Doina Bucur, Morten Revsbæk, Jakob Truelsen and Kasper Larsen. I also want
to thank my friends from Duke University and those I met during my visit to
AT&T for their great company. To list a few: Jeff Phillips, Andrew Danner,
Bei Wang, Ashley Flavel, Svetlana Yarosh and Maritza Johnson. I also want
to thank our very talented programmers Thor Prentow and Adam Thomsen
who have helped tremendously in making TerraStream user-friendly, stable and
powerful.

Additionally I want to thank Lars Arge, Henrik Blunck, Gerth Brodal,
Martin Geisler, Shannon Glutting, Allan Grønlund Jørgensen and Thor Prentow
for providing valuable feedback on early drafts of this dissertation.

vii

Finally I want to thank my mom, Birgit, and my dad, Anders as well as
my sister, Helle, for their constant love, support and encouragement during my
upbringing and my eight years in Aarhus. I want to thank Shannon for her love
and support, and for showing me how much fun life outside computer science
can be.

Thomas Mølhave,
Århus, August 14, 2009.

viii

Contents

Abstract v

Acknowledgements vii

1 Introduction 1
1.1 Properties of Cache-Systems . 2

1.1.1 Memory hierarchies . 2
1.1.2 Disk drives . 3
1.1.3 Cache reliability . 4

1.2 Models of Computation . 5
1.2.1 Minimizing space usage 5
1.2.2 External-memory model 6
1.2.3 Cache-oblivious model . 7
1.2.4 Modelling solid state drives 7
1.2.5 Faulty memory RAM . 8

1.3 Overview and Results . 9
1.3.1 Short overview of the included papers 11

I Cache-Efficient Algorithms with GIS Applications 13

2 Background 15
2.1 Constructing Digital Elevation Models 15

2.1.1 Generating point clouds 16
2.1.2 Terrain models . 17

2.2 Contributions . 19

3 TerraStream: I/O-Efficiency in Practice 23
3.1 DEM Construction . 25
3.2 Hydrological Conditioning . 26

3.2.1 Topological persistence . 27
3.2.2 Partial flooding . 28

3.3 Flow Modeling . 29
3.3.1 Handling flat areas . 30

3.4 Watershed Hierarchy Extraction 33
3.5 Recent Developments and Ongoing Work 33

3.5.1 Volume and area computations 33

ix

3.5.2 Flood mapping . 34
3.5.3 Quality metric . 34
3.5.4 Contour maps . 35

4 I/O-Efficient Construction of Contour Maps 37
4.1 Our Contribution . 37
4.2 Preliminaries . 38
4.3 Level-ordering of Triangles . 42

4.3.1 Basic terrain . 42
4.3.2 Red and blue cut-trees . 43
4.3.3 Surgery on terrain . 46
4.3.4 Encoding of contours in the resulting basic terrain 49

4.4 Contour Algorithms . 52
4.4.1 Level-ordering of terrain triangles 53
4.4.2 Contour maps of basic terrains 54
4.4.3 Generalization to arbitrary terrains 55
4.4.4 Extracting nesting of contours 56
4.4.5 Answering contour queries 57

4.5 Conclusions . 58

5 Cache-Oblivious Red-Blue Line Segment Intersection 59
5.1 Our Contribution . 60
5.2 Topological Sorting of Planar st-Graphs 61

5.2.1 Properties . 61
5.2.2 Computing the topological order 62

5.3 Vertically Sorting Non-Intersecting Segments 64
5.4 Red-Blue Line Segment Intersection 66

5.4.1 The
√
N -merger . 66

5.4.2 Distribution sweeping . 67
5.5 Short-Long Intersections . 68

5.5.1 Populating red lists . 69
5.5.2 Reporting short-long intersections 70
5.5.3 Reducing the space usage 70

5.6 Long-Long Intersections . 71
5.6.1 A simple solution using superlinear space 71
5.6.2 Look-ahead . 73
5.6.3 Linear space via approximate counting of intersected seg-

ments . 74

II Resilient Algorithms 77

6 Background 79
6.1 Reliable Values . 79

6.1.1 The majority problem . 80
6.2 Resilient Sorting . 80

6.2.1 Resilient merging . 80

x

6.3 Contributions . 82
6.3.1 Priority queue . 82
6.3.2 Dictionaries . 83
6.3.3 I/O-efficient resilient sorting 83
6.3.4 Resilient Counting . 83

7 Resilient Priority Queue 85
7.1 Fault tolerant priority queue . 85

7.1.1 Structure . 86
7.1.2 Push and pull primitives 87
7.1.3 Insert and deletemin . 88

7.2 Analysis . 89
7.2.1 Correctness . 89
7.2.2 Complexity . 90

7.3 Lower bound . 92

8 Resilient Dictionaries 93
8.1 Optimal randomized static dictionary 93
8.2 Optimal static dictionary . 95
8.3 Dynamic dictionary . 98

9 I/O-Efficient Resilient Algorithms 103
9.1 Our Contribution . 103
9.2 Lower Bound for Dictionaries . 105
9.3 Randomized Static Dictionary . 107
9.4 Optimal Deterministic Static Dictionary 108
9.5 Dynamic Dictionaries . 111

9.5.1 Structure . 111
9.5.2 Operations . 112

9.6 Sorting . 113
9.6.1 Multi-way merging: . 113
9.6.2 Sorting . 114

9.7 Priority queue . 114
9.7.1 Operations on L . 115
9.7.2 Operations on internal buffers 119

Bibliography 121

xi

Chapter 1

Introduction

In recent years our society has become very “data driven” — we are collecting
truly massive amounts of data. In 2003, a Berkeley study [83] concluded that
the amount of information gathered in a few years at the turn of the century
was more than the total amount of information hitherto produced by the human
race. Our increased ability to acquire, store, and analyze data has significantly
improved the potential of many commercial and scientific applications, and has
lead to many new scientific discoveries. We are also growing accustomed to
seamlessly accessing massive amounts of information from almost anywhere
using devices ranging from cell phones and tiny GPS navigation systems, to
ordinary computers and beyond.

For many scientists, the access to vast amounts of information presents a
number of problems and opportunities. In 2008, the journal Nature published a
special issue entitled “Big Data,” in recognition of these [90]. Besides discussing
how to manage and store information so that it can both be used immediately
and archived for posterity, the special issue also notes that the art of analyzing
the information is getting increasingly important [70]. In some sense, the mindset
of many scientists has switched from one where information gathering plays a
major role to one where information analysis is the primary concern. Many new
discoveries may be made from the large amounts of data available from different
sensors if the information is properly managed.

This situation is similar in the commercial world. Many companies routinely
gather massive amounts of information, sometimes with no immediate application
in mind. Examples of big commercial data gathering operations include the
calling records for major phone companies and Wal-Mart’s enormous data
base of purchase information. Further examples are the big databases handled
by search engines and the transaction logs of banks. Additionally, recent
revolutionary improvements in remote sensing are rapidly expanding the quality
and quantity of geographical data. In particular, laser altimetry (lidar) gathers
georeferenced elevation data at unprecedented resolutions, and rates, and enables
potentially critically important applications, such as environmental and disaster
management.

The growing volume of information is not only beneficial for manufacturers
of storage devices, it also creates a growing demand for better and smarter data
analysis tools. Creating good data analysis tools involves many aspects from

1

2 Chapter 1. Introduction

Disk
Memory

CPU

L3

L2L1

CPU L2

Cores

L1

Figure 1.1: A simplified overview of some of the levels present in the cache
hierarchy of a typical desktop machine. In this situation each core has a separate
L1 and L2 cache and shares a L3 cache with the other core.

computer science such as visualisation, software design, user friendliness, data
warehousing, as well as algorithms and data structures. A lot of domain specific
knowledge is required in most cases as well, but, the focus of this dissertation is
on the algorithms and data structures specifically designed for solving a number
of problems involving large data sets.

We start in Section 1.1 with a short introduction to the aspects of mod-
ern hardware relevant for the content in this dissertation. Subsequently, we
explain why these hardware properties cause problems with standard models
of computations and thereby inspire many new models of computation. In
Section 1.2, we introduce some of the different types of models and algorithmic
design techniques proposed with these hardware limitations in mind. We end
the chapter in Section 1.3 with an overview of the contributions presented in
this dissertation and a description of the papers where these results have been
previously published.

1.1 Properties of Cache-Systems

This dissertation focuses on algorithms and data structures in models where
certain aspects of the storage area used by the algorithm is explicitly modelled.
In this section we describe some of these properties in order to better understand
the models that we present later.

1.1.1 Memory hierarchies

While the availability of high-quality data has enabled many applications, the
ever increasing size of manipulated data (or in some instances the decreasing
size of computing devices) has also exposed scalability problems with existing
systems. One main reason for these issues is, that algorithms in current systems
do not take the memory organization of modern machines (it being hand-
held devices, desktop machines, or super-computers) into account. One of the
essential features of modern memory systems is that they are made up of a
hierarchy of several levels [113]. The main reason for this is that price per unit

1.1. Properties of Cache-Systems 3

of storage increases dramatically as the performance characteristics improve. In
this section we consider the cache hierarchy of a typical contemporary desktop
computer. This hierarchy is depicted in Figure 1.1.

The lowest level, level one (denoted L1), is the fastest, smallest level. The
next level (L2) is bigger, but also a bit slower. A modern general purpose
processor can also have a third level of cache (L3) which is larger still, but also
slower than the first two levels. The next level is usually the main internal
memory of the computer, which is significantly bigger than the preceding caches
but also, unsurprisingly, slower. Finally, most computers have some form of
hard drive as the last level of caching. The hard drive is also the only level that
holds its content when the computer is powered down.

At the time of writing, the newest high-end consumer processor is the
Intel R©CoreTM i7. The processor has four cores which is increased to eight
virtual cores using Intel’s HyperThreading technology. Each of the four cores
have a private L1 cache size, which is split between an instruction cache and
a data cache getting 32 kilobytes1 each [72]. Each core also has an L2 cache,
which is 256 kilobytes large. Finally, all four cores share an eight megabyte L3
cache. The Core i7 is usually fitted in consumer and gaming computers with
two to eight gigabytes of external memory and a few terabytes of hard disk
space, depending on drive technology.

The two main performance criteria for levels in a memory hierarchy are
latency and bandwidth [113]. Roughly speaking, the latency of a level is the
time it takes from a request is made until the requested elements are being
received at the destination. The bandwidth is the number of elements that can
be transferred per unit of time. Since the latency can be significant, elements are
transferred in fixed-size units, typically called cache lines or blocks depending
on the type of level. In this dissertation we will use the term block regardless of
the involved levels. The size of these units vary, depending on the particular
type of cache, from a few bytes in the lower levels to several kilobytes or even
megabytes for hard drives. By transferring many elements per cache access, the
access latency can be amortized among all the retrieved elements if they are
accessed before they are evicted. Some of the computational models used in
this dissertation, and presented in Section 1.2, analyze how good an algorithm
is at exploiting this locality in order to minimize block accesses. The latency for
on-core caches, like the L1 and L2 cache on the Core i7, are usually measured
in clock cycles since they run in sync with the CPU, and possibly with a
slightly lower rate as specified by some multiplier tuning parameter. The access
latency for the higher levels of cache and the main memory is measured in
nanoseconds [113].

1.1.2 Disk drives

The cost of access latencies is especially noticeable on the level between main
memory and a hard drive. A standard hard drive consists of a few drive platters,
which are discs storing the actual bits using the magnetic properties of the

1In this dissertation a kilobyte is 1024 bytes, a megabyte is 10242 bytes, a gigabyte is 10243

bytes and so on.

4 Chapter 1. Introduction

platter material. The platters rotate at a speed between 4.200 rounds per minute
for laptop drives up to 15.000 rounds per minute for high-end server drives.
Data is read and written by drive heads that move along an axis perpendicular
to the platters. The drive head reads (resp. writes) information on the platters
by reading (resp. altering) the magnetic properties of the parts of the spinning
platter passing underneath it.

The latency of a hard drive is bounded by its seek time, which is the time it
takes for the drive head to be placed in the right position and for the part of the
drive platters containing the requested data to rotate to a position underneath
the drive head. Due to these mechanics, the latency of a typical hard drive is
measured in milliseconds and is very high compared to the compact memory
circuitry used in the main memory and CPU cache levels. Thus, the latency of
hard drives is about a million times higher, from nanoseconds to milliseconds,
than that of main memory. The bandwidth of the drive depends, among other
things, on the speed in which the platters rotate and on the density of the data
on the platter. It is in the order of a few hundred megabytes per second for
standard consumer level drives. Due to the nature of the drive heads and the
spinning platters, there are no big performance difference between sequential
read and sequential write operations.

Recently, hard drive manufacturers started making solid state discs (SSDs)
based on flash memory chips. These drives have properties that are different
from standard hard drives. Solid state drives are still rather expensive and are
not yet available with capacities matching the standard disk drives. However, the
solid state drive technology is rapidly developing, and many high-end consumer
laptops are now available with a solid state drive instead of the standard hard
drive. The advantages of the solid state drives are many-fold. For instance, since
they contain no moving mechanical parts they are much more durable than the
relatively fragile hard drives, and they also consume less power [9]. Solid state
drives are also interesting because they provide faster access times than regular
hard drives, and also because the latency and bandwidth for read operations is
better than for write operations. Since there are no spinning platters and moving
disk heads the solid state drives can also perform random accesses significantly
faster than regular disk drives. We refer to a recent survey by Ajwani et al. [9]
for an in-depth discussion of the performance characteristics of solid state drives.

1.1.3 Cache reliability

Performance is only one of several different properties of a cache system. In
this dissertation we also study how we can design algorithms that perform in a
relatively well defined manner if the cache used is unreliable.

Modern memory chips are made from increasingly smaller and complicated
circuits that work at low voltage levels and offer large storage capacities [45].
Unfortunately, these improvements have increased the likelihood of soft memory
errors where arbitrary bits flip, corrupting the contents of the affected memory
cells [110]. Soft memory errors can be triggered by phenomena such as power
failures, cosmic rays and manufacturing defects. The rate of soft memory errors
is predicted to increase in the future [28]. Furthermore, since the amount of

1.2. Models of Computation 5

cosmic rays increase dramatically with the altitude, soft memory errors are a
serious concern in fields like avionics and space research. We refer to Petrillo
et al. [94] for more information about soft memory errors and the mean time
between failures of memory circuitry.

Even though the occurrence rate of soft memory errors in individual memories
is low they are a serious concern in applications running on clusters where the
frequency of these errors is significantly larger. Similarly, applications running
on massive data sets are more likely to encounter memory corruptions since
they run for longer amounts of time.

1.2 Models of Computation

The traditional models used for designing algorithms do not consider the cost of
different cache levels and the risk that the cache is unreliable. For instance, in
the standard Random Access Machine (RAM) all memory accesses are assigned
the same cost. From the discussion in the previous section, it follows that this
assumption does not hold in real machines where the cost depends on the specific
level in a multi-level hierarchy that contains the requested element. Furthermore,
subsequent accesses to other elements in the same block can be very cheap if
the block has not yet been evicted from the cache. In this section we present
models of computation and algorithmic design techniques that are useful when
trying to reduce the time spent waiting for the caches and we also present a
recently proposed model for dealing with systems that has unreliable caches.

In Section 1.2.1 we give a brief overview of techniques used to limit the size
of the working space needed for algorithms and the size of data structures. If the
size of this information can be kept down, it has a bigger chance of fitting in the
fast lower level caches. Next, in Section 1.2.2 we present the most heavily used
model in this dissertation: the external memory model. In this model the block
transfers between two consecutive levels of the memory hierarchy are modelled
explicitly, and the complexity measure is the number of block transfers between
these levels. Subsequently, we present the cache-oblivious model in Section 1.2.3.
This model is an interesting generalization of the external memory model that
can be used to understand the performance of algorithms across all the levels of
a memory hierarchy. A novel model that resembles the external memory model,
but in a setting with solid state drives, is presented in Section 1.2.4 Finally,
in Section 1.2.5 we discuss the faulty memory RAM, which we use to design
algorithms that are, to some extent, resilient to soft memory errors.

1.2.1 Minimizing space usage

One way to cope with large amounts of data is to design algorithms and data
structures that use very little space. If the space usage is low, the amount of
data stored on the slow higher-level caches can be limited .

There has a been a lot of work in this area and many different models and
approaches have been used. The size of the data produced by can be reduced
greatly with the use of general purpose compression algorithms, but the resulting

6 Chapter 1. Introduction

Disk

Memory

BlocksCPU

Size M

Size B

Figure 1.2: The external memory model [6]. The CPU operates on the M
elements in the memory and elements are moved between disk and memory in
blocks of B consecutive elements.

compressed files often have to be decompressed before any non-trivial operation
on the data can be performed.

Many commonly known algorithms work directly on the input without using
space for more than a constant number of extra elements. Algorithms that
work in this manner are called in-place (or in situ). For instance, bubble sort
and heap sort are both in-place sorting algorithms that permute the elements
directly in the input buffer while using only O(1) additional words to store extra
variables. There has also been some work on designing in-place algorithms that
are also efficient in terms of cache usage [62,63].

For data structures there has been a lot of work on so-called succinct data
structures. Succinct data structures store a set of data while supporting a
certain set of operations using a number of bits very close to the information
theoretically lower bound on the space required for the particular problem being
considered. For more information on succinct representation of data structures
we refer to a survey by Munro and Rao [88].

1.2.2 External-memory model

As discussed, data is transferred between levels in large blocks to amortize
the large difference in the latency of different levels. This implies that it is
important to design algorithms with a high degree of locality in their memory
access pattern, that is, algorithms where data accessed close in time is also
stored close in memory. A local access pattern is important when dealing with
massive data sets — especially when data cannot reside in the main memory.
The Input-Output (I/O) communication between internal memory and disks
often becomes a severe bottleneck due to the huge difference in access time of
these two levels.

In the two-level external-memory model [6], the memory hierarchy consists
of an internal memory with a capacity of M elements and an arbitrarily large
external memory partitioned into blocks of B elements (Figure 1.2). A memory
transfer moves one block between internal and external memory. Computation
can occur only on data in internal memory. The complexity of an algorithm in
this model (an external-memory algorithm) is measured in terms of the number of
memory transfers it performs. For instance, the complexity of a linear scan of N
elements stored consecutively in the external memory is O(Scan(N)) = O(N/B)

1.2. Models of Computation 7

disk transfers. Aggarwal and Vitter proved that the number of memory transfers
needed for comparison-based sorting of N data items in the external-memory
model is Sort(N) = Θ(NB logM/B

N
B) [6]. Subsequently, a large number of

algorithms have been developed in this model (see [10, 118] for overviews). The
external memory model is commonly called the I/O model and we will use both
terms interchangeably in this dissertation.

1.2.3 Cache-oblivious model

While I/O-efficient algorithms can also be used on other levels than the level
between the disk and the main memory, it is often complicated to do so. This
is partly caused by the many different memory hierarchy architectures with
different and complicated inter-level interactions. Additionally, I/O-efficient
algorithms only work efficiently on one particular level of the hierarchy, which
implies that the user of the algorithm must know in advance which particular
level of a multi-level hierarchy is the main bottleneck and tune the algorithm
for that level specifically. However, Frigo et al. [64] recently proposed the
so-called cache-oblivious algorithm design technique which can be used to
design algorithms that are efficient on any memory hierarchy and on all levels
simultaneously. In the cache-oblivious model, algorithms are designed in the
standard RAM-model with no knowledge of the parameters of the memory
hierarchy. However, the algorithms are analyzed in the external-memory model
assuming that an offline optimal paging strategy performs the memory transfers
necessary to bring accessed elements into memory. Often it is also assumed
that M ≥ B2 (the tall-cache assumption). Since cache-oblivious algorithms
are designed without knowledge of the parameters of any particular memory
hierarchy, and the analysis is performed for arbitrary values of M and B, the
model allows us to design algorithms that are efficient on any multi-level memory
hierarchy (see [64] for details).

Frigo et al. [64] developed optimal cache-oblivious sorting algorithms, as
well as algorithms for a number of other fundamental problems. Subsequently,
algorithms and data structures for a range of problems [15] were developed.

1.2.4 Modelling solid state drives

As discussed in Section 1.1 solid state drives differ from standard hard drives in
a couple of places, one being the different read and write performance. Since
the external memory model does not capture this asymmetry, the emerging
availability of affordable flash drives has prompted the development of two
computational models tailored specifically for these devices. The two models,
proposed by Ajwani et al. [8], are the general flash model and the unit cost flash
model.

Like the external memory model, the general flash model consists of an
infinite size disk, a memory with a capacity of M elements and a CPU that can
operate on the elements in memory only. Unlike the I/O model, the general flash
model has two block sizes. A read operation transfers Br elements from disk
to the memory and a write operation transfers Bw elements from the memory

8 Chapter 1. Introduction

Disk

Memory

CPU

Size M
Size Bw

Size Br

Figure 1.3: The flash memory models [8]. Both the general and the unit cost
model have a read block size Br and a write block size Bw.

to disk. The complexity of an algorithm in this model is r + cw, where r is
the number of read operations performed, w is the number of write operations
performed and c is the write penalty. The different block sizes capture the fact
that the read and write latencies on a solid state drive differ, and the write
penalty is meant to capture the ratio between the bandwidth (or throughput)
for sequential read and sequential write operations. It is generally the case that
Br < Bw [9]. Note the I/O model is equivalent to the general flash model with
B = Br = Bw and c = 1. By setting c close to zero write operations become
almost free, whereas a high value of c models a situation where little more than
the output can be written due to the high costs of write operations.

Because it permits an arbitrary value of c, the general flash model is compli-
cated and it is hard to get interesting results for extreme values of c. In practice,
the bandwidth for sequential reads and sequential writes differ only by a small
constant factor, so Ajwani et al. [8] also propose the much simpler unit cost
flash model. The model has a read and write block size like the general model,
but the complexity of an algorithm in the unit cost model is simply the number
of elements transferred: rBr + wBw. This implies that algorithms can still use
the fact that the block sizes differ to optimize how random I/Os are performed,
but the sequential throughputs of read and write operations are the same. The
unit cost flash model resembles the general flash model with c = Bw/Br.

1.2.5 Faulty memory RAM

Corrupted memory cells can have important negative consequences for the output
of algorithms. For instance, a single corruption in a sorted array can force a
standard binary search to end up Ω(n) cells away from the correct position, and
a single corruption in the wrong place of a sequence during a merge sort can
lead to Θ(n2) inversions in the final output. Soft memory errors can also be
exploited to break the security of software systems. This was demonstrated in
work breaking Java Virtual Machines [67], cryptographic protocols [26, 31, 121]
and smart-cards [104].

The risk of soft memory errors can be reduced by using replication and
error correcting codes at the hardware level, however, this approach is not
always popular since the increased circuitry requirements are costly with respect
to performance, storage capacity and money. As an extreme case, the triple
modular redundancy technique, which stores three identical copies of each circuit

1.3. Overview and Results 9

47312523 29 32 35 4110 12 133443 18 21 14

876543210 9 10 11 12 13 14 15 16

Figure 1.4: A faithfully ordered sequence containing two cells with corrupted
content.

with their outputs fed to a majority voting mechanism, induces more than 200%
overhead in terms of chip area and power [120]. Even though this reduces the
number of soft errors significantly, they can still occur.

In software, memory errors have been addressed in a variety of settings with
the main focus on ensuring that code runs as expected: anticipating critical er-
rors caused by hardware malfunctions and malicious attacks. Errors are detected
using techniques such as algorithm-based fault tolerance [71], assertions [99],
control flow checking [1,122], procedure duplication [96] and employing random-
ization to automatically correct heap-based memory errors [92]. Recent work
focuses on repairing data structures using specifications and assertions [49,54].

Most algorithms and data structures, however, assume their storage is
perfectly reliable, however, several algorithms dealing with unreliable infor-
mation have been proposed. These include fault-tolerant pointer-based data
structures [25], the liar model [32, 97], fault-tolerant sorting networks [80], fault-
tolerant parallel models [43, 44] and locally mendable distributed networks [78].

Finocchi and Italiano [60] introduced the faulty-memory random access ma-
chine based on the traditional RAM model. In this model, memory corruptions
can occur at any time and place in memory during the execution of an algorithm,
and corrupted memory cells cannot be distinguished from uncorrupted cells. In
the faulty-memory RAM, it is assumed that there is an adaptive adversary that
chooses how, where and when corruptions occur. The model is parametrized by
an upper bound, δ, on the number of corruptions the adversary can perform
during the lifetime of an algorithm, and α ≤ δ denotes the actual number of
corruptions that take place. Motivated by the fact that registers in the processor
are considered incorruptible, O(1) safe memory locations are provided. More-
over, it is assumed that reading a word from memory is an atomic operation.
In randomized computation, as defined in [60], the adversary does not see the
random bits used by an algorithm. A sequence of elements is faithfully ordered
if all the uncorrupted elements in the sequence appear in sorted order. An
algorithm is resilient if it performs correctly on the set of uncorrupted elements.
For instance, a resilient sorting algorithm produces a faithfully ordered sequence.
We refer to a recent survey by Finoccho et al. [57], and to Chapter 6, for a
overview of previous results in the faulty memory RAM.

1.3 Overview and Results

In this section we provide a brief overview of the problems considered in this
dissertation. The dissertation is divided into two parts, each containing four

10 Chapter 1. Introduction

chapters. Part I presents work on problems inspired by Geographic Information
Systems (GISs). In Part II we discuss resilient algorithms in the faulty memory
RAM. The first chapter in each part give a high-level overview of the area
presented in that part and give a more detailed presentation of the results in
that part.

The first chapter of Part I is Chapter 2, which provides some background
information on algorithms and data structures in the GIS setting. In Chapter 3
we introduce the TerraStream software package. TerraStream is a scalable
solution that consists of a sequence of algorithms that form a pipeline in which
each algorithm scales to massive data sets. This pipeline is flexible and allows
users to choose from various models and parameters, with no or minimal
manual intervention between stages. The TerraStream package has proven to
be very interesting for GIS users in both industry and research. Since March
2007, representatives from more than 50 different institutions worldwide have
requested access to the available limited test releases. In total there have been
five major TerraStream releases and two bug fix releases. TerraStream has been
used to produce scientific papers in the area of flood risk management [C5] and
has also been the subject of non-scientific papers describing the system to GIS
practitioners in Denmark [C2].

In Chapter 4 we examine the problem of computing contour maps of terrains
I/O-efficiently. Given a sorted list `1 < · · · < `s of levels in R, we present
an algorithm that reports all contours of a terrain at levels `1, . . . , `s using
O(Sort(N) + T/B) I/Os and O(N/B) blocks of space where T is the total
number of edges in the output contours and N is the number of vertices in the
terrain. We also show how we can pre-process the terrain, using O(Sort(N))
I/Os, into a linear-size data structure where all contours at a given level can be
reported using O(logB N + T/B) I/Os. Each contour is generated individually
with its edges sorted in clockwise or counterclockwise order.

Finally, in Chapter 5 we develop a cache-oblivious algorithm for the red-blue
line segment intersection problem, that is, for finding all intersections between a
set of non-intersecting red segments and a set of non-intersecting blue segments
in the plane. Our comparison-based algorithm uses optimal O(Sort(N) + T/B)
I/Os where T is the number of intersections in the output and N is the total
number of segments. Our algorithm is optimal and, to the best of our knowledge,
the first efficient cache-oblivious algorithm for any intersection problem involving
non-axis-parallel objects.

The focus in Part II is on resilient algorithms. In Chapter 6 we give an
introduction to the field of resilient algorithms, including a description of some
techniques used in the later chapters, and an overview of an optimal resilient
sorting algorithm [59].

In Chapter 7 we design and analyze a priority queue in the faulty-memory
RAM model. It uses O(N) space for storing N elements and performs both
Insert and Deletemin in O(logN + δ) time amortized. The priority queue
does not store elements in reliable memory between operations, only structural
information such as pointers and indices. We prove that any comparison-based
resilient priority queue behaving this way requires worst case Ω(logN + δ) time
for either Insert or Deletemin.

1.3. Overview and Results 11

In Chapter 8 we present our work on resilient dictionaries. We introduce
a resilient randomized static dictionary that supports searches in O(log n+ δ)
time, matching the bounds for randomized searching in [56]. We present the
first optimal resilient static deterministic dictionary. It supports searches in a
sorted array in O(logN + δ) time in the worst case, matching the lower bounds
from [60]. We also present a deterministic dynamic dictionary that supports
searches in O(logN + δ) in the worst case, and insertions and deletions in
O(logN + δ) time amortized.

Finally we present in Chapter 9, some very recent work on making resilient
algorithms efficient in the external memory model. We present a model that
combines the faulty memory RAM and the external memory model in the natural
way. The model has three levels of memory: a disk, an internal memory of size
M and O(1) CPU registers. All computation takes place on elements placed
in the registers. The content of any cell on disk or in internal memory can be
corrupted at any time, but at most δ such corruptions can occur. In two natural
variants of our model it is assumed that corruptions take place only on disk or
only in memory.

1.3.1 Short overview of the included papers

In this section we give a brief overview of the papers that are presented in this
dissertation, sorted by the year of publication. In citations, these papers are
prefixed with a ’D’ (for dissertation) and are numbered D1 through D6. Other
papers coauthored by the author of this dissertation are cited using the prefix
of ’C’.

[D6] Priority Queues Resilient to Memory Faults with A. Jørgensen, and G.
Moruz. Proc. 10th International Workshop on Algorithms and Data
Structures (WADS), 2007

This paper forms the basis of Chapter 7.

[D3] Optimal Resilient Dynamic Dictionaries with R. Fagerberg, G. S. Brodal,
A.G. Jørgensen and G. Moruz. DAIMI Technical Report, 2007.

This paper is the technical report version of a paper that was presented
at ESA’2007 [C3], and forms the basis of Chapter 8.

[D5] From Elevation Data to Watershed Hierarchies with A. Danner, K. Yi,
P. K. Agarwal, L. Arge, and H. Mitasova. Proc. 15th International
Symposium on Advances in Geographic Information Systems (ACM GIS),
2007.

In this paper we describe the first version of TerraStream, which im-
plements a solution to the problem of extracting a river network and a
watershed hierarchy from a set of points sampled from a terrain. Chap-
ter 3 is loosely based on this paper, but contains information on the
new features and structural changes made to TerraStream since the 2007
paper.

12 Chapter 1. Introduction

[D1] I/O-Efficient Algorithms for Computing Contour Lines on a Terrain with
P. K. Agarwal, L. A. Arge, B. Sadri. Proc. 24th Annual Symposium on
Computational Geometry (SoCG), 2008

Chapter 4 is based on an extended version of this SoCG’2008 paper.

[D2] Cache-Oblivious Red-Blue Line Segment Intersection with L. A. Arge and
N. Zeh. Proc. 16th Annual European Symposium on Algorithms (ESA),
2008

Chapter 5 is based on an extended version of this ESA’2008 paper.

[D4] Fault Tolerant External Memory Algorithms with G. S. Brodal and A.
G. Jørgensen. Proc. 11th Algorithms and Data Structures Symposium
(WADS), 2009.

This is the most recent publication referenced in this dissertation, and
it will be presented at WADS’2009. Chapter 9 is based on an extended
version of this paper.

Part I

Cache-Efficient Algorithms
with GIS Applications

13

Chapter 2

Background

Spatial databases and geographic information systems (GISs) are used to store
and manipulate geographically referenced data, and are good examples of modern
data driven applications. They have emerged as extremely powerful manage-
ment and analysis tools in science, engineering, government administration and
commercial applications, precisely because massive amounts of geographically
based data is being generated from many different sources. Besides space shuttle
and satellite based observation equipment, aircraft mounted sensor technology
is also able to efficiently generate vast amounts of terrain information.

In this chapter we give a brief overview of the techniques used to gather
elevation data and how these techniques are used to create elevation models.
We will argue that these techniques enable us to gather large quantities of
data which makes I/O-efficiency vital. Finally, we present an overview of the
contributions presented in this part.

We will cover the development and application of practical I/O-efficient
algorithms for terrains via the TerraStream software package (Chapter 3), as
well as theoretical results on I/O-efficient algorithms for computing contour
maps (Chapter 4) and a cache-oblivious algorithm for solving the so-called
red-blue line-segment intersection problem (Chapter 5).

2.1 Constructing Digital Elevation Models

Getting terrain elevation data was previously a very time-consuming task.
Surveyors went into the field and measured the elevation at carefully chosen
points in the terrain by hand, or tried to extract elevation information from
existing hand-drawn maps. The number of high-precision elevation data points
one can realistically gather this way is limited. Today, many organizations gather
terrain elevation data by a remote sampling of the survey area, which is performed
without direct physical contact with the terrain. This can be accomplished
by using equipment installed on an aircraft or other vehicles. These remote
sampling techniques are used in practice to produce high-resolution elevation
information for large areas.

Surveyor companies often make use of the increasingly popular Light Detec-
tion and Ranging (LIDAR) technology, which uses a laser-equipped airplane.

15

16 Chapter 2. Background

As the plane flies over the study area the laser emits pulses toward the ground
and measures the time it takes for the pulse to return back to the airplane.
Using high precision GPS equipment as well as information about the speed and
orientation of the airplane, the surveyor can compute the elevation and ground
coordinates of the point where the pulse hits with a horizontal and vertical
precision of a centimeter or better.

Synthetic aperture radar (SAR) interferometry is another popular technique
in which two or more radar images of the same terrain are acquired by two
radars mounted on opposite ends of the same platform. By looking at the
differences between the returns, one can extract detailed elevation information
for large surfaces. This technique is implemented using radars mounted on
airplanes and was also used for the NASA Shuttle Radar Topography Mission
(SRTM) [115], which produced elevation points for most of the inhabited parts
of the planet at 80m horizontal resolution. In the summer of 2009 this map was
updated when NASA and Japan’s Ministry of Economy, Trade and industry
(METI) announced the immediate release of the Advanced Spaceborne Thermal
Emission and Reflection Radiometer (ASTER) Global Digital Elevation Model
(GDEM) [89]. The ASTER GDEM is a massive grid that covers 99 percent of
the land mass from 83 degrees north to 83 degrees south latitude with elevation
points measured every 30 meters.

2.1.1 Generating point clouds

The data produced by most terrain sampling methods are usually represented
as big point clouds, but the data generated from the LIDAR equipment is
usually more complex. Although the emitted pulse can be thought of as a
travelling point in space, it will expand in the air and will have a non-negligible
size by the time the it reaches the surface of the terrain. This implies that
parts of the emitted pulse will hit different obstacles and be reflected back at
different times. This is depicted in Figure 2.1. This modern LIDAR scanning
equipment will measure the strength of the returned signal through a period of
time, producing one waveform per emitted pulse. Software will subsequently
analyse the individual waveforms and try to decide what part of the return
signal corresponds to the real surface. In fact, the newest specification for
the standard LIDAR data format (LAS 1.3) released in August 2009 added
support for storing the waveform data, which can then subsequently be used
and transmitted in a portable way [24]. However, when trying create a model of
the surface of the terrain we are only interested in the part of waveform that
represents the portion of the pulse hitting the surface. Thus, the first step is
to turn these waveforms into points. A relatively simple strategy is to define a
point for each of the peaks in the waveform, which will provide us with multiple
points per emitted pulse. Alternatively, we can use the lowest peak only. For
more information about LIDAR, waveforms and how to define “peaks” we refer
to a recent study by Mallet and Bretar [84].

Once a point cloud has been constructed, it is usually run through a so-called
classification algorithm. The goal of this algorithm is to assign a class to each
point. Some of the most common classes are ground, vegetation and building.

2.1. Constructing Digital Elevation Models 17

Waveform

Time

Figure 2.1: This figure shows how the pulse emitted from the laser forms a
cone shape. The right side of the figure shows the intensity of the returned
signal as a function of time. The width of the cone results in returns from the
tree and the stone as well as the ground.

The classification algorithm uses heuristics to attempt to assign all sample
points that were on the ground to the ground class, all sample points that hit
man-made structures to the building class and all points that hit vegetation
(e.g. trees and bushes) to the vegetation class.

2.1.2 Terrain models

In a GIS, a terrain is rarely stored as just a point cloud. Instead it is represented
as a digital elevation model (DEM), either in the form of a Triangulated Irregular
Network (TIN) or a grid.

A TIN DEM is a triangulation of the point cloud containing the sample
points. It is common to derive a TIN DEM from a point cloud C by projecting
all the points into the horizontal plane and then computing the Delaunay
triangulation of the projected points. In many terrain processing applications,
however, the raw elevation data is often supplemented with line segments or
breaklines that provide additional elevation information along linear features such
as roads or rivers. Breaklines can be incorporated into the TIN by constructing
a Delaunay triangulation where edges of the TIN are forced to match the
provided breakline segments and preserve important topological features. Such
a triangulation is called a constrained Delaunay triangulation [39]. In some
cases, like hydrological modeling, it may be beneficial to construct higher-order
Delaunay triangulations as introduced by Gudmundsson et al. [68]. A k-th order
Delaunay triangulation is a triangulation where the circle defined by the three
vertices of each triangle contain at most k vertices. Setting k = 0, we get a
standard Delaunay triangulation.

Recently, Moet et al. [87] defined realistic terrains, which are triangulated
terrains with certain restrictions. By restricting the terrains considered to be
realistic terrains, they show the complexity of some classic problems can be
reduced since traditional worst-case examples fail to satisfy the conditions for
realistic terrain. A terrain is realistic if it satisfies the following three conditions:

18 Chapter 2. Background

Figure 2.2: A TIN constructed from the input points and a grid covering the
same area.

the projection of any triangle to the xy-plane must be fat (i.e. it has a minimum
angle of at least some constant α > 0), the smallest bounding rectangle of the
horizontal projection of the terrain must have side lengths 1 and c for some
constant c > 0, and the longest xy-projection over all edges of the triangulation
must be at most a constant d > 0 times as long as the shortest one. Moet et al.
proved the visibility map of a realistic terrain with N vertices has complexity
Θ(N

√
(N)) as opposed to Θ(N2) for general terrains.

A grid DEM is a uniform terrain grid where each cell stores an elevation
value. This grid is created from a point cloud by constructin a surface that
interpolates or approximates the points in the cloud and evaluating this surface
at the grid points. For instance, a grid can easily be constructed from a Delaunay
triangulation of the point cloud; we find the grid points contained in each triangle
and use linear interpolation across its surface to find the point elevations. The
slightly more sophisticated natural neighbor interpolation [101] is based on the
Voronoi diagram defined by the point cloud. The interpolated value is computed
as a weighted sum of the area of Voronoi cells in the neighborhood of the grid
point being processed. Another common way to construct grid DEMs without
going directly from a triangulation is to build a quad tree on the point set.
At each leaf node of the quad tree, a surface interpolating (or approximating)
the points in the leaf is constructed, and this surface is subsequently used to
compute the height of the cells at the grid vertices relevant for that particular
leaf [2]. By using the quad tree segmentation (or other types of segmentation) to
limit the number of points being considered, one can create complicated locally
approximated surfaces for each leaf node and use those surfaces for interpolating
the elevation of the grid points. Since computing such surfaces is expensive, it
would be unfeasible to use them on the entire point cloud at once.

One of the biggest advantages of a grid model is its simplicity. Grids are easy
to visualize and one can quickly implement simple algorithms working directly
on them. It is most likely for this reason that grids are still the most common
DEM representation in the commercial sector.

A terrain model built from a classified point cloud containing vegetation,
man-made features and ground points is called a digital surface model (DSM),
and a model containing only ground points is a digital terrain model (DTM).
The problems dealing with terrains in this dissertation are primarily relevant
for DTMs.

2.2. Contributions 19

2.2 Contributions

In this section we give an overview of the problems considered in the next
chapters. Terrain modeling and analysis is studied extensively in many differ-
ent communities, and algorithms have been developed for many fundamental
problems. Refer to [119] and the references therein for a survey. While the
new technologies make it relatively easy to obtain high-quality terrain data,
the full potential of the data is not being used. With modern LIDAR scanners
companies around the globe have been creating nationwide point clouds with
a resolution down to a meter. A recently produced point cloud for Denmark
had multiple points per square meter and takes up almost one terrabyte of raw
storage. With these massive datasets we run into the memory-disk bottleneck
detailed in Chapter 1, which means these massive datasets are not being used
to their full potential. Instead they are cut into pieces (tiles) that are handled
individually (meaningful only for simpler problems), thinned by discarding
billions of points, or by creating coarse grids that do not capture all the features
of the original point cloud.

The main issue is that the data sets are simply orders of magnitudes larger
and detailed, than the data the algorithms in current GISs were designed to
handle. In the next few chapters of this dissertation we will present solutions
(both theoretical and practical) to some of these problems.

DEM construction

One of the fundamental issues is the problem of constructing a DEM from a
point cloud. This is a prerequisite for most applications.

Isenburg et al. [73, 74] use an interesting streaming technique to compute
TINs and rasters from a point cloud while trying to keep a very low memory
footprint. Their solution is not efficient in the worst case, but under reasonable
assumptions about the distribution of input data their algorithms work efficiently
and only require a limited amount of memory. Their main assumption is that
the point cloud is presented to the algorithm using some relatively nice spatial
distribution. For example, it is common for data providers to store the point
cloud in rectangular tiles or in flight lines corresponding to straight segments
(flight lines) in the flight path of the aircraft carrying the LIDAR equipment.
The combination of sequential streaming and a low memory footprint makes
their solutions able to compute large TINs and grids.

The TerraStream software package presented in Chapter 3 contains an
implementation of I/O-efficient algorithms to construct grids and TINs based
on work by Agarwal et al. [2, 4]. These algorithms are worst-case efficient.

Flow modeling and terrain conditioning

A very common operation on DEMs is modeling the flow of water on the surface
of the terrain. Such modeling can reveal how water accumulates into creeks
that converge and form streams, and later rivers, and can be used to extract the
watersheds of the terrain. Intuitively, a river network is a collection of paths

20 Chapter 2. Background

that indicate where large amounts of water, or rivers, are likely to flow on the
terrain. A watershed hierarchy is a hierarchical partition of the terrain into
connected regions, or watersheds, where all water within a region flows toward a
single common outlet.

A major part of TerraStream is its implementations of I/O-efficient algo-
rithms that can perform this modeling. The I/O-efficient algorithms for certain
water flow problems, including river network extraction, on grid DEMs were
first implemented in the TerraFlow software package [16] and TerraStream
was started in attempt to build a modern and more flexible alternative to
TerraFlow and contains a new and more efficient and modular implementa-
tion of the functionality found in TerraFlow as well as an implementation
of an I/O-efficient algorithm for extracting watershed hierarchies from a grid
DEM river network [17]. The above algorithms typically use O(sort(N)) I/Os.
Recently Haverkort and Janssen [69] showed that flow modeling on grids can be
done in O(Scan(N)) in certain cases.

Most common modeling techniques for the flow of water on terrains assume
that the water only flows downhill, however, this implies that water is impeded
by local minima (sinks) in the terrain. The traditional solution to this problem,
and the solution used in TerraFlow, is to eliminate all local minima (except
one representing the ocean or some other global sink) by raising the elevation
of vertices to the level of the spill (saddle) points. In TerraStream we have
implemented a more refined partial flooding algorithm, based on topological
persistence [51,52], that detects and removes only insignificant sinks. We refer
to Chapter 3 for more information.

Most flow modeling applications (including TerraFlow and TerraStream)
take place on the edges of the triangulation, or from center to center on cells in a
grid DEM. There has been some work on routing the water directly on the faces
of a triangulated terrain, treating it as a continuous surface. However, it was
proven that the complexity of the flow paths in such a terrain with N vertices
is Θ(N3) [47]. Very recently, de Berg et al. [48] studied the complexity of the
river network in α-fat terrains, which are terrains where the minimum angle in
a triangle is α (satisfying the minimum angle requirement for a realistic terrain
as defined in Section 2.1.1). They prove the complexity of the river network in
an α-fat terrains is O(N2/α2), and they also describe I/O-efficient algorithms
for computing these river networks.

Contour mapping

A contour (or isoline) of a terrain M is a connected component of a level set of
M. Contour maps (aka topographic maps), consisting of contour lines at regular
height intervals, are widely used to visualize a terrain and compute certain
topographic information of a map. This representation goes back to at least the
eighteenth century [103].

On a TIN or grid DEM each individual contour consists of a chain of non-
intersecting (but possibly overlapping on edges and vertices) line segments.
These segments can easily be computed by considering each face of the terrain
model in turn, however, this will generate a big soup of unsorted line segments

2.2. Contributions 21

(a) (b)

Figure 2.3: Examples of equidistant contours of a terrain. (a) Rendered on a
perspective view of the terrain in 3d. (b) Projected onto the 2d plane.

that are hard to use for further processing or for vizualization. Instead, we want
to compute the contours such that the segments forming each contour can be
labeled and reported, preferably in clockwise order of the segments. We refer
the reader to the tutorial [102] and references therein for a review of practical
algorithms for contour and iso-surface extraction problems.

A simple way of computing such a contour K of a terrain M is to start at
one triangle of M intersecting the contour and trace out K by walking through
M until we reach the starting point. If we have a starting point for each contour
of a level set of M, for a given level `, we can compute all contours of that
level set in time linear in the size of the output in the internal-memory model.
Such a starting point can be computed using the so-called contour tree [38]
which encodes a “seed” for each contour of K. Many efficient internal-memory
algorithms are known for computing a contour tree (see e.g. [38]). Hence,
one can efficiently construct a contour map of K. This approach of tracing a
contour extends to higher dimensions as well, e.g. the well-known marching-cube
algorithm for computing iso-surfaces [82]. Although, as explained in Chapter 4,
recent work by Agarwal et al. [5] makes it possible to compute the contour
tree I/O-efficiently, which is hard to do by tracing. In fact, there is no known
I/O-efficient algorithm for tracing general paths on the surface of a triangulation.

This dissertation contains the description of two very different approaches to
the problem of computing the contour map. In TerraStream we developed and
implemented a simple practical O(Sort(N + T)) algorithm where T is the total
number of edges in the output contours. The algorithm works under reasonable
assumptions about the input model and the size of memory. By combining
the contour generation code with the partial flooding available in TerraStream
we are able to remove “insignificant” contours in a well-defined and controlled
manner. Our approach is briefly explained in Chapter 3 and in a paper that is
currently being prepared [C1].

In Chapter 4 we describe a more efficient algorithm that can compute the

22 Chapter 2. Background

contour map without the extra assumptions on the memory size. The contour
map can be generated in O(Sort(N)+T/B) I/Os and linear space. Each contour
is generated individually with its edges sorted in clockwise or counterclockwise
order. We also present a linear sized data structure that can be computed in
O(Sort(N) + T/B) and can answer level-set queries in O(logB N + |T ′|), where
T ′ is the number of segments in the requested level set.

Spatial join

The final GIS related problem considered in this dissertation is the red-blue line
segment intersection problem, which, unlike the previous mentioned problems,
does not involve elevation models. It belongs to the class of spatial join problems,
in which two spatial databases are merged. In the red-blue line segment problem
we are given a set each of internally non-intersecting red and blue segments in
the plane, and the objective is to report all intersections between a red and
a blue segment. A solution to this problem can, for instance, be used to find
where roads intersect rivers by finding all intersections between roads in a set of
road segments and a set of river segments in the plane.

Arge et al. [23] developed an optimal I/O-efficient algorithm that solves
the red-blue line segment intersection problem using O(Sort(N) + T/B) I/Os,
where T is the number of reported intersections. In Chapter 5 we present a
cache-oblivious algorithm that solves the problem in the same bound. To the
best of our knowledge, this is the first efficient cache-oblivious algorithm for any
intersection problem involving non-axis-parallel object.

Chapter 3

TerraStream: I/O-Efficiency in Practice

Many GIS applications use a pipeline (or work-flow) approach for combining
many small, simple algorithms into a larger, more complex application. Often,
the individual stages in a pipeline are developed independently and require
manual intervention to pre-process or post-process the data between different
stages. Furthermore, while a typical GIS can manage gigabytes of data consisting
of hundreds or thousands of smaller individual data sets, most systems are not
designed to handle multi-gigabyte data sets. Moreover, previous GIS algorithms
designed to scale to massive data have focused on individual stages of the
pipeline, and have been designed for either grid or TIN DEMs.

In this chapter we describe TerraStream; a scalable solution that consists of
a pipeline of components where each component uses I/O-efficient algorithms.
Thus, each algorithm in the pipeline scales to massive data sets. The highly
modular and configurable pipeline is designed to reduce manual intervention,
and to allow for easy addition of new modeling features. Our approach provides
several parameters to control the behavior of each pipeline stage and users can
choose between several popular models in each stage. Additional models and
features can also be added with minimal effort.

TerraStream consists of eight main stages: DEM construction, hydrological
conditioning (sink removal), flow modeling, extraction of river networks, ex-
traction of watershed hierarchies, quality metrics, flood map computation and
contour map computation. Figure 3.2 and 3.1 illustrate the overall structure
of the pipeline and the outputs of its several stages. TerraStream builds upon
and extends a number of previously developed I/O-efficient terrain algorithms,
with several new algorithms designed to form the whole pipeline. In addition,
a considerable amount of engineering effort is devoted to making TerraStream
efficient and practical. Our main technical contributions in this chapter include
the following:

• We take a unified approach for handling both TIN and grid DEMs. We
represent TIN and grid DEMs as a graph, which we refer to as a height
graph. We then design or modify algorithms in the subsequent pipeline
stages to use height graphs. Our methods therefore work on both grid and
TIN DEMs, and most of the stages in our pipeline are compatible with
both grids and TINs on the source code level. Such a unified approach

23

24 Chapter 3. TerraStream: I/O-Efficiency in Practice

(a) (b)

(c) (d)

Figure 3.1: An overview of the flow modelling components of TerraStream.
(a) DEM of Neuse river basin derived from lidar points (b) Rivers with drainage
greater than 5000 acres (2023 hectares) extracted from DEM. (c) First level of
Pfafstetter watershed labels for largest basin in Neuse. (d) Recursive decom-
position of basin four.

makes software maintenance much easier and reduces the amount of effort
when additional features are to be supported. Note the unified approach
does not come at a cost of decreased performance. Our pipeline works on
a given DEM type as efficiently as if the code were written solely for that
particular type.

• We design and implement an O(sort(N))-I/O algorithm for assigning a
numerical score or significance to each sink, or local minimum, in a height
graph. We then use a sink’s significance for hydrologically conditioning, in
which we remove small or insignificant sinks from a terrain while preserving
significant sinks such as large closed basins with no outlet. This step of
removing unimportant sinks is crucial to all known flow models.

• In addition to extending earlier grid based flow modeling algorithms [16]
to height graphs, we develop a simple and practical algorithm for detecting
flat areas in a terrain. We also implement improved flow routing on flat
areas which commonly cause problems in flow modeling algorithms. Flat
areas may exist in either the original sample data or be introduced into
the terrain as a side-effect of hydrological conditioning.

• We develop and implement I/O-efficient algorithms for computing exactly
what part of a height graph will be flooded if the water level in the oceans
rise by a specified certain amount. Our algorithm takes dikes and natural

3.1. DEM Construction 25

TIN Construction

Grid Construction

Conditioning

Flow Routing Flow Accumulation

Watershed Labelling

Contour Mapping

Quality Metrics

Flood Mapping

Figure 3.2: Overview of pipeline stages showing inputs, outputs, and optional
modeling parameters for each stage.

flood barriers into account.

• We briefly present an algorithm for assesing the quality of a raster DEM
generated from some point cloud C. Our simple quality measure is the
distance from each grid cell to the nearest point in the cloud.

• We also briefly present practical algorithms for generating the contour
maps of a terrain. These algorithms are more practical than algorithms
presented in Chapter 4.

In the rest of the chapter we cover these pipeline stages one by one.

3.1 DEM Construction

The first stage of our pipeline constructs a grid or TIN DEM from a set S of N
input points in R3. Below we briefly review the algorithms we utilize; the reader
is referred to [2,4] for a complete overview of, and comparison with, previous
work. We also introduce the unified height graph that we use in later stages.

Grid DEM construction

As described in Chapter 2, the common approach for constructing a grid DEM
of a user-specified cell size from S is to use one of many interpolation or
approximation methods to compute a height value for each grid point (refer to
e.g., [85] and the references therein). For inputs with more than a few thousand
points, applying an interpolation method directly is infeasible because of the
computational complexity of solving large systems of linear equations. We chose
for TerraStream a recently developed I/O-efficient algorithm [2] that uses a
quad-tree segmentation in combination with a regularized spline with tension
interpolation method [86] to construct a grid DEM in O(NB

h
log M

B

+ sort(T))

I/Os, where h is the height of a quad tree on S and T is the number of cells
in the desired grid DEM. Our implementation is modular and allows users to
implement a variety of interpolation methods. One advantage of the spline
method we use is that it allows for smooth approximation of data and can also

26 Chapter 3. TerraStream: I/O-Efficiency in Practice

be used to accurately compute properties such as slope, profile curvature, and
tangential curvature (which are important for landform analysis and landscape
process modeling). Note that the algorithm uses O(sort(N) + sort(T)) I/Os
if h = O(logN), that is, if the points in S are distributed such that the quad
tree is roughly balanced. We store the output grid in a simple row-major format
to allow efficient row access to grid cells in later stages.

TIN DEM construction

In TerraStream, we use a randomized I/O-efficient algorithm [4] for constructing
a constrained Delaunay triangulation of a set S of N points and a set L of
K line segments. The algorithm uses sort(N) expected I/Os if the number
of constraining segments K is smaller than then memory size M . In most
applications, K considerably smaller than both N and M . We store the output
TIN in an “indexed triangle” format, which is a common, simple, and compact
representations TINs. In this format, the coordinates of the TIN vertices are
stored consecutively on disk along with a unique vertex ID, followed by a list of
triangles each identified by three vertex IDs in clockwise order.

Height graph

To avoid designing separate grid and TIN algorithms for each of our successive
pipeline stages, we define a graph, which is typically referred to as the height
graph, that unifies both DEM formats. A height graph G = (V,E) is an
undirected graph derived from a DEM, with a height h(v) and an id id(v)
associated with each v ∈ V . The id’s are assumed to be unique. For any two
vertices u and v, we say u is higher than v if h(u) > h(v), or h(u) = h(v) and
id(u) > id(v). The concept of lower than is defined similarly. The vertices and
edges of a TIN DEM naturally form a height graph. To obtain a height graph
from a grid DEM, we include all the DEM vertices along with all the boundary
edges of the grid cells and the diagonals for each grid cell. Note that in certain
applications when planarity is required we could add only one of the diagonal
edges, or not at all. Our pipeline works with any of these choices.

In both the TIN and the grid case, we add an additional “outside” vertex ξ
with h(ξ) = −∞, which is connected to all the vertices on the boundary of the
DEM. A height graph can be constructed from a grid or TIN DEM of size N in
O(sort(N)) I/Os.

3.2 Hydrological Conditioning

Most flow modeling algorithms assume water will flow downhill until it reaches
a local minimum or sink. In practice however, local minima in DEMs fall into
two primary categories; significant and insignificant, or spurious, sinks. When
modeling flow one naturally assumes that water flows downhill until it reaches
a sink. Significant sinks correspond to large real geographic features such as
quarries, sinkholes or large natural closed basins with no drainage outlet. The
insignificant sinks may be due to noise in the input data or correspond to small

3.2. Hydrological Conditioning 27

(a) (b) (c)

Figure 3.3: (a) Original terrain. (b) Terrain flooded with τ =∞. (c) Terrain
partially flooded with persistence threshold τ = 30.

natural features that flood easily. When modeling water flow these insignificant
sinks impede flow and result in artificially disconnected hydrological networks.
The second stage of our pipeline “hydrologically conditions” a DEM for the
flow modeling stage by removing insignificant sinks, while preserving significant
sinks.

The known hydrological conditioning algorithms remove all sinks using a
so-called flooding approach [75], which simulates uniformly pouring water on
the terrain until a steady-state is reached. A weakness of this approach is that
it removes even significant sinks. See Figures 3.3(a) and (b). Furthermore, the
previous I/O-efficient algorithm [16] works only for grids and assumes that all
sinks fit in memory. This assumption does not hold for large high-resolution
terrains. Instead we use a partial flooding algorithm, based on topological
persistence [51,52], that detects and removes only insignificant sinks, as indicated
in Figure 3.3(c). We briefly describe topological persistence and then present
our algorithm.

3.2.1 Topological persistence

In the context of a terrain T represented by a height graph, topological per-
sistence [51,52], matches each local minimum (sink) vertex v of T to a higher
“saddle” vertex w (see [50] for the precise definition of a saddle) and assigns
a persistence value, denoted by π(v), to v. In [51], π(v) is defined to be the
difference in the heights of v and w, i.e., π(v) = h(w)− h(v). The persistence
π(v) denotes the significance of the sink v. Intuitively, the saddle vertex w is a
vertex at which two distinct connected components of the portion of T lying
strictly below w merge. Each connected component is represented by the lowest
vertex in the component. Suppose v is the highest representative of the two
connected components merged by w and let u denote the representative of the
other component. Then topological persistence induces a merge tree on the
sinks of T , in which u is the parent of v. The merge tree has the property that
the heights of vertices on any root-to-leaf path increase, while the persistence
values decrease along such a path.

Agarwal et al. [5] developed an O(sort(N))-I/O algorithm for computing
the persistence of all sinks in a triangular planar height graph, and computing
the merge tree. They also developed and implemented a simpler and practical

28 Chapter 3. TerraStream: I/O-Efficiency in Practice

O(sort(N) log(N/M))-I/O algorithm. We extend this algorithm to form our
partial flooding algorithm given below.

3.2.2 Partial flooding

We use topological persistence as a measure of the significance of a sink. Given a
user-specified threshold τ , we declare all sinks with persistence less than τ to be
the insignificant sinks and remove all such sinks using a partial flooding method
described below. The user can change the threshold to control the smallest
feature size to be preserved.

We define partial flooding of a height graph by generalizing the flooding
definition for grid DEMs [16, 75]. Let G be a height graph with one or more
significant sinks ζ1, . . . , ζk. Let the height of a path in G be the height of the
highest vertex on the path, and let the raise elevation of a vertex v of G be
the minimum height of all paths from v to ζi for any 1 ≤ i ≤ k. In partial
flooding, we change the height of each vertex in G to its raise elevation. Partial
flooding produces a modified height graph containing only significant sinks whose
persistence value is greater than τ . Note that if τ =∞, our definition of partial
flooding is the same as the original definition of flooding. Thus, partial flooding
is a tunable way to condition the terrain for the purpose of flow modeling.

To efficiently condition a terrain using partial flooding, we utilize the following
property of the merge tree (proof can be found in [46]). Let u be a node in
the merge tree that does not correspond to a significant sink, but whose parent
does. Let v be any node in the sub-tree rooted at u. Then the raise elevation
r(v) of v is r(v) = r(u) = h(u) + π(u), where h(u) is the height of u and π(u)
is its persistence value. Thus, we obtain a simple way to compute the raise
elevations for each sink in the merge tree (or more precisely, the sinks of G
corresponding to vertices in the merge tree): For each insignificant sink u in the
merge tree whose parent corresponds to a significant sink, we propagate r(u) to
all vertices rooted below u. To compute the raise elevations efficiently we direct
tree edges from a node to its children. By traversing the vertices in height order
and forwarding r(u) along all outgoing paths starting from u, we can assign
each vertex in a subtree of u the proper raise elevation. This traversal can be
performed in O(sort(N)) I/Os using standard techniques [11,40].

What remains is to compute the raise elevations for all non-sink vertices in
the height graph G. To do so we first assign a sink label to each vertex in G. A
vertex u is assigned sink label v if there is a path of monotonically decreasing
height from u to a sink v; if several such paths exists, we chose the one to the
lowest sink v. With each sink label v we also store the raise elevation r(v) of v.
To assign labels to each vertex, we construct a DAG by directing edges in G
from lower height vertices to higher height vertices. The vertices in this DAG
are naturally sorted in topological order by increasing height. We traverse the
DAG in topological order and forward sink labels along outgoing edges; the
sink label for a vertex u is simply the label corresponding to the lowest sink
among the labels received from preceding vertices. This traversal is similar to
the merge tree-traversal and can be performed in O(sort(N)) I/Os [11,40]. We
can show that (proof in [46]) the raise elevation of a vertex u in the height graph

3.3. Flow Modeling 29

with elevation h(u) and sink label v is r(u) = max{h(u), r(v)}. Thus we have
computed the raise elevations for all vertices in G.

In summary, for a given threshold τ , we can partially flood the terrain
represented as a height graph in O(sort(N)) I/Os.

3.3 Flow Modeling

The third stage of our pipeline models the flow of water on a hydrologically
conditioned DEM, represented as a height graph. It consists of two phases. The
first flow-routing phase, we compute a flow direction for each node v in the
height graph that intuitively indicates the direction water will flow from v. In
the second flow-accumulation phase, we intuitively compute the area of the
terrain represented by nodes upslope of each node v.

Flow routing

Given a height graph G = (V,E), the flow-routing phase computes a directed
subgraph F(G) = (V,Er) of G called the flow graph. An edge (v, u) in F(G)
indicates that water can flow from v to u. Er is constructed from G by looking
at each vertex v and its neighbors and applying a flow-direction model. We
implemented two popular flow-direction models:

• Single-flow-direction (SFD) model: for each vertex v, the edge from v to
the neighbor with lowest height lower than the height of v is selected.

• Multi-flow-directions (MFD) model: for each vertex v, all edges going to
neighbors of less height than v are selected.

Several other flow-direction models have also been proposed (e.g., [79, 109]),
and most of them can be incorporated in our pipeline, we refer to [16] for
more information on SFD and MFD routing. If the height of every vertex in G
is distinct, we can easily construct F(G) in O(sort(N)) I/Os using standard
techniques, by simply examining the neighbors of every vertex in the height
graph and assign a flow directions to all but the sinks. In the SFD and MFD
models, the resulting flow graph is a forest or DAG, respectively. However,
realistic terrains G can have large flat areas of vertices with no neighbors with
lower height. Flat areas can be natural plateaus in the terrain, or they can
appear as by-products of the hydrological conditioning stage. Detecting these
flat areas and routing flow through them in a realistic way is challenging, and
we discuss these steps further in Section 3.3.1. We have implemented extensions
of SFD and MFD models that incorporate routing on flat areas.

Flow accumulation

Given a flow graph F(G) with flow directions, the flow accumulation [93] phase
intuitively computes the area of the terrain represented by vertices upslope of
each node v. More precisely, each vertex v in the flow graph F(G) is assigned
some initial flow. Each vertex then receives incoming flow from upslope neighbors

30 Chapter 3. TerraStream: I/O-Efficiency in Practice

and distribute all incoming and initial flow to one or more downslope neighbors.
The flow accumulation of a vertex v is the sum of its initial flow and incoming
flow from upslope neighbors.

Our flow accumulation algorithms visits the nodes of F(G) in topological
order and for each vertex v, computes the total incoming flow and distributes
flow to each downslope neighbor u with an edge (v, u) in F(G) using a given
function. Our O(sort(N)) I/O implementation adapts an algorithm by Arge et
al. [21] developed for grid DEMs and implemented in TerraFlow. Given the
flow accumulations for all vertices, we can extract river networks [93] simply by
extracting edges incident to vertices whose flow accumulation exceeds a given
threshold. We can easily do so in O(sort(N)) I/Os.

In our implementation we distribute flow distributed to a lower neighbor
u of v, in proportion to the height difference between v and u. However, our
flexible pipeline allows for other distribution functions. In terms of initial flow,
one typically assigns a “unit” of initial flow to each vertex if G represents a grid
DEM, since all grid cells have the same area. If G represents a TIN DEM, one
typically distributes the xy-projection of the area of each triangle in G equally
among its three vertices. We have implemented these choices, but TerraStream
allows users to adapt to other applications by specifying an initial flow for each
vertex.

3.3.1 Handling flat areas

A robust flow model must handle extended flat areas in a terrain. A vertex v
in a height graph G is flat if h(v) ≤ h(u) for all neighbors u of v in G, or if v
has a neighbor of the same height that has no lower neighbors. A flat area is a
maximal connected component of flat vertices of the same height. A spill point
of a flat area is a vertex with a downslope neighbor. Routing flow across flat
areas is composed of two steps; detecting all flat areas and routing flow across
each flat area.

Detecting flat areas

Detecting flat areas is equivalent to finding connected components of same-height
vertices in G. A previous theoretical O(N/B)-I/O algorithm for computing
connected components on grid DEMs [21] exists, but is too complex to be of
practical interest and can not be extended to work on height graphs. In fact,
TerraFlow [16] implements a different O(sort(N)) algorithm for grids. We
developed and implemented a simpler algorithm for height graphs that scans the
vertices and their neighbors and uses a batched union-find structure to merge
vertices in the same flat area into a single connected component. Theoretically
our algorithm uses O(sort(N)) I/Os [5]. However, in the actual implementation
we have used a simple practical union-find implementation [5] such that the
algorithm uses O(sort(N) log(N/M)) I/Os.

3.3. Flow Modeling 31

Improved grid DEM flat detection algorithm

Since TerraStream is modular and allows us to plug in customized modules
easily, we have implemented a novel and simple O(N/B)-I/O algorithm for
detecting flat areas on grid DEMs in the case where a constant number of rows
of the grid fit in memory. In this case, we can, in practice, handle grid DEMs
containing 244 cells occupying more than 128 TB of space using only 256 MB of
main memory. Note that a grid row fits in memory when

√
N ≤M .

Intuitively, our algorithm performs two row-by-row sweeps of the grid DEM
and assigns every cell in the same connected flat area the same unique connected
component label, while only keeping two grid rows and a small union-find
structure in main memory at all times. The union-find structure maintains
connected component labels for the two grid rows currently in memory. The
first sweep is a down-sweep from the topmost to bottommost row in the grid
that assigns provisional connected component labels to each flat cell. After
the down-sweep all flat cells with the same label are in the same connected
component. However, a single flat area may have multiple labels. We therefore
perform a second up-sweep from the bottommost to topmost row in the grid
and assign a single unique connected component label to all cells in the same
flat area. The sweeps are described in some detail below, but we refer to [46]
for the full analysis.

In the down-sweep, we keep the current row and the row immediately above
it in memory. In the top row, each flat cell has already been assigned a connected
component label. To process the current row we first visit the cells in the row
from left to right and assign a new unique label l(u) to each flat cell u. Then
we visit the cells in the current row again and perform a union on l(u) and l(v)
for any pair of neighboring flat cells (u, v) currently in memory. We implement
the union-find structure such that the unique representative for a set of labels
is the label that was assigned earliest (at the highest row). Finally, we update
the label of each flat cell u in the current row to be the label find(u). We can
prove [46] that after processing the current row, two cells in the current row and
in the same flat area have the same label if and only if they are connected by a
path completely contained in the current row and the rows above it.

In the subsequent up-sweep, we also keep two rows in memory; the current
row and the row immediately below it. To process the current row we first visit
the cells in the row from left to right and determine for each flat cell u if it has
a flat neighbor v in the row below the current row; if so we perform a union on
l(u) and l(v). As in the down sweep, we then update the label of each flat cell
u in the current row to be the label find(u). After the up-sweep, cells in the
same connected flat area have the same connected component label.

Since the union-find structure used during the two sweeps never contains
more than 2

√
N different labels, we can implement it such that it uses O(

√
N)

space. Thus it fits in main memory at all times and does not require any I/Os.
Therefore our algorithm uses O(N/B) I/Os, because we scan the grid DEM
twice.

32 Chapter 3. TerraStream: I/O-Efficiency in Practice

Figure 3.4: Comparison of routing methods on a flat area with a single spill
point on the right. Rivers indicated in white were extracted by using the small-
est Euclidian distance. Blue (black) river lines were computed using the Soille
et al. approach

Improved routing on flat areas

When routing flow on flat areas we distinguish between flat areas that have at
least one spill point and those that do not; in the first case water should be able
to flow out of the flat area through the spill points, while in the second case
water is simply absorbed into the extended sink.

In many early flat area routing approaches (see e.g. [16] and references
therein) flow directions were assigned in a simple way such that each cell v was
assigned a flow direction to the adjacent neighbor that was along the shortest
Euclidean path along grid edges from v to the closest spill point. However, these
approaches are not hydrologically realistic and tend to create many parallel
flow lines [111]. Recently, a new more realistic flat area routing approach was
proposed by Soille et al. [105]. Their approach, based on geodesic time and
distance, improves an earlier approach by Garbrecht and Martz [65]. Given a
flat area, define H to be the set of flat vertices having an upslope neighbor. The
algorithm of Soille et al. [105] computes the minimum distance dv from each
of the other flat vertices v to a cell in H. Let dmax be the maximum distance
dv computed in the flat area. Each vertex v is assigned a flow direction to
the first vertex on the minimum-cost path from v to a spill vertex, where the
cost of a path is defined as the sum of dmax − du for all cells u along the path.
If no spill vertex exists, the minimum cost paths from a vertex with distance
dmax is used. Since dmax − du is large near the upslope boundaries, the shortest
paths will converge toward the low cost vertices away from the boundaries. This
substantially increases the convergence of the flow routing paths.

We implement both the Soille et al. [105] approach, and a simple shortest
path approach in TerraStream, Figure 3.4 compares the two. Both approaches
are implemented under the assumption that each flat area fits in main memory;
in our experience with high resolution floating point elevation data this is a
reasonable assumption.

3.4. Watershed Hierarchy Extraction 33

3.4 Watershed Hierarchy Extraction

The final stage of our pipeline computes a watershed given a flow graph F(G)
in which each vertex in F(G) is augmented with its flow accumulation. As
mentioned earlier, a watershed hierarchy is a hierarchical decomposition of the
terrain into a set of disjoint regions, or watersheds, where all water flows towards
a single outlet. Such a decomposition is the basis of several GIS algorithms for
hydrological and pollutant transport modeling.

Depending on the application, users may want to study a small hydrological
unit in their neighborhood or study major river basins at a state-wide or nation-
wide scale. Therefore it is advantageous to have a hierarchical decomposition of
the terrain into nested units of arbitrary small size. Furthermore, it is useful if
the units are assigned a unique label that also encodes topological properties such
as upstream and downstream neighbors; thus making it possible to automatically
identify hydrological units of interest based on the label alone.

Verdin and Verdin [117] described a Pfafstetter labeling method, which
hierarchically divides a terrain into arbitrarily small regions, each with a unique
label, such that the Pfafstetter labels encode topological properties such as
upstream and downstream ordering. At the topmost level the terrain is divided
into nine disjoint watersheds; each of these watersheds are recursively divided
into nine smaller watersheds. Arge et al. [17] previously developed an algorithm
using O(sort(N) + T/B) I/Os for computing the Pfafstetter labels of a grid
DEM of N cells, where T is the total size of the labels. The algorithm uses a
data structure equivalent to a flow graph F(G) computed using a single flow
direction model and augmented with flow accumulations for each vertex. For
our final pipeline stage, we modified the algorithm to use the flow graph F(G)
created in Section 3.3, and thus extend the previous algorithm to work for flow
graphs derived from both grid and TIN DEMs.

3.5 Recent Developments and Ongoing Work

In this section we briefly describe some recent and ongoing developments to
TerraStream. The author of this dissertation has not been directly involved
with all of these developments, but they are included here for completeness.

3.5.1 Volume and area computations

Based on work by Revsbæk [100], TerraStream now has the ability to compute
the volume and area of the sinks in the terrain. This gives rise to a new way of
defining the importance of sinks for the purpose of the partial flooding described
in Section 3.2. Besides using the persistence of a sink, the user can now use
information about the volume and the area (projected and surface area) of the
sink to decide whether or not a sink should be flooded. We refer to [20, 100] for
more details.

34 Chapter 3. TerraStream: I/O-Efficiency in Practice

ocean

dike
protected areah

Figure 3.5: Flood map computation, the protected area behind the dike is
not flooded when the water level becomes h.

3.5.2 Flood mapping

Recently, we added support for computing flood maps to TerraStream. Comput-
ing highly accurate flood risk information is a very complex task and involves
many types of fine-grained information about the study area. However, with
modern high resolution DEMs that contain small but important features (e.g.
dikes), it is possible to get good initial flood risk estimates using only the
elevation information, and ignoring the effect of sewers and the groundwater.
The simplest way of computing what is flooded when the sea level rises is to
intersect the terrain with a horizontal plane at the flooding height and mark
everything underneath this plane as being flooded. This can easily be done in
O(Scan(N)) I/Os by simply scanning the height graph and marking all vertices
that have a lower elevation than the flooding height. This simple computation
is problematic because it ignores the effect of dikes and wrongly marks many
depressions as being flooded, an example of this can be seen in Figure 3.5.

TerraStream contains an implementation of a better flooding algorithm
where a cell is only marked as flooded if there is a path from that cell to the
flooding source (the ocean in most cases) that never passes through a point
that is higher than the new water level. In other words, if the water level is h
a cell u is marked as being flooded if there is a path u = p1, . . . , pk = s in the
height graph from u to some flooding source vertex s such that h(pi) < h for all
i = 1, . . . , k. The general flooding output can be easily computed using the flat
detection algorithm from Section 3.3. We transform the terrain into one where
all vertices with an elevation less than h, have been raised to height h. We can
now perform flat detection, and it can be seen that a vertex is flooded if and
only if it is of height h in the new terrain and is in the same flat component as
a flooding source. Among other things, we have used this algorithm on a high
resolution DEM of the city of Aarhus, Denmark [C5]

3.5.3 Quality metric

We also developed and implemented an I/O-efficient method that can be used to
assess the quality of a grid DEM derived from a point cloud. More precisely, our
algorithm computes the distance from each grid cell to the nearest point in the
original point cloud. This can be used to check if any particular region contains
too sparsely gathered data, resulting in big interpolated areas in generated
DEMs. By using this in the field, surveyours can ensure that they have a
good coverage of the target area, and schedule new flights immediately if there

3.5. Recent Developments and Ongoing Work 35

are areas where the point density is too low. Doing the new flights quickly is
significantly cheaper than having to make an entire team return to a survey
site to patch holes in the data. A publication with the algorithm and practical
results is in preparation [14].

3.5.4 Contour maps

As explained in Chapter 2, TerraStream contains an implementation of a practical
algorithm for generating contour maps I/O-efficiently. The algorithm consists
of a couple of sweeps using a generalization of the flat algorithm presented in
Section 3.3 that works on both grids and TINs. The algorithm can be generalized
to TINs by assuming that for any horizontal line, all the triangles intersecting
this line fit in memory. This can be exploited to label contour segments such
that two independent contours have different labels, and we can then sort the
contours in clockwise order by assuming that the segments of any one contour
fit in memory (without this assumption the algorithm still works since the
individual contours can be sorted using list ranking).

Contours obtained from a very detailed grid or TIN DEM are often not very
visually pleasing. They are simply too detailed, that is, contain too many small
contours and many contours consisting of many very small segments. Many,
but not all, of the small contours are a result of small features (depressions or
bumps) in the terrain. Thus by performing a topological conditioning on the
DEM before computing contours, one can remove the insignificant contours. For
example, if one is generating a contour for each meter of elevation, it is natural
to remove all features of depth less than one meter. The method is promising
because it removes insignificant contours in a well-defined way. A publication
on our contour generation methods is in preparation [C1,20].

Chapter 4

I/O-Efficient Construction of Contour Maps

In this chapter we propose efficient algorithms for computing contour maps as
well as computing contours at a given level.

Recall from the discussion in Chapter 2 that a natural way of computing a
contour K of a terrain M is simply to start at one triangle of M intersecting
the contour and then tracing out K by walking through M until we reach the
starting point. The starting point for each contour of a level set of M, for a
given level ` can be computed using the contour tree of the terrain contour
tree [38] An O(Sort(N)) algorithm in the I/O-model was recently proposed
by Agarwal et al. [5] for constructing a contour tree of M, so one can quickly
compute a starting point for each contour. However, it is not clear how to trace a
contour efficiently in the I/O-model, since a naive implementation requires O(T)
instead of O(T/B) I/Os, to trace a contour of size T . Even using a provably
optimal scheme for blocking a planar (bounded degree) graph, so that any path
can be traversed I/O-efficiently [3, 91], one can only hope for an O(T/ log2B)
I/O solution. Nevertheless, I/O-efficient algorithms have been developed for
computing contours on a terrain. Chiang and Silva [42] designed a linear-size
data structure for storing a TIN terrain M on disk such that all T edges in
the contours at a query level ` can be reported in O(logB N + T/B) I/Os, but
their algorithm does not sort the edges along each contour. Agarwal et al. [3]
designed a data structure with the same bounds so that each contour at level
` can be reported individually, with its edges sorted in either clockwise or
counterclockwise order. However, while the space and query bounds of these
structures are optimal, preprocessing them takes O(N logB N) I/Os. This bound
is more than a factor of B away from the desired O(Sort(N)) bound. Thus using
this structure one can at best hope for an O(N logB N + T/B) I/O algorithm
to compute a contour map; here T is the total size of all the output contours.

4.1 Our Contribution

Let M be a terrain represented as a triangulated surface (TIN) with N vertices.
For a contour K of M, let F (K) denote the set of triangles intersecting K. We
prove (in Section 4.3) that there exists a total ordering ‘/’ on the triangles of
M that has the following two crucial properties:

37

38 Chapter 4. I/O-Efficient Construction of Contour Maps

(C1) For any contour K, if we visit the triangles of F (K) in / order, we visit
them along K in either clockwise or counter clockwise order.

(C2) For any two contours K1 and K2 on the same level set of M, F (K1) and
F (K2) are not interleaved in / ordering, i.e., suppose the first triangle of
F (K1) in / appears before that of F (K2), then either all of the triangles in
F (K1) appear before F (K2) in /, or all triangles of F (K2) appear between
two consecutive triangles of F (K1) in /.

We call such an ordering a level-ordering of the triangles of M. We show that /
can be computed using O(Sort(N)) I/Os. Next, we present two algorithms that
rely on this ordering.

Computing a contour map Given as input a sorted list `1 < · · · < `s of
levels in R, we present an algorithm (Section 4.4) that reports all contours
of a terrain M at levels `1, . . . , `s using O(Sort(N) + T/B) I/Os and
O(N/B) blocks of space, where T is the total number of edges in the
output contours. Each contour is generated individually with its edges
sorted in clockwise or counterclockwise order. Moreover, our algorithm
reports how the contours are nested; see Section 4.4 for details.

Answering a contour query We can preprocess M, using O(Sort(N)) I/Os,
into a linear-size data structure so that all contours at a given level can be
reported using O(logB N + T/B) I/Os, where T is the output size. Each
contour is generated individually with its edges sorted in clockwise or
counterclockwise order (Section 4.4.5).

This Chapter does not discuss how contours can be simplified by removing
insignificant contours and smoothing the remaining ones. The technique de-
scribed in Section 3.5.4 removes insignificant contours based on their volume,
area and/or persistence [C1,20,100].

4.2 Preliminaries

For the purpose of this Chater we give a more careful definition of what a terrain
is and we will restrict the definition to triangulations.

Let M = (V,E, F) be a triangulation of R2, with vertex, edge, and face
(triangle) sets V , E, and F , respectively. We assume that V contains a vertex
v∞, set at infinity, and that each edge {u, v∞} is a ray emanating from u. The
triangles in M incident to v∞ are unbounded. Let h : R2 → R be a continuous
height function with the property that the restriction of h to each triangle of
M is a linear map. Given M and h, the “graph” of h is a terrain M = (M, h)
which describes an xy-monotone triangulated surface in R3 whose triangulation
is induced by M. That is, vertices, edges, and faces of M are in one-to-one
correspondence with those of M. With a slight abuse of notation, in what follows
we write V , E, and F , to respectively refer to the sets of vertices, edges, and
triangles of both the terrain M and its underlying plane triangulation M.

For convenience we assume that h(u) 6= h(v) for all vertices u 6= v, and that
h(v∞) = −∞. Within each bounded triangle f ∈ F , h is uniquely determined

4.2. Preliminaries 39

regular minimum saddle maximum splitting a 2-fold saddle

Figure 4.1: Link of a vertex; lower link is depicted by filled circles and bold
edges. The type of a vertex is determined by its lower link.

as the linear interpolation of the height of the vertices of f . This is not the case
for an unbounded face f since interpolation using h(v∞) = −∞ is undefined;
in which case to determine h on f an extra parameter, such as the height of a
point in f , is needed.

For a given terrain M and a level ` ∈ R, the `-level set of M, denoted
by M`, is defined as h−1(`) =

{
x ∈ R2 | h(x) = `

}
. Equivalently, M` is the

vertical projection of M ∩ z` on the xy-plane, where z` is the horizontal plane
z = `. The closed `-sublevel and `-superlevel sets of M are defined respectively
as M≤` = h−1((−∞, `]) and M≥` = h−1([`,+∞)), and the open `-sublevel and
`-superlevel sets M<` and M>` are M≤` \M` and M≥` \M`, respectively. For any
R ⊆ R2, let M(R) denote the subset of the surface M whose vertical projection
into the xy-plane is R, i.e. M(R) = {(x, y, z) ∈ M : (x, y) ∈ R}. We shall
also use the shorthand notations of M`, M<`, etc, for M(M`), M(M<`), etc,
respectively.

In much of what follows we need to compare the heights of two neighboring
vertices of a terrain M. To simplify the exposition we “orient” each edge of M
toward its higher endpoint, and treat M as a directed triangulation in which a
directed edge (u, v) indicates that h(u) < h(v).

The dual graph M∗ = (F ∗, E∗, V ∗) of the triangulation M is defined as the
planar graph that has a vertex f∗ ∈ F ∗ for each face f ∈ F , called the dual of
f . For any directed edge e ∈ E, there is a directed dual edge e∗ = (f∗1 , f∗2) ∈ E∗
where f1 and f2 are the faces to the left and to the right of e respectively. The
graph M∗ is naturally embedded in the plane as follows: the vertex f∗ is placed
inside the face f and e∗ is is drawn as a curve that crosses e but no other edges
of M. A vertex v ∈ V leads to a dual face v∗ in M∗ that is bounded by the
duals of the edges incident to v. The dual of M∗ is M itself. For a given subset
V0 of V , we use the notation V ∗0 to refer to the set of duals to the vertices in V0,
i.e., V ∗0 = {v∗ : v ∈ V0}. A similar notation is also used for subsets of F or E.

Links and critical points For a vertex v of M, the link of v, denoted by
Lk(v), is the cycle in M consisting of the vertices adjacent to v, as joined by
the edges from the triangles incident upon v. The lower link of v, Lk−(v), is
the subgraph of Lk(v) induced by vertices lower (of smaller height) than v. The
upper link of v, Lk+(v) is defined analogously; see Figure 4.1.

If a level parameter ` varies continuously along the real line, the topology

40 Chapter 4. I/O-Efficient Construction of Contour Maps

Figure 4.2: Examples of sublevel sets of negative (left) and positive (right)
saddle points.

of M≤` changes only at a discrete set {`1, . . . , `m} of critical levels of h, where
each `i is h(vi) for some vertex vi ∈ V . v1, . . . , vm are critical vertices of M. A
non-critical level of h is also called regular. Vertices with regular heights are
regular vertices. By our assumption that the height of every vertex is distinct,
there is only one critical vertex at each critical level.

There are three types of critical vertices: minima, saddles, and maxima. The
type of a vertex v can be determined from the topology of Lk−(v): v is minimum,
regular, saddle, or maximum if Lk−(v) is empty, a path, two or more paths, or
a cycle, respectively. We assume that all saddles are simple, meaning that the
lower link of each saddle consists of precisely two paths. Multifold saddles can
be split symbolically into simple saddles; see Figure 4.1. Equivalently, a vertex
can be classified based on the clockwise ordering of its incoming and outgoing
edges: a minimum has no incoming edges, and a maximum has no outgoing
edges. For other vertices v, we count the number of times incident edges switch
between incoming to outgoing as we scan them around v in clockwise order.
This number is always even. Two switches indicate that v is regular while four
or more switches take place if v is a saddle.

A saddle vertex v is further classified into two types. At ` = h(v) the
topology of M≤` differs from that of M<` in one of two possible ways: either
two connected components of M<` join at v to become the same connected
component in M≤`, or the boundary of the same connected component of M<`

“pinches” at v introducing one more “hole” in M≤`. Saddles of the former type
are negative saddles and those of the latter type are positive saddles; see Figure
4.2. It is well-known that the number of minima (resp. maxima) is one more
than the number of negative (resp. positive) saddles, and therefore

#saddles = #minima + #maxima− 2. (4.1)

This classification of saddles is related to persistent homology and a more general
statement is proved in [53].

4.2. Preliminaries 41

Figure 4.3: Red and blue contours in a level-set of a terrain.

Contours A contour of a terrain M is a connected component of a level set
of M. Each contour K at a regular level is a simple closed curve and partitions
R2 \K into two open sets: a bounded one called inside of K and denoted by K i,
and an unbounded one called outside of K and denoted by Ko. This is violated
at critical levels at which a contour may shrink into a point (an extremum), or
may consists of two simple closed curves whose intersection is the critical point
(a saddle). When the level parameter ` scans the open interval between two
consecutive critical values of h the contours of M` change continuously and the
topology of M` remains unchanged. However, at a critical level the contours
that contain the corresponding critical point undergo topological changes. Let
K1 and K2 be two contours at levels `1 and `2 respectively with `1 < `2. We
regard K1 and K2 as “the same” if K1 continuously deforms into K2 (without
any topological changes), as z` sweeps M in the interval [`1, `2].

Following [3], we call a contour K in M` blue if, “locally”, M<` lies in K i,
and red otherwise; see Figure 4.3. Every blue contour is born as a single point at
a minimum. Conversely, a blue contour is born at every minimum except at v∞.
Because of being placed at infinity, a red contour is born at v∞. Likewise, a red
contours “dies” by shrinking into a single point at a maximum, and conversely,
some red contour dies at every maximum. Two contours, with at least one
of them being blue, merge into the same contour at a negative saddle. The
resulting contour is red if one of the merging contours is red, and blue otherwise.
A contour splits into two contours at a positive saddle. A red contour splits into
two red contours while a blue contour splits into one red and one blue contour.

Two contours Ki and Kj of a level set M` are called neighbors if no other
contour K of M` separates them, i.e., one of Ki and Kj is contained in K i and
the other in Ko. If Ki is neighbor to Kj and Ki ⊂ K i

j , then Ki is called a child
of Kj . If Ki ⊂ Ko

j and Kj ⊂ Ko
i then Ki is called a siblings of Kj . It can

be verified that all children of a red (resp. blue) contour are blue (resp. red)

42 Chapter 4. I/O-Efficient Construction of Contour Maps

(a) (b)

Figure 4.4: (a) Orientation of the edges in the plane triangulation M of a
terrain. Critical points and a contour K in a regular level set are shown. (b)
the dual M∗ of M. The representing cycle of K in M∗ is shown with bold edges.
Triangles in C(K,M) are shaded.

contours while all siblings of a red (resp. blue) contour are red (resp. blue)
contours.

We conclude this section by making a key observation, which is crucial for
our main result. Each regular contour of M corresponds to a cycle in M∗: let
K be a contour in an arbitrary level set M`, and let F (K) (resp. E(K)) denote
the set of faces (resp. edges) of M that intersect K. If K is a red (resp. blue)
contour, all the edges in E(K) are oriented toward K i (resp. Ko). Consequently,
the vertices in F ∗(K) are linked by the edges in E∗(K) into a cycle in M∗. We
refer to this cycle as the representing cycle of K. We use C(K,M) to denote
the circular sequence of triangles dual to the representing cycle of K in M. The
sequence in C(K,M) is oriented clockwise (resp. counterclockwise) if K is blue
(resp. red); see Figure 4.4.

4.3 Level-ordering of Triangles

In this section we present our main result, i.e. the existence of a level-ordering
on triangles of any terrain M, i.e., an ordering that satisfies conditions (C1)
and (C2). We begin by proving the existence of a level-ordering for terrains
that do not have saddle vertices. We call such terrains basic. Next we prove
certain structural properties of terrains and show that any arbitrary terrain can
be transformed into a basic terrain through a surgery that effectively “preserves”
the contours of the original terrain. We then argue that a level-ordering on the
transformed terrain corresponds to a level-ordering on the original one.

4.3.1 Basic terrain

Let M be a basic terrain. The above discussion and (4.1) imply that M has
one (global) minimum, v̌, which coincides with v∞, and one (global) maximum,

4.3. Level-ordering of Triangles 43

v̂, and that every level set consists of a single red contour. At v̂ this contour
collapses into a single point.

Lemma 4.1 Let P ⊂ E be a directed (monotone) path in M from v̌ to v̂. Then
every cycle of M∗ contains exactly one edge from P ∗. In particular, the graph
M∗ \ P ∗ obtained from deleting the edges in P ∗ from M∗ is acyclic.

Proof. We claim that v̂ is reachable in M from every vertex v ∈ V . Recall that
v̂ is the only local maximum in M and that every other vertex has at least one
outgoing edge. If one starts at v and follows an arbitrary outgoing edge at each
step, the height of the vertex at which we arrive is greater than that of the
previous one. This process can only stop at v̂. By a similar argument, every
vertex v ∈ V is reachable from v̌.

Consider an arbitrary cycle C∗ in M∗. In the plane drawing of M∗, C∗ is a
Jordan curve. Let V0 ⊂ V be the set of vertices that are contained in the inside
of C∗ (equivalently, V ∗0 ⊂ V ∗ is the set of faces of M∗ whose union is bounded
by C∗). Let C ⊂ E be the set of edges in M dual to those in C∗. Since C∗ is a
cycle, the edges in C are either all oriented from V0 to V \ V0 or all from V \ V0

to V0.
The former case cannot happen because v∞ 6∈ V0 and every vertex in V is

reachable from v∞. If all edges of C are oriented from V \ V0 to V0, then v̂ ∈ V0

because otherwise v̂ cannot be reachable from the vertices of V0. Since v̂ ∈ V0

and v∞ ∈ V \ V0, |P ∩ C| ≥ 1. There is no edge directed from V0 to V \ V0, so
once P reaches a vertex of V0 it cannot leave V0, implying that |P ∩ C| = 1.
Thus, every cycle of M∗ is destroyed by the removal of the edges in P ∗, implying
that M∗ \ P ∗ is acyclic. 2

Let P be the path from v̌ to v̂ as defined in Lemma 4.1. The graph M∗ \ P ∗
has all of the vertices of M∗. Thus every face f of M is represented by f∗ in
M∗ \P ∗. Let ≺ be the a binary relation on F (triangles in M) defined as f1 ≺ f2

if (f∗1 , f∗2) ∈ E∗ \ P ∗. Since by Lemma 4.1 M∗ \ P ∗ is acyclic, ≺ is a partial
order on F . We call ≺ the adjacency partial order induced by the acyclic graph
M∗ \ P ∗. A linear extension of ≺ is any total order / on F that is consistent
with ≺, i.e. f1 ≺ f2 implies f1 / f2. Such a linear extension can be obtained
by topological sorting of M∗ \ P ∗. By definition, the existence of a directed
path from f∗i to f∗j in M∗ \ P ∗ implies that fi / fj . Thus condition (C1) of the
definition of level ordering holds for /. Since in a basic terrain each level consists
of only one contour, condition (C2) holds trivially. This results the following
statement.

Corollary 4.1 Let M be a basic terrain, and let P be a directed (monotone)
path from v̌ to v̂ in M. Let / be a linear extension of the adjacency partial order
induced by M∗ \ P ∗. Then / is a level-ordering of the triangles of M.

4.3.2 Red and blue cut-trees

Consider now a non-basic terrain with saddle vertices. We first introduce the
notions of ascending (red) and descending (blue) cut-trees of M as subgraphs

44 Chapter 4. I/O-Efficient Construction of Contour Maps

of the triangulation M, which we later use to turn M into a basic terrain M̃.
Contours of each level set of M will then be encoded in a corresponding level
set of M̃ which consists of a single contour.

A descending (resp. ascending) path on M from a vertex v ∈ V is a
path v0, v1, . . . , vr where v0 = v and h(vi) < h(vi−1) (resp. h(vi) > h(vi−1))
for i = 1, . . . , r. For each negative saddle v, let P1(v) = u0, u1, . . . , ur and
P2(v) = w0, . . . , ws be two descending paths from v such that ur and ws are
both minima and u1 and w1 belong to different connected components of
Lk−(v). Furthermore assume that for any two negative saddles u and w, if
Pi(u) = u0, . . . , ur and Pj(w) = w0, . . . , ws, for some i, j ∈ {1, 2}, and uk = wl
for some 1 ≤ k ≤ r and 1 ≤ l ≤ s, then uk+1 = wl+1; in other words, descending
paths from different vertices can join but then cannot diverge. Such a set
of paths always exist: one can assign such paths to negative saddles in the
increasing order of their heights. At any negative saddle u, we follow a descending
paths through each of the two connected components of Lk−(u) until it either
reaches a minimum or joins a path already assigned to a lower negative saddle.
Let P (u) = P1(u) ∪ P2(u) for any negative saddle u. Since P1(u) \ {u} and
P2(u) \ {u} are contained in different connected components of M<h(u), the
underlying undirected graph of P (u) is a simple path. For a positive saddle
u, P1(u) and P2(u) are defined similarly using ascending paths that start at
different connected components of Lk+(u) and end in maxima.

We define the descending (blue) cut-tree Ť = (V̌ , Ě) of M to be the union of
the paths P (u) over all negative saddles u. Similarly, we define the ascending
(red) cut-tree T̂ = (V̂ , Ê) of M to be the union of all the paths P (u) over all
positive saddles u. It is, of course, not clear that Ť and T̂ are trees but this and
some of their other properties are proven below.
Remark. The definitions of red and blue cut-trees are closely related to the
notions of split and join trees in the context of contour trees [114]. Intuitively
the contour tree is the result of contracting each contour of M into a single point
1 and is topologically a connected collection of simple curves whose endpoints
correspond to the critical points of M. These curves can only intersect at
their endpoints and thus realize the edges of a graph on a set of vertices that
correspond to the critical points of M. It can be shown that this graph is always
connected and acyclic — hence the name contour tree.2 Each point on a curve
realizing an edge represents a contour at some height. The heights of points
along any edge of the contour tree vary monotonically from one end to the other.
The contour tree is often described as the union of two of its subtrees, namely
the merge and split trees. The join tree is the minimal connected subtree of the
contour tree that contains minima and negative saddles and the split tree is
defined analogously using maxima and positive saddles.

1Taking the terrain M as a topological space with the usual topology of R2 and defining an
equivalence relation ∼ between points on M as x ∼ y if and only if x and y are on the same
contour (connected component of some level set), the contour tree M∼ of M is the quotient
space of M modulo ∼.

2Indeed such graphs, known generally as Reeb graphs [98], can be obtained from arbitrary
continuous real valued functions defined on more general topological spaces such as arbitrary
manifolds. Contour trees are Reeb graphs of terrains as determined by their height functions.

4.3. Level-ordering of Triangles 45

u
vx

y

v̌

v̂

u v

x
y

v̌

v̂

Figure 4.5: A terrain for which the join tree cannot be embedded as a
subgraph of the underlying triangulation in such a way that the edges are
realized by ascending paths. Level sets of saddles are depicted in dotted lines.
The contour tree of the terrain on the left is shown on the right. Notice that
there is no directed (ascending) path from x to y on the terrain.

The similarity between the notions of blue (resp. red) cut-tree and join (resp.
split) tree naturally poses the question of whether our cut-trees can be replaced
by their contour tree counterparts. We emphasize here that our cut-trees are
subgraphs of the triangulation M and this plays a crucial role in our algorithms.
It is possible to draw the contour tree on the terrain in such a way that the
vertices coincide with their corresponding critical points and edges are realized
by monotonically ascending curves on the terrain. It is easy to observe that if
one can realize each edge of the join or split tree as a monotonically ascending
path in M then it is indeed possible to simply use the merge or split trees
in place of our cut-trees. However, this is not always possible as the terrain
depicted in Figure 4.5 demonstrates.

Lemma 4.2 The underlying undirected graph of a blue (resp. red) cut-tree Ť
(resp. T̂) has no cycles.

Proof. We prove the claims for blue cut-tree. The argument for red cut-tree can
be made symmetrically. Let u1, . . . , ur be the list of all negative saddles of M in
the increasing order of their heights. Let Ť0 be the empty graph and for each
i = 1, . . . , r, let Ťi =

⋃i
j=1 P (uj); Ťi−1 is a subgraph of Ťi, and Ťr = Ť. We

prove by induction on i that the underlying undirected graph of each Ťi is a
forest. This trivially holds for Ť0. Assume now that the underlying undirected
graph of Ťi is a forest. By construction, adding P (ui+1) connects two distinct
connected components of Ťi, one contained in each of the two distinct connected
components of M<h(ui+1) that join at ui+1.

Moreover, once each of P1(ui+1) or P2(ui+1) reaches a vertex of Ťi, it
continues by following a path contained in Ťi, and therefore does not introduce
a cycle within the corresponding connected component of Ťi. 2

For a set U ⊆ R2, let Ť(U) (resp. T̂(U)) be the union of the paths P (u)
for all negative (resp. positive) saddles u ∈ U . In particular, Ť = Ť(R2) and

46 Chapter 4. I/O-Efficient Construction of Contour Maps

T̂ = T̂(R2).

Lemma 4.3 For a blue (resp. red) contour K, the underlying undirected graph
Ť(Ki) (resp. Ť(Ko)) connects all of the minima in Ki (resp. Ko). A symmetric
statement holds regarding T̂ and maxima by switching “red” and “blue”.

Proof. We prove the lemma for Ť and blue contours. The other cases are similar.
Let K be a blue contour in Mλ for some λ ∈ R. We show that for each ` ∈ R,
the minima in each connected component of U` = M<` ∩K i are connected by
Ť(U`). The statement of the lemma then follows by taking ` to be larger than
the height of all vertices in K i and from the fact that in that case U` consists of
a single component.

To prove the lemma we sweep ` from −∞ toward +∞ and verify the claim
for U`. Every time ` reaches the height of a minimum in K i, a new connected
component is added to U`. The lemma holds for this new component since it
originally has only a single minimum which is vacuously connected by Ť(U`)
to every other minimum in that component. The validity of the claim as `
continues to raise can only be altered when ` reaches the height of a negative
saddle u in K i at which two connected components U1 and U2 of U<`, where
` = h(u), join at u. At this time the path P (u) is added to Ť(U`). The crucial
observation here is that because K is a blue contour, no descending path started
at a vertex u ∈ K i can reach Ko. Thus the endpoints of P (u) have to be minima
in K i. In other words P (u), which reaches a minimum in U1 and another in U2,
connects Ť(U1) and Ť(U2) as desired. 2

Corollary 4.2 The underlying undirected graphs of Ť and T̂ are trees. More-
over, all minima are vertices of Ť and all maxima are vertices of T̂.

We conclude this discussion by mentioning a property of T̂ and Ť that follows
from their constructions.

Lemma 4.4 Let u be a vertex of T̂ (resp. Ť). If u is a positive (resp. negative)
saddle, then u has two outgoing (resp. incoming) edges in T̂ (resp. Ť) — one
to each connected component of the upper (resp. lower) link of u in M. If u is a
regular vertex or a negative saddle, then u has one outgoing (resp. incoming)
edge. Finally, if u is a maximum (resp. minimum), then it has no outgoing
(resp. incoming) edges.

4.3.3 Surgery on terrain

Let T̂ be a red cut-tree for M. Consider the following combinatorial operation
on M. First we duplicate every edge e of T̂, thus creating a face fe that is
bounded by the two copies of e. We then perform an Eulerian tour on the
subgraph of M induced by the copies of the edges of T̂ in which at each vertex
the next edge of the tour is the first unvisited edge of the subgraph in clockwise
order, relative to the previous edge of the tour. We then combine all of the faces

4.3. Level-ordering of Triangles 47

(a) (b) (c)

Figure 4.6: Cutting a triangulation along a tree.

fe into a single face f̂ that is bounded by this Eulerian tour by making as many
copies of each vertex as its degree in T̂ (or equivalently the number of times
the tour has passed through it) and connecting non-tree edges incident on u to
appropriate copies of u; see Figure 4.6. Geometrically, the above modification
of the terrain triangulation can be interpreted as “puncturing” the plane along
the edges of T̂ and introducing a new face f̂ bounded by the 2|Ê| edges in the
Euler tour.

We then subdivide f̂ by placing a new vertex v̂ inside it and connecting v̂
via incoming edges (u, v̂) to every vertex u on the boundary of f̂ . The result is
a triangulation M0 = (V0, E0, F0); see Figures 4.7 (a) and (b). The newly added
triangles are all incident to v̂, and we refer to them as v̂-triangles. The edge e
opposite to v̂ in a v̂-triangle f (which is a copy of a T̂ edge) is called the base of
f and f is said to be based at e. One can modify the plane drawing of M into a
(singular) plane drawing of M0, that has faces of zero area and edges that bend
and overlap, by jamming all the new faces and edges in the (zero-area) hole that
results from cutting the plane along T̂.

M0 can be regarded as the triangulation of a terrain M0: Fáry’s theorem [55]
can be used to straight-line embed M0 while preserving all its faces and the
height function of M induces a height function on triangles of M0 that are also
in M. The height of v̂ is then chosen to be higher than the heights of all vertices
of M and is used to linearly interpolate a height function on v̂-triangles.

Lemma 4.5 M0 has no positive saddles and exactly one maximum, namely v̂.
The minima of M0 are precisely those of M. Each negative saddle of M0 is a
copy of a negative saddle of M, and only one copy of each negative saddle of M
is a negative saddle of M0.

Proof. For a vertex u 6∈ T̂, Lk(u) is the same in M and M0 modulo taking copies
of T̂ vertices as identical. In particular, minima of M stay minima in M0. Thus
it suffices to consider v̂ and copies of T̂ vertices. Clearly, v̂ is a maximum. Let
u be a vertex of T̂, and let u′ be a copy of u in M0. Let e′1 and e′2 be copies of
T̂ edges that enter and leave u′, respectively, in the Eulerian tour of T̂. Both of
these edges remain incident to u′ in M0. Let v′1 and v′2 be other endpoints of e′1
and e′2 in M0, respectively. Let vi and ei, i = 1, 2, be the vertex and edge in M
corresponding to v′i and e′i, respectively. Lk(u′) consists of a path π(u′) from v′1
to v′2 followed by v̂. Moreover, e′1 and e′2 are the only edges incident on u′ that

48 Chapter 4. I/O-Efficient Construction of Contour Maps

(a) (b) (c)

Figure 4.7: (a) A red (ascending) cut-tree marked T̂ marked on the terrain
M of Figure 4.4. (b) Construction of the graph M0: the terrain is cut along
T̂ and a new maximum v̂ is inserted in the opened face. On the right, a blue
cut-tree of M0 is marked. (c) Construction of the graph M̃: the terrain is cut
open on the red cut-tree and a new maximum is inserted.

are copies of T̂ edges, and π(u′) is also a path in Lk(u) in M, modulo taking
copies of T̂ vertices as identical.

First, u′ cannot be a maximum because u′ is adjacent to v̂. It cannot be a
minimum either because then π(u′) ⊆ Lk+(u) and e1 and e2 are outgoing edges
from u in T̂ connected to some component of Lk+(u), which contradicts Lemma
4.4. Next, if Lk+(u′) is not connected, then its component U not containing v̂
does not contain v′1 and v′2 either and thus u lies in the interior of the path π(u′).
Then U is also a connected component of Lk+(u) in M. Unless u is a negative
saddle, by Lemma 4.4, there is an outgoing edge in T̂ from u to a vertex in U ,
contradicting the fact that e′1 and e′2 are the only edges adjacent to u′ that are
copies of T̂ edges. Hence, unless u is a negative saddle, Lk+(u′) is connected
and u′ is a regular vertex in M0.

Finally, suppose u is a negative saddle, with two components U1 and U2 in
Lk+(u). By Lemma 4.4, u has exactly one outgoing edge e in T̂. Without loss of
generality assume that e is connected to U1. Then U2 will appear as a connected
component of the upper link of exactly one copy u′ of u, namely if U ⊆ π(u′),
and u′ will be a negative saddle in M0. The upper link of all other copies of u
will be connected — consisting of v̂ and possibly a portion of U1. Consequently,
one copy of every negative saddle of M becomes a negative saddle in M0 and
other copies become regular vertices. This completes the proof of the lemma. 2

Next we perform a similar surgery on M0 only using a blue cut-tree Ť of M0.
As above, the idea is to slice the plane along Ť and insert a new vertex v̌ in the
resulting face and connect v̌ to every copy u of a vertex in Ť by an outgoing edge
(v̌, u). We call the resulting triangulation M̃ = (Ṽ , Ẽ, F̃). A slight technicality
arises in this case as a result of the fact that v∞ is a minimum of M0 which by
Corollary 4.2 is a vertex of Ť. As it will become clear later, we only need to
treat v̌ symbolically below v∞ by connecting them by an edge oriented toward

4.3. Level-ordering of Triangles 49

v∞. We conclude, using the same argument as in Lemma 4.5, the following:

Lemma 4.6 M̃ does not have saddle vertices.

Lemma 4.7 If (f∗1 , f∗2) is an edge of M∗, then there is a path from f∗1 to f∗2 in
M̃∗.

Proof. If f1 and f2 are adjacent in M̃ then (f∗1 , f∗2) is an edge in M̃∗. Thus we
only need to consider the case in which an edge e shared by f1 and f2 in M is
an edge of T̂ or Ť (or both). Suppose e is an edge of T̂. In constructing M0, e is
duplicated to create two edges e1 and e2, respectively, incident to f1 and f2. Let
φ1 and φ2 respectively be the v̂-triangles based at e1 and e2. By construction,
f1 is to the left and φ1 to the right of e1 and therefore (f∗1 , φ∗1) is an edge in M̃∗.
Similarly (φ∗2, f∗2) are edges in M̃∗. Consider the subgraph of M̃∗ induced by
v̂-triangles. Since all the edges incident to v̂ are incoming, their duals make a
cycle in M̃∗ which includes φ∗1 and φ∗2. Since there is a path from φ∗1 to φ∗2 on
this cycle and there are edges from f∗1 to φ∗1 and from φ∗2 to f∗2 in M̃∗, we get a
path from f∗1 to f∗2 . It is easy to observe that the same argument extends to
neighboring M triangles that are separated by the edges of Ť or both T̂ and Ť.
2

4.3.4 Encoding of contours in the resulting basic terrain

Although we argued above that M̃ can be realized and therefore treated as the
triangulation of a terrain M̃, to relate the level sets of M̃ to those of M, in the
rest of this section we use a degenerate realization of M̃ as a surface in R3 that
differs from what a straight-line embedding of M̃ results. This substantially
simplifies the arguments that follow. We shall realize the v̂- and v̌-triangles as
vertical curtains: An upward (resp. downward) extending curtain based at a
segment pq in R3 is the convex hull of two infinite rays shot in positive (resp.
negative) direction of the z-axis from the points p and q respectively. A curtain
can be regarded as a vertical (orthogonal to the xy-plane) triangle that has a
vertex at infinity.

We realize M̃ by preserving the geometry of every triangles that existed in
M and representing v̂-triangles (resp. v̌-triangles) as upward (resp. downward)
extending curtains based at segments corresponding to the edges of T̂ (resp.
Ť) on M; see Figure 4.8. Note that in this realization of M̃, the two copies
of each T̂ or Ť edge overlap as do the segments that represent them on M̃
and therefore the curtains tha realize their corresponding v̂- or v̌-triangles also
overlap. Although in this sense M̃ is not the graph of a bivariate function, it
can still be regarded as a (self-overlapping) piece-wise linear surface in R3 and a
level set M̃` of it can be defined as the projection into the xy-plane of the set
M̃` = M̃ ∩ z`. Let T̂ and Ť respectively be shorthands for M(T̂) and M(Ť).
Note that T̂ and Ť are also contained in M̃, although under the topology of
this surface they are (self-overlapping) closed curves that correspond to Eulerian
traversals of T̂ and Ť on M.

50 Chapter 4. I/O-Efficient Construction of Contour Maps

(a) (b) (c)

Figure 4.8: (a) The red cut-tree T̂ of a terrain is drawn using heavier seg-
ments on the terrain M. (b) The terrain is sliced along T̂ and v̂-triangles are
represented by upward extending curtains. Note that each edge e of T̂ results
two overlapping curtains one based at each of the two (overlapping) copies of
e that results from cutting the terrain along T̂. (c) A contour of the resulting
terrain (dashed) overlapping itself on v̂-triangles.

Since every triangle of M is also in M̃ and is geometrically realized by the
same triangle in both M and M̃, M` ⊆ M̃` for all ` ∈ R and M̃` \M` ⊂ T̂ ∪ Ť
(with some abuse of notation we write T̂ and Ť to refer the red and blue cut-trees
as subgraphs M as well as their drawings as subsets of R2). In other words
M̃` consists of the contours of M` together with fragments of the red and blue
cut-trees.

Lemma 4.8 Let K0 be a blue (resp. red) contour in a level set M` and let
K1, . . . ,Kr be its children. Let R be the interior of Ki

0 \ (Ki
1 ∪ · · · ∪Ki

r). Then
M̃` ∩R = T̂ ∩R (resp. Ť ∩R).

Proof. We prove the lemma for the case where K0 is blue. The proof for the
case where it is red is symmetric. Let Q and Q̃ respectively be shorthands for
M(R) and M̃(R). By definition, Q ⊆ Q̃. Since K0 is a blue contour of M, Q is
entirely below the plane z`. Since Q and Q̃ differ only in curtains based at T̂ or
Ť segments, z`∩ Q̃ is contained in such curtains. On the other hand any curtain
whose intersection with Q̃ intersects z` has to be extending upward from some
segment of T̂ that intersects Q. Thus M̃` ∩R ⊆ T̂. Conversely, any segment of
T̂ that intersects Q is the base of an upward extending curtain which intersects
z`. Thus T̂ ∩R ⊆ M̃`. 2

Let us fix a regular level ` of h and and let K1, . . . ,Kt be the contours
in M`. For simplicity, we virtually add an infinitely large contour K0 that
bounds the entire plane. Let K` = {K0,K1, . . . ,Kt}. Consider the set R` =
{R0, R1, . . . , Rt} of the connected component of R2 \M`. The boundary of each
Ri, i ≥ 0, consists of a set B(Ri) = {Ki0 ,Ki1 , . . . ,Kir(i)

} ⊆ K` of r(i) contours
in which Ki1 , . . . ,Kir(i)

are the children of Ki0 in the arrangement of contours
in K`.

For any R ∈ R` we construct an undirected graph G`(R) = (VR, ER) as
follows. By Lemma 4.8, M̃` ∩ R is contained in exactly one of T̂ or Ť; let T
denote that tree. The vertex set VR of G`(R) consists of all the vertices of T
that are contained in R together with one auxiliary vertex vK associated with

4.3. Level-ordering of Triangles 51

every contour K ∈ B(R). The edge set ER of G`(R) consists of an edge {u, v}
corresponding to each edges (u, v) of T whose endpoints u and v are both in R
together with an edge {v, vK} for any edge of T that crosses a contour K ∈ B(R)
and its endpoint in R is v. Equivalently, G`(R) is obtained from the subgraph
of T that is induced by those edges of T that intersect R, by identifying all
vertices that are contained in each component R′ 6= R of R` that is separated
from R by a contour K ∈ B(R) into a single vertex vK .

Lemma 4.9 For any R ∈ R` the graph G`(R) as defined above is a tree.

Proof. Let K0,K1, . . . ,Kr be the contours bounding R and let K0 be the parent
of K1, . . . ,Kr. We prove the lemma for the case where K0 is blue. The proof
for the case where it is red is symmetric. We prove that the existence of a cycle
in G`(R) implies the existence of a cycle in the underlying undirected graph
of T̂ which contradicts Corollary 4.2. Consider any contour Kj , j ≥ 1 and let
e1 = (u1, v1) and e2 = (u2, v2) be two edges of T̂ that intersect Kj . Since Kj is
red, v1, v2 ∈ K i

j . Since e1 is an edge of T̂, v1 is followed in T̂ by an ascending
path that ends at a maximum. Since no ascending path can leave K i

j , T̂ reaches
a maximum v′1 in K i

j through v1. Similarly, T̂ reaches a maximum v′2 in K i
j

through v2. Lemma 4.3 implies that v′1 and v′2 are connected by a path in the
underlying undirected graph of T̂ that is contained in K i

j . In other words, any
two branches of T̂ that enter K i

j meet in K i
j . Thus if we contract every edge of

T̂ whose endpoints are both outside R, we precisely get the graph G`(R). The
proof of the lemma follows from the fact that the result of contracting a tree
edge is a tree. 2

We next combine the graphs G`(R), R ∈ R` into a graph G` by identifying,
for any two components R1 and R2 that share a contour K in their boundaries,
the two auxiliary vertices vK associated to K in G`(R1) and G`(R2). The acyclic
structure of the hierarchy of red and blue contours together with Lemma 4.9
result the following statement.

Corollary 4.3 The graph G` is a tree.

Let P be a v̌-v̂ path in M̃. Since M̃ is a basic terrain (does not have saddle
vertices), by Lemma 4.1 M̃∗ \ P ∗ is acyclic. Let ≺ be the adjacency partial
order on F̃ induced by M̃∗ \ P ∗. Since F ⊂ F̃ , ≺ is also a partial order when
restricted to F .

Lemma 4.10 Let / be a linear extension of ≺ on F . If K and K ′ are two
contours of a level set M` and f1, f2 ∈ F (K) and f ′1, f ′2 ∈ F (K ′) are such that
f1 / f

′
1 / f2, then f1 / f

′
2 / f2.

Proof. Since M̃ is a basic terrain, M̃` consists of a single contour. Let C∗ =
C(K,M∗) be the representing cycle of M̃` in M̃∗. If f1, f2 ∈ F (K) for some
contour K in M` and the edge common to f1 and f2 does not belong to either
of T̂ or Ť, then (f∗1 , f∗2) is an edge in C∗. By Lemma 4.1, C∗ has exactly one
edge in P ∗. Thus C∗ \ P ∗ is a path Q∗ that is exactly one edge short of C∗.

52 Chapter 4. I/O-Efficient Construction of Contour Maps

(a) (b)

Figure 4.9: Contours of M` (a) versus those of M̃` (b).

Let G` be the tree of Corollary 4.3. We map the path Q∗ in M̃` into a walk
W in G` as follows: Each vertex f∗ of Q∗ is mapped to a pair (u, v) where either
u and v are neighboring vertices in G` or u = v. Specifically, if f ∈ M`(K),
then f∗ is mapped into (vK , vK) where vK is the vertex of G` that represents
K. Otherwise, f∗ is dual to of some v̌- or v̂-triangle f in M̃ that intersects M̃`.
Let e = (u, v) be the edge in M at (a copy of) which f is based in M̃. If the
edge e does not intersect M`, it is contained in G`(R) (as an undirected edge)
for precisely one R ∈ R`, in which case we map f∗ to (u, v). On the other hand,
if e intersects M` at a contour K, then by Lemma 4.8 there will be precisely
one edge {vK , v} in G` where v is an endpoint of e, in which case we map f∗

into (v, vK). It can be verified that the set of pairs in the image of Q∗ under
this mapping is indeed a walk W in G`. Since M̃` goes thorough any segment s
at most twice, each edge of G` appears at most twice in W .

For f1 / f
′
1 / f2 to hold, Q∗ must visit f∗1 , f ′1

∗ and f∗2 in this order. Assume
without loss of generality that f ′1 / f ′2. In order for f1 / f

′
2 / f2 not to hold, one

must have f2 / f
′
2 which means Q∗ must visit f ′2

∗ after f∗2 . But this corresponds
to going from K to K ′, then back to K and then again to K ′. Since each of K
and K ′ are represented by a vertex in G` this would mean that W goes thorugh
vK , vK′ , and again vK in this order. Corollary 4.3 implies then that W has to
traverse some edge of G` at least three times, a contradiction. 2

Lemmas 4.7 and 4.10 respectively prove that the total order / has properties
(C1) and (C2) of a level-ordering .

Theorem 4.1 For any terrain M with triangulation M, there is exists a level
level-ordering of the triangles of M.

4.4 Contour Algorithms

In this section we describe I/O-efficient algorithms for computing contour maps
as well as an I/O-efficient data structure for answering contour queries.

4.4. Contour Algorithms 53

4.4.1 Level-ordering of terrain triangles

We describe an I/O-efficient algorithm for computing, given a terrain M, the
triangulation M̃ of the simplified terrain M̃, and a monotone path P from v̌
to v̂ in M̃. We can then compute a level-ordering of the triangles of M̃ in
O(Sort(N)) I/Os using an existing I/O-efficient topological sorting algorithm for
planar DAGs [22]. This induces a level-ordering on the triangles of M.

Computing the red cut-tree The first step in computing M̃ is to compute
a red (ascending) cut-tree T̂ of M. The I/O-efficient topological persistence
algorithm of Agarwal et al. [5] can determine the type (regular, minimum,
negative saddle, . . .) of every vertex of M in O(Sort(N)) I/Os. Moreover, for
every vertex v ∈M, it can also compute, within the same I/O bound, a vertex
from each connected component of Lk+(v). Since each saddle of M is assumed
to be simple, Lk+(v) has at most two connected components.

To compute T̂, we apply the time-forward processing technique [41] using
a priority queue Q: we scan the vertices of M in the increasing order of their
heights. We store a subset of vertices in Q, namely the upper endpoints of
the edges of T̂ whose lower endpoints have been scanned. The priority of a
vertex v in Q is its height h(v). Suppose we are scanning a vertex v of M and
u is the lowest priority vertex in Q. If h(v) < h(u) and v is not a positive
saddle, we move to a new vertex in M. Otherwise, i.e. if h(u) = h(v) or v is a
positive saddle, we choose a vertex w from each connected component of Lk+(v),
which we have already computed in the preprocessing step. We add the edge
(v, w) to T̂ and add w to Q. Since each operation on Q can be performed in
O
(

1
B logM/B N/B

)
I/Os, T̂ can be computed in O(Sort(N)) I/Os.

Adding the blue cut-tree The second step in computing M̃ is to compute
a blue cut-tree Ť of M0. However, we can compute Ť directly on M if we ensure
that T̂ and Ť do not cross each other, even though they can share edges. This
property can be ensured by choosing the ascending and descending edges, in T̂
and Ť, respectively, out of each vertex v, more carefully. Specifically, we use the
following rule:

1. On an ascending path, the edge following (u, v) is (v, w) where (v, w) is
the first outgoing edge out of v after (u, v) in clockwise order, and

2. On a descending path, the edge following (v, u) is (w, v) where (w, v) is
the first incoming edge of v after (v, u) in counterclockwise order.

It can be verified that T̂ and Ť do not cross. One can therefore compute Ť
precisely in the same way as T̂ directly on M.

Computing a monotone v̌-v̂ path P While computing Ť we also compute
a descending path starting at the lowest positive saddle v1 of M as though v1
were another negative saddle. This path P , which ends at a Ť vertex v0, together
with (v̌, v0) and (v1, v̂) serves as a monotone path in M̃ connecting v̌ to v̂.

54 Chapter 4. I/O-Efficient Construction of Contour Maps

Generating M̃∗ \ P ∗ The topological sorting algorithm of Arge et al. [22]
takes as input a planar directed acyclic graph, represented as a list of vertices
along with the list of edges incident upon each vertex in circular order. Given
M, T̂, Ť, and P , we need to compute such a representation of M̃∗ \ P ∗. Since
each face in M̃ is a triangle, M̃∗ is 3-regular. It is easy to compute the circular
order of edges incident upon a vertex of M̃∗ whose dual triangle is neither a
v̂- or v̌-triangle, nor adjacent to a copy of a T̂ or Ť edge. The main task is
then to compute these the v̂- and v̌-triangles. This can be accomplished by
computing the Eulerian tours of T̂ and Ť, which takes O(Sort(N)) I/Os [22].
Putting everything together, we obtain the main result of this chapter.

Theorem 4.2 Given a terrain M with triangulation M, a level-ordering of the
triangles of M can be computed in O(Sort(N)) I/Os, where N is the number of
vertices of M.

4.4.2 Contour maps of basic terrains

Let L = {`1, . . . , `s} be a set of input levels with `1 < · · · < `s. Given a basic
terrain M, the goal is to compute the contour map of M for levels in L. Since
M is simple, each M`i consists of a single contour. Generating the segments of
M`i in clockwise or counterclockwise order is equivalent to listing the triangles
of M that the contour M`i intersects in that order, i.e. reporting C(M`,M).

Our algorithm uses a buffer tree B to store the triangles of M that intersect
a level set. The buffer tree [11] is a variant of B-tree, which propagates updates
from the root to the leaves in a lazy manner, using buffers attached to the
internal nodes of the tree. As a result, a sequence of N updates (inserts and
deletes) can be performed in amortized O(Sort(N)) I/Os. Moreover, one can
perform a flush operation on a buffer tree that results in the writing of all its
stored elements on the disk in sorted order. Flushing a tree with T elements
takes O(T/B) I/Os.

It is more intuitive to describe the algorithm as a plane sweep of M in
R3. At the first step, the algorithm computes a level-ordering / of the terrain
triangles using Corollary 4.1. Then starting at ` = −∞, the algorithm sweeps
a horizontal plane z` in the positive z-direction. A target level `∗ is initially
set to `1. At any time the algorithm maintains the list of triangles of M that
intersect the sweeping plane in a buffer tree B ordered by /. Whenever the
sweep plane encounters the bottom-most vertex of a triangle f , we insert f into
B; f is deleted again from B when the plane reaches the top-most vertex of f .
When the sweep plane z` reaches the target level `∗ (or rather the lowest vertex
of height `∗ or more when the sweeping is implemented discretely), we flush the
buffer tree. The generated list of triangles (vertices of M∗) are precisely the set
of triangles in M that intersect z`∗ ordered by /. Corollary 4.1 implies that the
output is exactly C(M`∗ ,M). The algorithm then raises the target level `∗ to
the next level in L and continues.

Level-ordering of the terrain triangles takes O(Sort(N)) I/Os (Theorem 4.2).
Preprocessing for the sweep algorithm consists of sorting the vertices in their
increasing order of heights which can also be done in O(Sort(N)) I/Os. During

4.4. Contour Algorithms 55

the sweep each update on the buffer tree takes O(1
B logM/B N/B) amortized

I/Os [11]. Thus all the O(N) updates can be performed in O(Sort(N)) I/Os in
total. Each flushing operation takes O(T ′/B) I/Os, where T ′ is the number of
triangles in B. If a triangle is in B but has been deleted, it is not in B after the
flushing operation, so a “spurious” triangle is flushed only once.

Hence, the total number of I/Os is O(Sort(N)+T/B), where T is the output
size. Finally, in addition to storage used for the terrain the algorithm uses
O(N/B) blocks to store the buffer tree and thus uses O(N/B) blocks in total.

4.4.3 Generalization to arbitrary terrains

Given a general terrain M with saddles, one can still compute by Theorem
4.2 a level-ordering of the triangles of M in O(Sort(N)) I/Os. If one runs the
algorithm of the previous section on M̃ the output generated for each input
level `i is C(M̃`i , M̃). Running the algorithm on M is equivalent to running it
on M̃ but ignoring all v̂ and v̌-triangles by omitting their insertions into the
buffer tree. Consequently, the produced output for level `i is the same sequence
of triangles only with v̂ and v̌-triangles omitted. By Theorem 4.1 this is a
subsequence R = 〈f1, . . . , fk〉 of C(M̃`i , M̃)) in which C(K,M) of each contour
K in M`i appears as a subsequence RK . Thus all one needs to do is to extract
the subsequence RK and write it separately in the same order as it appears in
R. Property (C2) of a level-ordering allows this to be done in O(k/B) I/Os: if
in scanning the sequence R from left to right some elements of RK are later
followed by elements of RK′ , then the appearance of another element of RK ,
indicates that no more elements from RK′ remain.

We thus scan the sequence R from left to right and push the scanned triangles
into a stack SF . Every time the last element of a contour is pushed into the
stack, the triangles of that contour make a suffix of the list of elements stored
in SF . At such a point, we pop all the elements corresponding to the completed
contour and write them to the disk. To find out when a contour is completed
and how many elements on the top of stack belong to it, we keep a second stack
SE of edges. For any triangle f ∈ F (M`i), two of the edges of f intersect M`i .
With respect to the orientation of these edges, f is to the right of one of them
and to the left of the other one which we respectively call the left and right
edges of f at level `i. If e∗ = (f∗j , f

∗
j+1) is an edge of the representing cycle of a

contour in M`i , then e is the right edge of fj and left edge fj+1 at level `i. We
therefore check when scanning a triangle fj whether its left edge is the same as
the right edge of the triangle on top of SF and insert fj into SF if this is the
case. Otherwise, we compare the left edge of fj with the edge on top of SE . If
they are not the same, we are visiting a new contour and we insert the left edge
of fj into SE and fj into SF . Otherwise, fj is the last triangle of its contour.
Therefore we write it to the disk and successively pop and write to disk enough
triangles from SF until the left edge of a popped triangle matches the right edge
of fj . We also pop this edge from SE . In this algorithm each scanned triangle
is pushed to the stack once and popped once. In a standard I/O-efficient stack
implementation this costs O(k/B) I/Os.

56 Chapter 4. I/O-Efficient Construction of Contour Maps

Theorem 4.3 Given any terrain M with N vertices and a list L = {`1, . . . , `s}
of levels with `1 < · · · < `s, one can compute using O(Sort(N) + T/B) I/Os
the contour map of M for levels in L, where T is the total number of produced
segments.

4.4.4 Extracting nesting of contours

In addition to reporting each contour individually, a number of applications call
for computing how various contours are nested within each other. We produce
this information by returning the parent of each contour in a computed contour
map.

The parent-child relationship between individual contours in a contour map
of a terrain M can be read from the contour tree of M. Each contour in a contour
map corresponds to a point on some edge of the contour tree. Two contours K
and K ′ in the map are neighbors (either siblings or parent and child) if and only
if their corresponding points on the contour tree can be connected by a path
that does not pass through a point corresponding to a third contour K ′′ 6= K,K ′

in the given contour map. Each edge of the contour tree can be colored red or
blue according to the color of the contours it represents (all contours represented
by the points on the same edge of the contour tree have the same color). By
the assumption that all saddles are simple, internal nodes of the contour tree
which correspond to saddles all have degree three. It can be verified that at a
joining (negative) saddle only two color combinations on the edges incident to
the saddles are possible. The same holds for a splitting (positive) saddle. In
each case, using the edges colors, and using the corresponding patterns in which
contours of various colors can merge or split, one can uniquely determine one of
the edges incident to the saddle that carries contours that are parents to those
carried by the other two. We orient this edge at each saddle away from and
the other two toward the saddle. The resulting orientation on the contour-tree
is equivalent to orienting each blue edge toward its higher end and each red
edge toward its lower end. With this orientation of the contour tree a contour
K will be the parent of a contour K ′, if the path between points representing
K and K ′ on the contour tree follows the orientation of the edges of the tree.
The algorithm of Arge et al. [5] for computing the contour tree can return the
color of each edge on the generated tree which can be used to orient the tree as
explained above.

By determining the edge of the contour tree carrying each contour of the
contour map, one can determine the parent-child relationship between individual
contours in O(Sort(N) + T/B) I/Os, where T is the number of contours in the
given contour map, through a pre-order traversal of the oriented contour tree.

To facilitate finding of the edge the contour tree that carries a contour in
the given map, instead of the contour tree, we compute the augmented contour-
tree [5]. The augmented contour tree of a terrain replaces each edge of the
contour tree with a monotonically ascending path whose vertices are the vertices
of the terrain. Every regular vertex of the terrain appears precisely once in
one of these paths. All the properties of contour tree are also valid for the
augmented contour tree. We store in each vertex u of the terrain a pointer to

4.4. Contour Algorithms 57

each of the (at most two if u is a saddle and one if u is regular) edges in the
augmented contour tree that have u as the lower endpoint. To locate the edge
in the augmented contour tree corresponding to a computed contour K, we scan
the list of triangles that intersect K and determine the vertices u and u′ of these
triangles respectively highest below and lowest above the level of K. Since there
are no vertices between u and u′, shifting K down or up between h(u) and h(u′)
does not change the set of triangles it intersects and therefore its homology class.
Consequently, uu′ is an edge of the augmented contour tree. All that is needed
then is to locate the pointer to the contour tree edge stored at u that matches
uu′. Since the augmented contour tree of a terrain of size N can be computed
in O(Sort(N)) I/Os [5], we summarize the above discussion as follows:

Theorem 4.4 For a contour map consisting of T contours of a terrain with
N triangles, where each contour is given as a list of triangles that intersect it
together with its level, one can report for each contour in the map a pointer to
its parent in O(Sort(N) + T/B) I/Os.

4.4.5 Answering contour queries

The sweep algorithm described in the previous section can easily be modified
to construct a linear space data structure that given a query level ` can report
the contours in the level set M` I/O-efficiently. Unlike the previously known
structure for this problem [3], our structure can be constructed in O(Sort(N))
I/Os. To obtain the structure we simply replace the buffer tree B with a partially
persistent B-tree [18,116]. To build the structure, we sweep M by a horizontal
plane in the same way as we did in the algorithm of Section 4.4.2, inserting
the triangles when the sweep plane reaches their bottom-most vertex, without
checking for them to intersect any target levels, and deleting them when the
sweep plane passes their top-most vertex. There will also be no need to flush
the tree.

Since O(N) updates can be performed on a persistent B-tree in Sort(N)
I/Os [19,112], the sweeping of the terrain require O(Sort(N)) I/Os. A persistent
B-tree allows us to query any previous version of the structure and in particular
produce the list of the elements stored in the tree in O(logB N + T/B) I/Os
when T is the number of reported elements. Therefore we can obtain M` in
the same bound, simply by querying the structure for the triangles it contained
when the sweep-plane was at height ` and then utilize Theorem 4.1 and the
contour extraction algorithm discussed above to extract individual contours of
M`.

Theorem 4.5 Given a terrain M with N vertices, one can construct in O(Sort(N))
I/Os a linear size data structure, such that given a query level `, one can report
contours of M` in O(logB(N) + T/B)) I/Os where T is the size of the query
output. Each contour is reported individually, and the edges of each contour are
sorted in clockwise order.

58 Chapter 4. I/O-Efficient Construction of Contour Maps

4.5 Conclusions

We defined level-ordering of terrain triangles and proved that every terrain
has a level ordering that can be computed I/O-efficiently. Based on this, we
provided algorithms that compute contours of a given terrain within similar I/O
bounds. An immediate question is whether this approach can be generalized to
triangulated surfaces of arbitrary genus with arbitrary piecewise linear functions
defined on them. Notice that the problem is valid even if the input surface is
not embedded in R3. Another interesting open problem for surfaces that are
embedded in R3 is computing of level sets or answering contour queries for a
height function defined by a variable z direction: is it possible to preprocess a
given triangulated surface embedded in the three space so that for any given
direction, the contours of the height function for that direction can be computed
I/O-efficiently?

Chapter 5

Cache-Oblivious Red-Blue Line Segment

Intersection

In this chapter, we develop a cache-oblivious algorithm for the red-blue line
segment intersection problem, that is, for finding all intersections between a set of
non-intersecting red segments and a set of non-intersecting blue segments in the
plane. The algorithm uses O(Sort(N) + T/B) memory transfers where N is the
total number of segments and T is the number of intersections. Our algorithm
is optimal and, to the best of our knowledge, the first efficient cache-oblivious
algorithm for any intersection problem involving non-axis-parallel object.

In the first paper to consider computational geometry problems in external
memory [66], Goodrich et al. introduced the distribution sweeping technique
(a combination of M/B-way distribution sort and plane sweeping) and showed
how it can be used to solve a large number of geometric problems in the plane
using O(Sort(N) + T/B) memory transfers, where T is the output size of the
problem (e.g., number of intersections). The problems they considered include
the orthogonal line segment intersection problem and other problems involving
axis-parallel objects. Arge et al. developed an algorithm that solves the red-blue
line segment intersection problem using O(Sort(N)+T/B) memory transfers [23],
which is optimal. The algorithm uses the distribution sweeping technique [66]
and introduces the notion of multi-slabs ; if the plane is divided into vertical slabs,
a multi-slab is defined as the union of any number of consecutive slabs. Multi-
slabs are used to efficiently deal with segments spanning a range of consecutive
slabs. The key is that, if there are only

√
M/B slabs, there are less than M/B

multi-slabs, which allows the distribution of segments into multi-slabs during a
plane sweep using standard M/B-way distribution. Arge et al. also extended
their algorithm to obtain a solution to the general line segment intersection
problem using O(Sort(N + T)) memory transfers [23].

Bender et al. [30] developed a cache-oblivious algorithm that solves the offline
planar point location problem using O(Sort(N)) memory transfers; Brodal and
Fagerberg [34] developed a cache-oblivious version of distribution sweeping and
showed how to use it to solve the orthogonal line segment intersection problem,
as well as several other problems involving axis-parallel objects, cache-obliviously
using O(Sort(N) + T/B) memory transfers.

59

60 Chapter 5. Cache-Oblivious Red-Blue Line Segment Intersection

Figure 5.1: An instance of the red-blue line segment intersection problem.

5.1 Our Contribution

As discussed, the external-memory algorithm for this problem [23] is based on
an extended version of distribution sweeping utilizing multi-slabs. Our new
algorithm borrows ideas from both the external-memory algorithm for the red-
blue line segment intersection problem [23] and the cache-oblivious algorithm
for the orthogonal line-segment intersection problem [34]. In order to obtain a
useful notion of sweeping the plane top-down or bottom-up, we utilize the same
total ordering as in [23] on a set of non-intersecting segments, which arranges the
segments intersected by any vertical line in the same order as the y-coordinates
of their intersections with the line. In the case of axis-parallel objects, such
an ordering is equivalent to the y-ordering of the vertices of the objects; in
the non-axis-parallel case, this ordering is more difficult to obtain [23]. Similar
to the cache-oblivious orthogonal line-segment intersection algorithm [34], we
employ the cache-oblivious distribution sweeping paradigm, which uses two-way
merging rather than

√
M/B-way distribution. While this eliminates the need for

multi-slabs, which do not seem to have an efficient cache-oblivious counterpart,
it also results in a recursion depth of Θ(log2N) rather than Θ(logM/B N). This
implies that one cannot afford to spend even 1/B memory transfers per line
segment at each level of the recursion. For axis-parallel objects, Brodal and
Fagerberg [34] addressed this problem using the so-called k-merger technique,
which was introduced as the central idea in Funnel Sort (ie., cache-oblivious
Merge Sort) [64]. This technique allows N elements to be passed through
a log2N -level merge process using only O(Sort(N)) memory transfers, but
generates the output of each merge process in bursts, each of which has to be
consumed by the next merge process before the next burst is produced. This
creates a new challenge, as a segment may have intersections with all segments
in the output stream of a given merge process and, thus, needs access to the
entire output stream to report these intersections. To overcome this problem,
Brodal and Fagerberg [34] provided a technique to detect, count, and collect

5.2. Topological Sorting of Planar st-Graphs 61

intersected segments at each level of recursion that ensures that the number of
additional accesses needed to report intersections is proportional to the output
size.

Our main contribution is the development of non-trivial new methods to
extend the counting technique of Brodal and Fagerberg [34] to the case of
non-axis-parallel line segments. These ideas include a look-ahead method for
identifying certain critical segments ahead of the time they are accessed during
a merge, as well as an approximate counting method needed because exact
counting of intersected segments (as utilized in the case of axis-parallel objects)
seems to be no easier than actually reporting intersections.

5.2 Topological Sorting of Planar st-Graphs

In this section we present a cache-oblivious algorithm for constructing a topo-
logical ordering of the vertices of a planar st-graph. The algorithm is based on
the PRAM-algorithm from [108], which we modify to obtain a cache-oblivious
algorithm.

5.2.1 Properties

We will use the following properties of a planar st-graph G [27, 77,81,107].

(i) G can be drawn in the plane such that all edges are directed upwards.

(ii) For every vertex v of G, there is a path from s to t through v.

(iii) In a clockwise ordering of the edges incident to each vertex v, the cycle
can be broken so that all incoming edges precede all outgoing edges of v.

(iv) The boundary of each face consists of two directed paths with common
origin and endpoint.

We will now define four functions (left, right, low,high) on the elements of G [108].
For every edge e = (u, v), we define low(e) = u and high(e) = v; left(e) is the
face to the left of e, and right(e) is the face to the right of e. For a vertex, we refer
to the Property (iii) above and define left(v) (right(v)) to be the faces between
the leftmost (rightmost) incoming edge and the leftmost (rightmost) outgoing
edge of v; low(v) = high(v) = v. Finally, for a face, we refer to Property (iv)
above and define low(f) and high(f) to be the common origin and endpoint,
respectively, of the two bounding paths of v; left(f) = right(f) = f . Some of
these definitions are shown in Figure 5.2.

For a planar st-graph G, its dual G∗ is defined as follows: G∗ contains one
vertex f∗ for each face f of G, except the external face; the external face is
represented by two vertices s∗ and t∗. For every edge e of G, G∗ contains a
directed edge (left(e)∗, right(e)∗); if left(e) is the external face, left(e)∗ is chosen
to be s∗; if right(e) is the external face, right(e)∗ = t∗.

We now define two partial orders on the vertices, edges, and faces of G: We
say that x is below y and write x ↑ y if there is a path from high(x) to low(y)

62 Chapter 5. Cache-Oblivious Red-Blue Line Segment Intersection

left(u) right(u)
u

e

e′

(b) low(f)

high(f)

f

e′

e

(b)

Figure 5.2: (a) A vertex v and the faces left(v) and right(v). The vertex is
represented by the pairs (e, u) and (u, e′) in L. (b) A face f and high(f) and
low(f). The face is represented by the pairs (e, f) and (f, e′) in L.

in G. Similarly, we say that x is to the left of y and write x→ y if there is a
path from right(x)∗ to left(x)∗ in G∗.

Observe [106] that a vertex u has to precede vertex v in the topological
ordering of G if u ↑ v. Thus, we aim to extend the partial order ↑ to a total
order <t. Note that ↑ itself is not a total order unless G is a path. The desired
total ordering is given by the following definition.

Definition 5.1 ([106]) Let x, y be entities of the planar st-graph G, where an
entity is a vertex, edge or face. We define x <t y to hold if and only if x→ y
or x ↑ y.

Tamassia and Preparata [106] prove that <t is a total order on the faces, edges
and vertices of G. Having defined the order <t, we now want to obtain an
algorithm that actually sorts the vertices of G using this order.

5.2.2 Computing the topological order

To sort the vertices of a planar st-graph G = (V,U), we proceed as in the PRAM
algorithm of [108]. We will construct a linked list L of all elements of V ∪E ∪F ,
where F denotes the sef of faces of G. There will be a link (x, y) in the list if
and only if x is y’s immediate predecessor with respect to <t. Thus, ordering
the vertices, edges, and faces of G by <t reduces to computing the rank of
every element v in L, that is, the number of links on the path from the head
of L to v. The latter problem can be solved using an efficient cache-oblivious
algorithm [12].

To construct list L, recall that G is represented as a collection of adjacency
lists of the vertices of G; each adjacency list is sorted clockwise around each
vertex, which incoming edges preceding the outgoing edges. To define list L, we
consider every vertex and every face of G. For a vertex, we choose its predecessor
in L from among its in-edges and its successor from among its out edges. For a
face, the predecessor is an edge on its left bounding path, and the successor is
an edge on its right bounding path. The details are as follows:

5.2. Topological Sorting of Planar st-Graphs 63

For each vertex v 6= s, its predecessor is its rightmost incoming edge. For
each vertex v 6= t, its successor is its leftmost outgoing edge. If edge e is chosen
as the predecessor of v, we write a link (e, v) to L; similarly, we represent the
choice of a successor e′ of v by writing a link (v, e′) to L.

For each face f other than the external face, we define its predecessor to
be the topmost edge on its left bounding path and its successor to be the
bottommost edge on its right bounding path, and we represent these choices by
adding appropriate links to L. This can be done by scanning the list of edges
after sorting them by the IDs of their left faces, followed by another scan of the
edge list after sorting them by the IDs of their right faces.

The following lemma now shows that list ranking applied to L produces the
desired topological ordering <t.

Lemma 5.1 ([108]) Ranking the list L produced by the above procedure yields
the order <t on G.

The only missing detail of the algorithm is a way of assigning IDs to the
faces of G and labelling every edge with the IDs of its two incident faces. This
is what we focus on next.

Finding faces

We now show how to mark each edge e using IDs left(e) and right(e) uniquely
identifying the faces to their left and right. We talk about how to compute
right(e). The computation of left(e) is analogous.

We will construct linked lists representing the left bounding paths of the
faces of G. Using the list-ranking algorithm of [12], we then label every edge e
in such a path with the ID of its topmost edge. The edges in the right boundary
path is labelled by the ID of the clockwise successor edge of the topmost edge
of the path. Thus the unique ID of each face is the topmost edge on the left
boundary path. The linked lists are represented by a soup S of links connecting
edges on these paths to their successors. These links are easy to generate from
the adjacency lists of the vertices of G because, for an edge e = (u, v) on the
left boundary path of a face f and its successor e′ = (v, w) on this path, e must
be the rightmost in-edge of v, and e′ must be its rightmost out-edge. Given the
order in which the edges in all adjacency lists are arranged, we can thus create
the links to be added to S by a simple scan of all adjacency lists.

We now have the following results, analogous to the PRAM version [108].

Theorem 5.1 A total order of the vertices, edges, and faces of an st-graph G
with N vertices consistent with a topological ordering of the vertices in G can be
constructed cache-obliviously in O(Sort(V)) memory transfers.

Proof. Since G is planar, the number of edges and faces is O(N). The construc-
tion of the order and the faces is done by a constant number of scans, sorts and
list rankings all of which can be done in can be done in O(Sort(N)) memory
transfers. [7, 12]. 2

64 Chapter 5. Cache-Oblivious Red-Blue Line Segment Intersection

Corollary 5.1 An topological order of the N vertices in an st-graph G can be
constructed cache-obliviously in O(Sort(N)) memory transfers.

5.3 Vertically Sorting Non-Intersecting Segments

Let S be a set of N non-intersecting line segments in the plane, and let s1 and
s2 be two segments in S. We say that s2 is above s1, denoted s1 <A s2, if and
only if there exists a vertical line intersecting s1 in the point (x, y1) and s2 in the
point (x, y2) such that y1 < y2. Note that not all segments in S are comparable
under <A. The problem of sorting S consists of extending the partial order <A
to a total order, that is, to construct a total order <t on S such that s1 <A s2
implies that s1 <t s2 [23]. Below we sketch an O(Sort(N)) cache-oblivious
algorithm for this problem. We will utilize this algorithm in our cache-oblivious
red-blue line segment intersection algorithm presented in Section 5.4.

Our cache-oblivious algorithm for sorting S is an adaption of the correspond-
ing external-memory algorithm, by Arge et al. [23], who proved that to establish
the aboveness relation, it suffices to consider vertical lines through segment
endpoints: If we define s1 ↗ s2 if and only if s2 is the segment immediately
above one of the endpoints of s1, or s1 is the segment immediately below one of
the endpoints of s2, then the problem of sorting S is equivalent to extending
the relation ↗ to a total order. To obtain an external-memory algorithm, they
then considered the graph GS containing a vertex vs1 corresponding to each
segment s1 in S, as well as two special vertices vs and vt representing horizontal
segments s and t of infinite length below, respectively above, all segments in
S; there is a directed edge from vs1 to vs2 if s1 ↗ s2. They proved that GS
is a planar st-graph [108] and that a topological ordering of GS provides the
desired total order on S. More precisely, if s1 <A s2 then vs1 <t vs2 , where <t
is a topological ordering of the vertices in GS . We call <t a vertical ordering of
the segments. See Figure 5.3 for an illustration of how this is used for the kind
of problem instance considered in the next sections.

Thus, to sort S, it suffices to construct GS and compute a topological
ordering of its vertices which can be done using Corollary 5.1.

Constructing GS To construct GS we first use the cache-oblivious batched
point location algorithm by Bender et at. [30] to find the four (not nescessarily
distinct) segments above and below the two endpoints of each segment s. This
is done by running the algorithm twice using the segment endpoints as queries.
The first run of the algorihm finds the segments above the query endpoints and
by negating all y coordinates in the second run we similarly find the segments
below the query points. We use the result of the point location to produce a
sequence of triplets (s, q, s′) where s <A s′ and where q is an endpoint of s or s′

defining the relation. Since the same segment pair may be present in sequence
twice in the case where s is dominated by s′ at two endpoints, we remove
“duplicate” entries (s, q, s′) and (s, q′, s′) from the lists by sorting. Subsequently
we sort the sequence by the first segment id and break ties using x coordinate
of q. We can now scan the sorted sequence and produce outgoing edges of s in

5.3. Vertically Sorting Non-Intersecting Segments 65

(a) (b)

(c)

Figure 5.3: Constructing GS . (a) Input instance containing both red (dashed)
and blue (solid) segments. (b) In the set S, each blue segment is represented
by two infinitely small segments at each of its endpoints and two point location
queries at each point have been issued. (c) The planar st-graph GS .

Gs in their clockwise order around s. We can construct the incoming edges of
each segment node in GS by sorting by the second segment in the sequence.

The cache-oblivious batched point location algorithm by Bender et at. [30]
can perform O(N) queries on a set with O(N) segments using O(Sort(N)) I/Os.
Since the length of produced sequence is O(N) the subsequent scanning and
sorting steps can be done in O(Sort(N)) which is also the complexity of the
planar st-graph topological sorting routine from Corollary 5.1.

Theorem 5.2 A vertical ordering of N non-intersecting line segments in the
plane can be computed cache-obliviously using O(Sort(N)) memory transfers
and linear space.

66 Chapter 5. Cache-Oblivious Red-Blue Line Segment Intersection

(a)

√
k

√
k

√
k

√
k

(b)

b1

b2

b3
b4

r1

r2

σ1 σ2 σ3 σ4 σ5 σ6 σ8σ7

(c)

Figure 5.4: (a) A 2-merger. (b) A k-merger for k > 2. (c) Slabs and intersec-
tion types.

5.4 Red-Blue Line Segment Intersection

In this section, we give an overview of our algorithm for finding all intersections
between a set R of non-intersecting red segments and a set B of non-intersecting
blue segments. For simplicity we assume that the x- and y-coordinates of all
endpoints are distinct. Sections 5.5 and 5.6 present the details of our algorithm.

5.4.1 The
√

N-merger

Our algorithm uses the
√
N -merger technique [34,64] extensively. A

√
N -merger

merges
√
N sorted input streams of length

√
N into one sorted output stream.

It is defined recursively in terms of smaller k-mergers. A k-merger takes k sorted
input streams of total length at least k2 and produces a sorted output stream by
merging the input streams. The cost of merging k2 elements using a k-merger
is O(Sort(k2)), which is O(Sort(N)) for k =

√
N [34, 64].

A k-merger is a complete binary tree over k/2 leaves with a buffer associated
with each edge. If k = 2, the merger consists of a single node with two input
streams and one output stream; see Figure 5.4(a). Otherwise, it consists of√
k + 1

√
k-mergers as shown in Figure 5.4(b); the buffers associated with the

edges between the top merger and the bottom mergers have size k. The merge
process is performed by invoking a Fill operation on the root of the merger. A
Fill operation on a node u fills the output buffer S(u) of u (the buffer between
u and its parent) by repeatedly removing the minimum element from S(l(u))
or S(r(u)) and placing it into S(u), where l(u) and r(u) denote the left and
right children of u. When S(l(u)) or S(r(u)) becomes empty, a Fill operation
is invoked recursively on the corresponding child before continuing to fill S(u).
The Fill operation returns when S(u) is full or there are no elements left in
any buffer below u. Since the root’s output buffer has size N , only one Fill
operation on the root is required to place all elements in the input streams into
a sorted output stream.

The basic concept in the analysis of a
√
N -merger is that of a base tree,

which is the largest subtree in the recursive definition of a
√
N -merger such

5.4. Red-Blue Line Segment Intersection 67

that the entire tree plus one block for each of its input and output buffers fit in
memory. The central observation is that, in order to achieve the O(Sort(k2))
merge bound, a Fill operation on a base tree root can afford to load the whole
base tree into memory and perform O(1) memory transfers per node in the
base tree; note that this means that Fill operations on other nodes of the base
tree are free. It also means that we can associate O(1) auxiliary buffers with
each merger node u and that we can assume that a Fill operation at node u
can access the first O(1) blocks of each auxiliary buffer without any memory
transfers. See [34] for details.

5.4.2 Distribution sweeping

To find all intersections between red and blue segments, we start by dividing the
plane into q =

√
N vertical slabs σ1, . . . , σq containing 2

√
N segment endpoints

each, where N = |R|+ |B| is the total number of segments. We recurse on each
slab σi to find the intersections in σi between segments with at least one endpoint
in this slab; these intersections are shown using white dots in Figure 5.4(c). Each
of the remaining intersections, shown as black dots in Figure 5.4(c), involves at
least one segment that completely spans the slab containing the intersection.
To find these intersections, we use a

√
N -merger whose input streams are sorted

lists of segments and/or segment endpoints associated with slabs σ1, . . . , σq.
We also associate slabs with the nodes of the merger. The slab σu associated
with a node u is the union of the slabs corresponding to the input streams of
u’s subtree. We use l(σu) and r(σu) to denote its left and right boundaries,
respectively. We call a segment with an endpoint in σu long wrt. slab σl(u)
if it spans σl(u) (segment b3 in Figure 5.5(a)), and short otherwise (segments
b1, b2, b4 in Figure 5.5(a)). We call an intersection in σl(u) long-long if it involves
two long segments wrt. slab σl(u) (point p3 in Figure 5.5(a)), and short-long if it
involves a short and a long segment (points p1 and p2 in Figure 5.5(a)). Short
and long segments and short-long and long-long intersections in slab σr(u) are
defined analogously. It is easy to see that every intersection in a slab σi that
involves a segment spanning σi is long-long or short-long at exactly one merger
node. Hence, our goal in merging the streams corresponding to slabs σ1, . . . , σq
is to report all long-long and short-long intersections at each merger node.

Throughout this chapter, we only discuss finding, at every merger node u,
short-long and long-long intersections inside σl(u). The intersections in σr(u) can
be found analogously. Our algorithm finds short-long and long-long intersections
separately and finds each intersection type using several applications of the

√
N -

merger to appropriate input streams associated with slabs σ1, . . . , σq. We call
one such application a pass through the merger. In the process of merging the
input streams of the merger, each pass either reports intersections or performs
some preprocessing to allow a subsequent pass to report intersections. As we
show in Section 5.5 and 5.6, O(1) passes are sufficient to report all short-long and
long-long intersections, and each pass uses O(Sort(N)+Ts/B) memory transfers
and linear space, where Ts is the number of reported intersections. Let Ni denote
the number of short segments in slab σi, Ti the number of intersections between
these segments, and C(N,T) the complexity of our algorithm on N segments

68 Chapter 5. Cache-Oblivious Red-Blue Line Segment Intersection

u

σl(u) σr(u)

l(u) r(u)

b1 b2

b3

b4
r1

r2

p1

p2

p3

p4

(a)

u

σl(u) σr(u)

l(u) r(u)

b1

b2

b3

b4

r

b5

p1

p2

p3

p4

p5

(b)

Figure 5.5: (a) Short-long and long-long intersections. (b) Upward and down-
ward intersections.

that have T intersections. Then the complexity of our algorithm is given by
the recurrence C(N,T) =

∑√N
i=1 C(Ni, Ti) + O(Sort(N) + Ts/B), which solves

to C(N,T) = O(Sort(N) + T/B) because each original segment participates as
a non-spanning segment in at most two slabs on each level of the recursion.

Theorem 5.3 The red-blue line segment intersection problem can be solved
cache-obliviously using O(Sort(N) + T/B) memory transfers and linear space,
where N is the total number of line segments and T is the number of intersections.

5.5 Short-Long Intersections

In this section, we discuss how to find all short-long intersections at all merger
nodes using O(1) passes through the merger. Recall that we focus only on
intersections inside σl(u). We call such an intersection between a long red
segment r and a short blue segment b upward if b has at least one endpoint in σl(u)
that is below r (points p2, p3, p5 in Figure 5.5(b)); otherwise, the intersection is
downward (points p1 and p4 in Figure 5.5(b)). We focus on finding upward short-
long intersections between long red and short blue segments in the remainder of
this section. The other types of short-long intersections can be found analogously.
We discuss first how to find these intersections in the desired number of memory
transfers using linear extra space per merger node. Then we discusses how to
reduce the space bound to O(N) in total.

Our algorithm uses two passes through the
√
N -merger. The first pass

associates a red list R(u) of size N (big enough to hold all segments in the input
if necessary) with every merger node u and populates it with all red segments
that are long wrt. σl(u) and are involved in upward short-long intersections at
node u. The second pass uses these red lists to report all upward short-long
intersections. Both passes merge segment streams sorted by the vertical segment
ordering from Section 5.3. More precisely, we construct a set R′ containing

5.5. Short-Long Intersections 69

u

σl(u) σr(u)

l(u) r(u)

1

2

3

4

67
8

10

9

5

(a)

u

σl(u) σr(u)

l(u) r(u)

b
rp

q

(b)

Figure 5.6: (a) Detecting long segments involved in upward short-long inter-
sections. (b) Reporting upward short-long intersections. Dashed segments are
not in R(u).

all red segments and one zero-length segment per blue segment endpoint and
use the vertical ordering on R′ as a total ordering of red segments and blue
segment endpoints, bottom-up, see Figure 5.3. The rank of a red segment or
blue segment endpoint is its position in this ordering.

5.5.1 Populating red lists

To populate all red lists, we initialize the input streams of the merger so that the
stream corresponding to slab σi stores all red segments whose right endpoints
are in σi, as well as all blue segment endpoints in σi. The entries of the stream
are sorted bottom-up (by increasing rank). Now we merge these streams to
produce one sorted output stream, where the output stream of each merger
node u contains all red segments with right endpoints in σu and all blue segment
endpoints in σu, again sorted bottom-up. The Fill operation at a node u is
the standard Fill operation of a

√
N -merger, except that, when placing a red

segment r into u’s output stream S(u), we check whether r is involved in an
upward short-long intersection at node u. If it is, we also append segment r to
u’s red list R(u).

To see how this test is performed, consider an upward short-long intersection
between a short blue segment b and a long red segment r. Segment b must have
at least one endpoint in σl(u) that is below r (has lower rank than r). Since b
and r intersect in σl(u), either b’s other endpoint q also lies in σl(u) and is above
r (has higher rank than r), or b intersects one of the slab boundaries of σl(u)
above r; see Figure 5.6(a).

Since we merge segments and segment endpoints at each node u bottom-up,
we process (ie., place into S(u)) all short blue segment endpoints below r before
we process r. We call a blue segment processed if we have processed at least
one of its endpoints. A segment b with one endpoint in σl(u) is internal, left-
intersecting, or right-intersecting depending on whether both its endpoints are

70 Chapter 5. Cache-Oblivious Red-Blue Line Segment Intersection

in σl(u), b intersects l(σl(u)) or b intersects r(σl(u)). Let ρ(u) be the highest rank
of all endpoints of processed internal blue segments, and yl(u) the y-coordinate
of the highest intersection between l(σl(u)) and processed left-intersecting blue
segments; yr(u) is defined analogously for processed right-intersecting blue
segments. By our previous discussion, r has an upward short-long intersection at
u if and only if r has rank less than ρ(u), intersects l(σl(u)) below y-coordinate
yl(u) or intersects r(σl(u)) below yr(u); see Figure 5.6(a).

Values ρ(u), yl(u), and yr(u) are easily maintained as the Fill operation
at node u processes blue segment endpoints. When processing a red segment
r, it is easy to test whether it is long wrt. σl(u) and its rank is less than ρ(u),
its intersection with l(σl(u)) has y-coordinate less than yl(u) or its intersection
with r(σl(u)) has y-coordinate less than yr(u). If this is the case, r has at least
one upward short-long intersection at u, and we append it to u’s red list R(u).

5.5.2 Reporting short-long intersections

Given the populated red lists, the second pass starts out with the input stream
of each slab σi containing all blue segment endpoints in σi, sorted top-down
(ie., by decreasing ranks). We merge these points so that every node u outputs
a stream of blue segment endpoints in σu, sorted top-down. To report all
short-long intersections at a node u, the Fill operation at node u keeps track of
the current position in R(u), which is the segment with minimum rank in R(u)
we have inspected during the current pass. Initially, this is the last segment
in R(u). Now when processing an endpoint p ∈ σl(u) of a blue segment b, we
first scan backwards in R(u) from the current position to find the segment r
with minimum rank in R(u) whose rank is greater than that of p. Segment r
becomes the new current position in R(u). Segment r is the lowest segment
in R(u) that can have an upward intersection with b, and all segments having
such intersections with b form a contiguous sequence in R(u) starting with r.
Therefore, we scan forward from r, reporting intersections between scanned
segments and b until we find the first segment in R(u) that does not have an
upward short-long intersection with b; see Figure 5.6(b).

Since every segment placed into R(u) is involved in at least one intersection
and all but O(1) accesses to a segment in R(u) can be charged to reported
intersections, the scanning of red lists adds only O(Ts/B) to the O(Sort(N))
cost of the merger.

5.5.3 Reducing the space usage

The space usage of the algorithm can be reduced to O(N + Ts) by ensuring
that the size of R(u) at node u is bounded by the number of intersections, Tu,
reported at u. We can easily compute Ts using a slightly different version of the
algorithm to populate the red lists. Whenever we would have put a red segment
r into R(u) we simply increment a counter cu. After the merging completes cu
is the number of elements that would have been placed in u. We now proceed
with populating the red lists and reporting interesections as before but allocate
room for exactly cu elements in the red list R(u). Since all elements placed in

5.6. Long-Long Intersections 71

R(u) is involved in at least one intersection at u we know that cu ≤ Tu which
means that the space needed for all the red lists is O(

∑
u cu) = O(Ts). Since

the merger itself uses linear space the total space used is O(N + Ts).
We can use the trick from [34] to reduce the space to O(N). First we compute

the sizes of all the red lists as before. We split the rest of the computation
into Θ(Ts

N) rounds where each round, except possibly the last, outputs Ω(N)
intersections using O(N) space. Let Cu be the sum of the cv for all the nodes
v in the sub tree rooted at u. At the beginning of each round we perform a
post-order traversal of the underlying tree of the merger in which we compute
Cu for the nodes u that ve visit. When we encounter the first node u where
Cu > N we stop the traversel and allocate all the red lists needed for the sub-tree
rooted at u. We then run the algorithms populating the lists and reporting
the intersections for the sub-tree rooted at u only, and then proceed to the
next round. The output at u is put into a global buffer of size Θ(N) which is
read by the parent of u. The next round continues like the first one by doing
a post-order traversal of the merger tree but this time it ignores u and all its
descendants. It puts the output of the next round into the same global array at
the position corresponding to that node. Since cv < N for all nodes we know
that Cu ≤ 2N . If no such u is found, we finish by running the algorithm directly
on the root of the merger. Since tree traversals can be performed in O(Sort(N))
I/Os [12] each round can be performed in O(Sort(N)) and all (except for the
possibly last one) reports Θ(N) intersections. We get the following lemma.

Lemma 5.2 Short-long intersections can be reported using O(Sort(N) + Ts/B)
memory transfers and linear space.

5.6 Long-Long Intersections

In this section, we discuss how to find the long-long intersections at all merger
nodes. Again, we focus on finding, at every node u, only long-long intersections
inside slab σl(u). Similar to the short-long case, we first describe our procedure
assuming we can allocate two lists of size N to each node. Later we discuss how
to reduce the space usage to O(N).

5.6.1 A simple solution using superlinear space

After some preprocessing discussed later in this section, long-long intersections
can be found using one pass through the

√
N -merger. This time, the input

stream corresponding to slab σi contains all segments whose right endpoints
are inside σi and which intersect l(σi). The segments are sorted by decreasing
y-coordinates of their intersections with l(σi). The goal of the merge process
at a merger node u is to produce an output stream of all segments with right
endpoints in σu and which intersect l(σu). Again, these segments are to be
output sorted by decreasing y-coordinates of their intersections with l(σu). In
the process of producing its output stream, each merger node u reports all
long-long intersections inside σl(u).

72 Chapter 5. Cache-Oblivious Red-Blue Line Segment Intersection

This merge process in itself poses a challenge compared to the short-long case,
as segments in S(r(u)) that intersect both r(σl(u)) and l(σl(u)) may have to be
placed into S(u) in a different order from the one in which they arrive in S(r(u));
see Figure 5.7(a). Thus, we need to allow segments to “pass each other”, which
we accomplish using two buffers B(u) and R(u) of size N associated with each
node u in the merger. Buffer B(u) is used to temporarily hold blue segments
that need to be overtaken by red segments at u; these segments are sorted by
the y-coordinates of their intersections with l(σu). Buffer R(u) serves the same
purpose for red segments. Initially, B(u) and R(u) are empty.

To implement the merge process, we also need a “look-ahead” mechanism
that allows each node u to identify the next long segment of each color to be
retrieved from S(r(u)) without actually retrieving it. We discuss below how to
provide such a mechanism. Again, the need for such a mechanism arises because
long red and blue segments may change their order between S(r(u)) and S(u).
If the topmost segment b in S(r(u)) is long and blue, we can decide whether it is
the next segment to be placed into S(u) only if we know whether the next long
red segment r intersects l(σu) above b; but there may be an arbitrary number of
blue and short red segments between b and r in S(r(u)), and we cannot afford
to scan ahead until we find r in S(r(u)). Look-ahead provides us with r without
the need to scan through S(r(u)).

A Fill operation at node u now reduces to repeatedly identifying the next
segment s to be placed into S(u). This segment is currently in S(l(u)), S(r(u)),
R(u) or B(u) and is the one with the highest intersection with l(σu) among the
segments remaining in these streams. Thus, if s belongs to S(l(u)), it must be
the next segment s′ in S(l(u)) because the segments in S(l(u)) are sorted by
their intersections with l(σl(u)) = l(σu). If s belongs to S(r(u)), R(u) or B(u),
it must be the next long red segment r or the next long blue segment b to be
placed into S(u). Note that our look-ahead mechanism provides us with r and
b. To decide which of s′, r, and b is the next segment s to be placed into S(u),
it suffices to compare their intersections with l(σu).

In order to place s into S(u), we need to locate it in S(l(u)), S(r(u)), B(u)
or R(u), remove it, and output it into S(u). If s ∈ S(l(u)), B(u) or R(u), this
is easy because s is the next segment in S(l(u)) or the first segment in B(u)
or R(u). So assume that s is long, wlog. red, and stored in S(r(u)). Then we
retrieve segments from S(r(u)) until we retrieve s. Since the segments in S(r(u))
are sorted by their intersections with l(σr(u)) and red segments do not intersect,
there cannot be any long red segment in S(r(u)) that is retrieved before s. Thus,
all segments retrieved from S(r(u)) before s are blue or short. Short segments
can be discarded because they cannot be involved in any long-long intersections
at u or any of its ancestors. Long blue segments are appended to B(u) in the
order they are retrieved, which is easily seen to maintain the segments in B(u)
sorted by their intersections with l(σl(u)).

So far we have talked only about outputting the segments at each node u in
the correct order. To discuss how to report intersections, we say that a segment
is placed into S(u) directly if it is never placed into R(u) or B(u); otherwise, we
say that it is overtaken by at least one segment. It is not hard to see that every
long-long intersection at a node u involves a segment s placed directly into S(u)

5.6. Long-Long Intersections 73

u

σl(u) σr(u)

l(u) r(u)

r

b2

b1

b3

b4

(a)

u

σl(u) σr(u)

l(u) r(u)

s1

s2

s3

s4

s5
s6

s7

s8

(b)

u

σl(u) σr(u)

l(u) r(u)

b

(c)

Figure 5.7: (a) Segments b1, b2, b3, b4 arrive before r in S(r(u)) but need to
be placed into S(u) after r. Thus, r must be able to overtake them at u. (b)
Implementation of look-ahead. Bold solid segments are in Rt(u), dashed ones
are not. Arrows indicate how every long segment finds the next long segment.
(c) Approximate counting using sampling. The bold segments are in the sample,
the dashed ones are not.

and a segment that is overtaken by s; a segment s placed directly into S(u) has
long-long intersections with exactly those segments of the other color that are
in B(u) or R(u) at the time when s is placed into S(u). Thus, we can augment
the merge process at u to report long-long intersections as follows. Immediately
before placing a long red segment r directly into S(u), we scan B(u) to report
all intersections between r and the segments in B(u). When a long blue segment
b is placed directly into S(u), we scan R(u) instead. Since only segments that
are overtaken (and thus involved in at least one intersection) are placed into
R(u) and B(u) and every scan of R(u) and B(u) reports one intersection per
scanned segment, the manipulation of these buffers at all merger nodes adds
only O(Ts/B) memory transfers to the O(Sort(N)) cost of the merger. Next
we discuss how to implement the look-ahead mechanism using only O(Sort(N))
additional memory transfers, which leads to an O(Sort(N) + Ts/B) cost for
finding all long-long intersections.

5.6.2 Look-ahead

Consider the merge process reporting long-long intersections at a node u. Given
look-ahead at u’s children, it is easy to ensure that every segment in S(l(u))
or S(r(u)) knows the next segment s′ of the same color in S(l(u)) or S(r(u)),
respectively. When placing a long segment s from S(r(u)) into S(u), however,
we need to identify not the next segment of the same color as s in S(r(u)) but
the next long such segment s′′. If s′ is long, then s′′ = s′. Otherwise, we say
that s′ terminates at node u, as it is not placed into S(u). In this case, s′ comes
between s and s′′ in S(r(u)). Note also that every segment terminates at exactly
one node in the merger.

To allow us to identify segment s′′, we preprocess the merger and associate
two lists Rt(u) and Bt(u) with every node u. List Rt(u) (resp., Bt(u)) contains

74 Chapter 5. Cache-Oblivious Red-Blue Line Segment Intersection

all those long red (resp., blue) segments in S(r(u)) that are immediately preceded
by red (resp., blue) segments that terminate at u. Given these lists, a long
segment s in S(r(u)) that is succeeded by a terminating segment of the same
color in S(r(u)) can identify the next long segment of the same color by retrieving
the next segment from Rt(u) or Bt(u), depending on its color; see Figure 5.7(b).
These lists are easily constructed in O(Sort(N)) memory transfers by merging
the blue and red segments independently. In order to ensure that each list uses
only as much space as it needs — and, thus, that all look-ahead lists use only
O(N) space — we run each merge twice. The first pass counts the number of
segments to be placed into each list, the second one populates the lists after
allocating the required space to each list.

During the merge that reports long-long intersections, each list Rt(u) or
Bt(u) is scanned exactly once, as the segments in these lists are retrieved in
the order they are stored. Thus, scanning these lists uses O(N/B) memory
transfers.

5.6.3 Linear space via approximate counting of intersected seg-
ments

Finally, we discuss how to reduce the space usage of the merge that finds long-
long intersections to O(N + Ts). Using the same technique as in Section 5.5.3,
the space usage can then be reduced further to O(N).

To achieve this space reduction, we need to reduce the total size of the red
and blue buffers R(u) and B(u) to O(N + Ts). We observe that R(u) and B(u)
never contain more than cb(u) and cr(u) segments, respectively, where cb(u) and
cr(u) denote the maximum number of red (resp., blue) segments intersected by
any long blue (resp., red) segment at u. Hence, it suffices to determine these
values and allocate cb(u) space for R(u) and cr(u) space for B(u). Since these
values summed over all nodes of the merger do not sum to more than Ts, this
would ensure that the total space usage of all buffers R(u) and B(u) is at most Ts.
However, it seems difficult to determine cb(u) and cr(u) exactly without already
using buffers R(u) and B(u). Instead, we compute upper bounds c′b(u) and
c′r(u) such that cb(u) ≤ c′b(u) ≤ cb(u) +

√
N and cr(u) ≤ c′r(u) ≤ cr(u) +

√
N ,

which can be done in linear space. By allocating c′b(u) space for buffer R(u)
and c′r(u) space for buffer B(u), each buffer is big enough and we waste only
O(
√
N) space per merger node. Since there are O(

√
N) merger nodes, the total

space used by all buffers is therefore O(N + Ts).
We discuss how to compute values c′b(u), as values c′r(u) can be computed

similarly. To compute values c′b(u), we compute a
√
N/2-sample of the long

red segments passing through each node u and determine for every long blue
segment b how many segments in the sample it intersects. If this number is
h(b), then b intersects between

√
N(h(b)− 1)/2 and

√
N(h(b) + 1)/2 long red

segments at node u. See Figure 5.7(c). We choose c′b(u) to be the maximum of√
N(h(b) + 1)/2 taken over all long blue segments b at node u.

More precisely, we use two passes through the
√
N -merger after allocating

a sample buffer Rs(u) of size 2
√
N to each node. The first pass merges red

segments by their intersections with left slab boundaries. At a node u, every

5.6. Long-Long Intersections 75

√
N/2’th long segment is placed into Rs(u). The second pass merges blue

segments by their intersections with left slab boundaries. Before this pass, we
set c′b(u) = 0 for every node u. During the merge, when we process a long blue
segment b, we determine the number hl(b) of segments in Rs(u) that intersect
l(σl(u)) below b, as well as the number hr(b) of segments in Rs(u) that intersect
r(σl(u)) below r. Let h(b) = |hr(b)− hl(b)|. If

√
N(h(b) + 1)/2 > c′b(u), we set

c′b(u) =
√
N(h(b) + 1)/2.

Since we allocate only O(
√
N) space to each merger node during the approx-

imate counting of intersections, the space usage of this step is linear. Moreover,
we merge red and blue segments once, and it can be shown that the computation
of values hr(b) and hl(b) for all blue segments b passing through node u requires
two scans of list Rs(u) in total. Hence, this adds O(N/B) to the merge cost,
and we obtain the following lemma, which completes the proof of Theorem 5.3.

Lemma 5.3 Long-long intersections can be reported using O(Sort(N) + Ts/B)
memory transfers and linear space.

Part II

Resilient Algorithms

77

Chapter 6

Background

In this chapter we give a short overview of resilient algorithms and data structures
developed for the faulty memory RAM. A more comprehensive overview of the
resilient algorithmics field can be found in a recent survey paper by Finocchi,
Grandoni and Italiano [57].

Recall, from Chapter 1, that a sequence of elements is faithfully ordered if all
the uncorrupted elements in the sequence appear in sorted order. An algorithm
is resilient if it performs correctly on the set of uncorrupted elements. For
instance, a resilient sorting algorithm produces a faithfully ordered sequence.

The complexity of resilient algorithms can be expressed in two slightly
different ways. For example, a resilient sorting algorithm using O(N logN + δ2)
time can also be described as a sorting algorithm that uses O(N logN) time while
tolerating O(

√
N logN) corruptions. While the former version is more general

the latter emphasises the fact that one can use a resilient sorting algorithm for
“free” asymptotically as long as the number of corruptions is O(

√
N logN).

In this chapter we introduce a few resilient algorithms. We present a simple
but important technique used to store variables reliably in the unreliable memory
and then give an overview of an optimal resilient sorting algorithm. After this
we will define the problems that are considered in this part of the dissertation
and give a brief overview of the results we achieve.

In the following three chapters we present a number of resilient algorithms
that have appeared in works coauthored by the author of this dissertation. The
main focus of the chapter is on resilient dictionaries but we will also present
a resilient priority queue and an I/O-efficient sorting algorithm. We will also
review other resilient algorithms that are relevant for these results.

6.1 Reliable Values

An important concept used in the design of resilient algorithms is that of reliable
values, which are variables that are stored in the unreliable memory such that
they can still be reliably retrieved and updated. The algorithm that makes
this possible is based on a simple algorithm solving the majority problem. It
serves as a good first example of an algorithm that works correctly in the faulty
memory RAM.

79

80 Chapter 6. Background

6.1.1 The majority problem

In the majority problem we are given a sequence of k memory cells and the
promise that at least dk+1

2 e of the cells contain the same element x. The goal
is to recover x from the k cells. In the standard comparison model there is a
simple algorithm by Boyer and Moore [33] for extracting x using O(1) space and
O(k) time. The algorithm keeps two variables in memory: a majority candidate
a and a counter c. Initially a is set as the first element in the sequence and c
is one. We now scan the elements once and perform one of the following three
operations. If c is zero we pick the current element as the new candidate stored
in a and set c to one. If the current element is equal to a we increment c by
one, and if they differ we decrement c by one. At the end of this algorithm a is
the majority element of the sequence.1 The algorithm only work correctly if the
set contains a majority element, and the original paper [33] suggests rescanning
the input to confirm that a is indeed the majority if it is not known in advance
whether such a majority exists.

We can use the algorithm above to reliably maintain a variable v. We
simply store v using 2δ + 1 cells, each containing the value v. Since at most δ
corruptions can take place, we know that corruptions can not change the fact
that the majority of the 2δ+1 cells contain v. Thus we can extract v by running
the majority extraction algorithm while keeping the candidate element, a, and
the counter v in the O(1) safe memory cells. A variable v stored this way is
denoted a reliable variable. It follows from the discussion above that a reliable
variable can be maintained using O(δ) space and can be accessed and updated
in O(δ) time.

6.2 Resilient Sorting

It was proven by Finocchi and Italiano [61] that resilient comparison-based
sorting requires Ω(N logN + δ2) comparisons and this lower bound was later
matched in their paper with Grandoni [59]. The sorting algorithm is based on
merge sort but uses a modified merging routine to achieve resilience.

6.2.1 Resilient merging

We now describe the resilient merging algorithm of [59] that merges two faith-
fully2 ordered input sequences X and Y of total size N into a faithfully ordered
sequence. It uses O(N + αδ) comparisons, where α is the number of corrupted
elements encountered. We refer to [59] for the full description and analysis.

The merging algorithm uses two different sub-routines: PurifyingMerge and
UnbalancedMerge. The former uses O(N + αδ) comparisons to merge X and Y
into an faithfully ordered output sequence Z and a fail buffer F of size O(α)

1The original paper describes this algorithm using a humorous analogy to an election floor
where a fight breaks loose. During the fight delegates from different blocks knock each other
down in pairs with placards. The delegate(s) that remain standing after this fight belong to
the majority block.

2Recall that a sequence is faithfully ordered if the uncorruped elements in the sequence
appear in sorted order.

6.2. Resilient Sorting 81

X Y

F , |F | = O(α)
Z

UnbalancedMerge

NaiveSort

PurifyingMerge

(a)

Z

X Y

X Y

Z

F

(b)

Figure 6.1: (a) The structure of the resilient merging algorithm. The in-
put sequences are merged by the PurifyingMerge algorithm which creates a
O(α) sized fail buffer which is then merged into the output sequence by the
UnbalancedMerge algorithm. (b) Overview of the various buffers used in the
PurifyingMerge algorithm.

containing elements that could not be merged into Z due to corruptions. The fail
buffer is then sorted in O(α2) = O(αδ) time by a naive sorting algorithm that
repeatedly scans F and extracts the smallest remaining element. Finally the
UnbalancedMerge algorithm, described in [61], is used to merge the sorted fail
buffer into Z. It gets its name from the fact that the algorithm is most efficient
when N1 is much bigger than N2. UnbalancedMerge performs O(N1 +(N2 +α)δ)
comparisons to merge a two sequences with N1 and N2 elements, respectively. In
our case the unbalanced merge is completed in O(|Z|+ (|F |+α)δ) = O(N +αδ)
time. Thus, the total cost of the resilient merging algorithm is O(N + αδ). See
Figure 6.1(a) for an overview of the structure of the merging algorithm.

We will now summarize the PurifyingMerge algorithm. The input to the
algorithm are two faithfully ordered sequences X and Y and the output is a fail
buffer of size O(α) containing some of the elements from X and Y as well as
a new faithfully ordered sequence that contains the rest of the elements. The
algorithm uses O(n+αδ) comparisons. The merging takes place in rounds where
each round uses auxiliary buffers X ,Y and Z. The first two buffers contain the
first 2δ+ 1 elements of X and Y , respectively. The Z buffer contains the output
elements of a single round and is of size δ, see Figure 6.1(b). We also maintain
offsets into each of these buffers that track the progress of the algorithm, the
initial offset for the X and Y buffers is 2δ + 1 and the offset for Z is δ. In each
round we repeatedly consider the current elements of X and Y and copy the
smallest of these to Z, we also decrement the offset for the corresponding buffer,
and for Z. However, if the current element from X (Y) is smaller than the last
element extracted from X (Y) we move both elements to the fail buffer and
append two new elements to X (Y) and restart the round (including emptying
Z and resetting all offsets). A round ends when X or Y becomes empty (the
indices for one of them moves past the end of the buffer) or when δ elements
of output have been copied to Z. When the round ends we check that the

82 Chapter 6. Background

outputted elements are still consistent with the remaining elements in X and Y
and if so we move the elements in Z to the output buffer Z and a new round is
started.

The crucial point in the analysis of PurifyingMerge is that a single round is
only (re-)started if δ elements have been output to Z or if a corrupted element
was found. In the latter case the corrupted element is provably one of the two
elements moved to Z and thus, each corruption can only cause a round to restart
once. This also proves that |F | = O(δ). Since a round costs O(δ) and outputs
δ elements if it is not restarted, the total time for the merging algorithm is
O(N + α′δ), where α′ is the number of corrupted elements encountered during
the round.

Lemma 6.1 ([59]) PurifyingMerge merges two sequences with a total of N
elements in O(N + αδ) time.

Using PurifyingMerge we get a resilient sorting algorithm with the desired
bound:

Theorem 6.1 ([59]) The resilient sorting algorithm uses O(N logN + αδ)
time.

6.3 Contributions

In this section we will give a brief summary of the results presented in the
following chapters where we present resilient data structures for priority queues
and dynamic dictionaries, and we also combine the faulty memory RAM with the
I/O-model and get algorithms that are both resilient and I/O-efficient. For the
discussion and complete definition on this hybrid model we refer to Chapter 9.

6.3.1 Priority queue

In Chapter 7 we design and analyze a priority queue in the faulty-memory RAM
model. A resilient dictionary is defined in the following way:

Definition 6.1 (Resilient Priority Queue) A resilient priority queue main-
tains a set of elements under the operations Insert and Deletemin. An
Insert adds an element and a Deletemin deletes and returns the minimum
uncorrupted element or a corrupted one.

Note that our definition of a resilient priority queue is consistent with the
definition of resilient sorting as described in Section 6.2; given a sequence of
N elements, inserting all of them into a resilient priority queue followed by N
Deletemin operations yields a faithfully ordered sequence.

The resilient priority queue that we present uses O(N) space for storing
N elements and performs both Insert and Deletemin in O(logN + δ) time
amortized. Thus, it can tolerate O(logN) corruptions while matching the
bounds of standard optimal comparison-based priority queues. We also prove
that this is optimal under certain assumptions about how a structure uses the
reliable memory.

6.3. Contributions 83

At the time of publication, the priority queue was the only deterministic
data structure able to tolerate O(logN) corruptions while still matching optimal
bounds in the standard comparison model. However, the dynamic dictionary
presented in Chapter 8 now has the same bounds. Although this dictionary
can also be used as an priority queue, the structure presented in Chapter 7 is
considerably simpler.

In Chapter 9 we present an I/O-efficient resilient priority queue for the case
where δ is smaller than M ε. The priority queue supports Insert and Deletemin
in optimal O(1

1−ε(1/B) logM/B(N/M)) I/Os amortized. This matches the
bounds for non-resilient external memory priority queues.

6.3.2 Dictionaries

A resilient dictionary is defined in the following way:

Definition 6.2 (Resilient Dictionary) A resilient dictionary maintains a
set S while supporting membership queries. When given an element e, the
membership query algorithm must return a positive answer if there exists an
uncorrupted element x = e in S. If there is no such element, corrupted or
uncorrupted, the algorithm must return a negative answer. If there is a corrupted
element x′ = e, the answer is undefined.

Finocchi and Italiano [61] prove that any resilient comparison-based searching
algorithm can tolerate at most O(logN) corruptions if it uses O(logN) time and
in Chapter 8 we present the first static dictionary that matches this lower bound.
The dictionary uses just a sorted array and a simple searching algorithm based
on binary search. Additionally, we present an even simpler randomized query
algorithm that achieves the same O(logN + δ) bound in expectancy. Finally, in
the same chapter we show how we can use this dictionary to design a dynamic
dictionary with the same O(logN + δ) worst-case query bound and amortized
O(logN + δ) update bounds.

In Chapter 9 we adopt the dictionaries above to the I/O-model and present
lower and upper bounds for I/O-efficient resilient dictionaries, see the chapter
for details.

6.3.3 I/O-efficient resilient sorting

In Chapter 9 we also describe how one can adopt the resilient merging algorithm
defined in this chapter to design resilient multi-way merging algorithm. We
subsequently use this algorithm to design an optimal resilient sorting algorithm
using O(1

1−εSort(N)) I/Os and O(N logN + αδ) time under the assumption
that δ ≤M ε, for 0 ≤ ε < 1. This matches the optimal resilient and I/O-efficient
comparison-based sorting algorithms for constant ε.

6.3.4 Resilient Counting

In a recently submitted paper [C4] cauthored by the author of this thesis, we
consider the problem of maintaining many counters in the faulty memory RAM.

84 Chapter 6. Background

The paper is not presented in this dissertation. It is trivial to maintain O(1)
counters by simply keeping them in the reliable memory. The paper studies
counters whose state is not stored in the reliable memory and must therefore
be kept in unreliable memory. In one extreme, counters can implemented using
reliable values by using O(δ) time per access. We show that by sacrifying the
accuracy of the counters and allowing some controlled additive error, we can
get faster update times, and we present upper and lower bound time-accuracy
trade-offs for performing N increment operations.

Chapter 7

Resilient Priority Queue

The resilient priority queue that we present in this chapter uses O(N) space for
storing N elements and performs both Insert and Deletemin in O(logN + δ)
time amortized. See Chapter 6 for the definition of the Insert and Deletemin
operations. The priority queue matches the bounds for an optimal comparison-
based priority queue in the RAM model while tolerating O(logN) corruptions.
It is a significant improvement over using the resilient search tree in [58] as
a priority queue, since it uses O(logN + δ2) time amortized per operation
and thus only tolerates O(

√
logN) corruptions to preserve the O(logN) bound

per operation. Our priority queue is the first resilient data structure allowing
O(logN) corruptions, while still matching optimal bounds in the RAM model.
Our priority queue does not store elements in reliable memory between opera-
tions, only structural information like pointers and indices. We prove that any
comparison-based resilient priority queue behaving this way requires worst case
Ω(logN + δ) time for either Insert or Deletemin.

The resilient priority queue is based on the cache-oblivious priority queue
by Arge et al. [13]. The main idea is to gather elements in large sorted groups
of increasing size, such that expensive updates do not occur too often. The
smaller groups contain the smaller elements, so they can be retrieved faster
by Deletemin operations. We extensively use the resilient merging algorithm
in [56] to move elements among the groups. Due to the large sizes of the groups,
the extra work required to deal with corruptions in the merging algorithm
becomes insignificant compared to the actual work done.

Given two sequences X and Y , we let XY denote the concatenation of X
and Y . A sequence X is faithfully ordered if its uncorrupted keys appear in
non-decreasing order.

7.1 Fault tolerant priority queue

In this section we introduce the resilient priority queue. The elements are stored
in faithfully ordered lists and are moved using two fundamental primitives, Push
and Pull, based on faithful merging. We describe the structure of the priority
queue in Section 7.1.1 and then introduce the Push and Pull primitives in
Section 7.1.2. Finally, in Section 7.1.3, we describe the Insert and Deletemin

85

86 Chapter 7. Resilient Priority Queue

����
����
����
����

�������
�������
�������
�������

��
��
��
��

���
���
���
���

��
��
��
��

Di+1

Ui+1︸ ︷︷ ︸
si

︸ ︷︷ ︸
si+1

Li+1

Ui

Di

Li

I ︸ ︷︷ ︸
b

.

Figure 7.1: The structure of the priority queue. The buffers are stored in a
doubly linked list using reliably stored pointers. Additionally, the size of each
buffer is stored reliably.

operations.

7.1.1 Structure

The resilient priority queue consists of an insertion buffer I together with a
number of layers L0, . . . , Lk, with k = O(logN). Each layer Li contains an
up-buffer Ui and a down-buffer Di, represented as arrays. Intuitively, the up-
buffers contain large elements that are on their way to the upper layers in
the priority queue, whereas the down-buffers contain small elements, on their
way to lower layers. The buffers in the priority queue are stored as a doubly
linked list U0, D0, . . . , Uk, Dk, see Figure 7.1. For each up and down buffer we
reliably store the pointers to their adjacent buffers in the linked list and their
size. In the reliable memory we store pointers to I, U0 and D0, together with
|I|. Since the position of the first element in U0 and D0 is not always the first
memory cell of the corresponding buffer, we also store the index of the first
element in these buffers in reliable memory. The insertion buffer I contains
up to b = δ + logN + 1 elements. For layer Li we define the threshold si
by s0 = 2 · (δ2 + log2N) and si = 2si−1 = 2i+1 · (δ2 + log2N), where N is the
number of elements in the priority queue. We use these thresholds to decide
whether an up buffer contains too many elements or whether a down buffer
has too few. For the sake of simplicity, the up and down buffers are grown and
shrunk as needed during the execution such that they don’t use any extra space.

To structure the priority queue, we maintain the following invariants for the
up and down buffers.

• Order invariants:

1. All buffers are faithfully ordered.

2. DiDi+1 and DiUi+1 are faithfully ordered, for 0 ≤ i < k.

• Size invariants:

3. si/2 ≤ |Di| ≤ si, for 0 ≤ i < k.

4. |Ui| ≤ si/2, for 0 ≤ i < k.

7.1. Fault tolerant priority queue 87

By maintaining all the up and down buffers faithfully ordered, it is possible to
move elements between neighboring layers efficiently, using faithful merging. By
invariant 2, all uncorrupted elements in Di are smaller than all uncorrupted
elements in both Di+1 and Ui+1. This ensures that small elements belong to the
lower layers of the priority queue. We note that there is no assumed relationship
between the elements in the up and down buffers in the same layer. Finally, the
size invariants allow the sizes of the buffers to vary within a large range. This
way, Ω(si) Insert or Deletemin operations occur between two operations on
the same buffer in Li, yielding the desired amortized bounds.

Since the si values depend on N , whenever the size of the priority queue
increases or decreases by Θ(N), we perform a global rebuilding. This rebuilding
is done by collecting all elements, sorting them with the optimal resilient sorting
algorithm from Chapter 6, and redistributing the output into the down buffers
of all the layers starting with L0. After the global rebuilding, the up buffers are
empty and the down buffers full, except possibly the last down buffer.

7.1.2 Push and pull primitives

We now introduce the two fundamental primitives used by the priority queue.
The Push primitive is invoked when an up buffer contains too many elements,
breaking invariant 4. It “pushes” elements upwards, repairing the size invariants
locally. The Pull operation is invoked when a down buffer contains too few
elements, breaking invariant 3. It fills this down buffer by “pulling” elements
from the layer above, again locally repairing the size invariants. Both operations
faithfully merge consecutive buffers in the priority queue and redistribute the
resulting sequence among the participating buffers. After merging, we deallocate
the old buffers and allocate new arrays for the new buffers.

Push. The Push primitive is invoked when an up buffer Ui breaks invariant 4,
i.e., when it contains more than si/2 elements. In this case we merge Ui, Di

and Ui+1 into a sequence M using the resilient merging algorithm in [56]. We
then distribute the elements in M by placing the first |Di| − δ elements in a new
buffer D′i, and the remaining |Ui+1| + |Ui| + δ elements in a new buffer U ′i+1.
After the merge, we create an empty buffer, U ′i , and deallocate the old buffers.
If U ′i+1 contains too many elements, breaking invariant 4, the Push primitive is
invoked on U ′i+1. When Li is the last layer, we fill D′i with the first elements
of M and create a new layer Li+1 placing the remaining elements of M into D′i+1

instead of U ′i+1. Since |D′i| is smaller than |Di|, it could violate invariant 3.
This situation is handled by using the Pull operation and is described after
introducing Pull.

Unlike the priority queue in [13], the Push operation decreases the size of
a down buffer. This is required to preserve invariant 2, in spite of corruptions.
After a Push call, D′i can contain elements from Ui ∪ Ui+1. Since there is no
assumed relationship between elements in Ui ∪ Ui+1 and those in Di+1 ∪ Ui+2,
we need to ensure that each element in D′i originating from Ui∪Ui+1 is faithfully
smaller than the elements in Di+1 ∪ Ui+2. Assume the size of Di is preserved,
i.e. |D′i| = |Di|. Consider a corruption that alters an element in Di to some

88 Chapter 7. Resilient Priority Queue

large value before the Push. This corrupted value could be placed in U ′i+1 and,
since |D′i| = |Di|, an element from Ui ∪ Ui+1 must be placed in D′i. This new
element in D′i potentially violates invariant 2.

Pull. The Pull operation is called on a down buffer Di when it contains less
than si/2 elements, breaking invariant 3. In this case, the buffers Di, Ui+1,
and Di+1 are merged into a sequence M using the resilient merging algorithm
in [56]. The first si elements from M are written to a new buffer D′i, and
the next |Di+1| − (si − |Di|)− δ elements are written to D′i+1. The remaining
elements of M are written to U ′i+1. A Pull is invoked on D′i+1, if it is too small.

Similar to the Push operation, the extra δ elements lost by Di+1 ensure that
the order invariants hold in spite of possible corruptions. That is, a corruption
of an element in Di∪Di+1 to a very large value may cause an element from Ui+1

to take the place of the corrupted element in D′i+1 and this element is possibly
larger than some uncorrupted element in Di+2 ∪ Ui+2.

After the merge, U ′i+1 contains δ more elements than Ui+1 had before the
merge, and thus it is possible that it has too many elements, breaking invariant 4.
We handle this situation as follows. Consider a maximal series of subsequent
Pull invocations on down buffers Di, Di+1, . . . , Dj , 0 ≤ i < j < k. After
the first Pull call on Di and before the call on Di+1 we store a pointer to
Di in the reliable memory. After all the Pull calls we investigate all the
affected up buffers, by simply following the pointers between the buffers starting
from Di, and invoke the Push primitive wherever necessary. The case when
Push operations cause down buffers to underflow is handled similarly.

7.1.3 Insert and deletemin

An element is inserted in the priority queue by simply appending it to the
insertion buffer I. If I gets full, its elements are added to U0 by first faithfully
sorting I and then faithfully merging I and U0. If U0 breaks invariant 4, we
invoke the Push primitive. If L0 is the only layer of the priority queue and D0

violates the size constraint, we faithfully merge the elements in I with D0

instead.

To delete the minimum element in the priority queue, we first find the
minimum of the first δ + 1 values in D0, the minimum of the first δ + 1 values
in U0, and the minimum element in I. We then take the minimum of these three
elements, delete it from the appropriate buffer and return it. After deleting
the minimum, we right-shift all the elements in the affected buffer from the
beginning up to the position of the minimum. This way we ensure that elements
in any buffer are stored consecutively. If D0 underflows, we invoke the Pull
primitive on D0, unless L0 is the only layer in the priority queue. If U0 or D0

contains Θ(logN + δ) empty cells, we create a new buffer and copy the elements
from the old buffer to the new one.

7.2. Analysis 89

D′i D′i+1 U ′i+1

︷︸︸︷
|Ui+1|

︸ ︷︷ ︸
δ

M ︸ ︷︷ ︸
|Di|+ |Di+1|

Figure 7.2: The distribution of M into buffers.

7.2 Analysis

In this section we analyze the resilient priority queue. We prove the correctness
in Section 7.2.1 and analyze the time and space complexity in Section 7.2.2.

7.2.1 Correctness

To prove correctness of the resilient priority queue, we show that the Deletemin
operation returns the minimum uncorrupted value or a corrupted value. We
first prove that the order invariants are maintained by the Pull and Push
operations.

Lemma 7.1 The Pull and Push primitives preserve the order invariants.

Proof. Recall that in a Pull invocation on buffer Di, the buffers Di, Ui+1,
and Di+1 are faithfully merged into a sequence M . The elements in M are
then distributed into three new buffers D′i, U

′
i+1, and D′i+1, see Figure 7.2. To

argue that the order invariants are satisfied we need to show that the elements
of the down buffer on layer Lj , for 0 ≤ j < k, are faithfully smaller than the
elements of the buffers on layer Lj+1, where k is the index of the last layer. The
invariants hold trivially for unaffected buffers. The faithful merge guarantees
that D′iD

′
i+1 as well as D′iU

′
i+1 are faithfully ordered, and thus the individual

buffers are also faithfully ordered. Since invariant 2 holds for the original buffers
all uncorrupted elements in Di+1 and Ui+1 are larger than the uncorrupted
elements in Di, guaranteeing that Di−1D

′
i is faithfully ordered. Finally, we now

show that Di+1Di+2 and Di+1Ui+2 are faithfully ordered.
Let m be the minimum uncorrupted element in Di+2∪Ui+2. We need to show

that all uncorrupted elements in D′i+1 are smaller than m. If no uncorrupted
element from Ui+1 is placed in D′i+1, the invariant holds by the order invariants
before the operation. Otherwise, assume that an uncorrupted element y ∈ Ui+1

is moved to D′i+1. Since |U ′i+1| = |Ui+1|+δ and y is moved to D′i+1, at least δ+1
elements originating from Di ∪Di+1 are contained in U ′i+1. Since there can be
at most δ corruptions, there exists at least one uncorrupted element, x, among
these. By faithful merging, all uncorrupted elements in D′i+1 are smaller than
x, which means that y ≤ x. Since x originates from Di ∪ Di+1, it is smaller
than m. We obtain y ≤ m.

A similar argument proves correctness of the Push operation. We conclude
that both order invariants are preserved by Pull and Push operations. 2

90 Chapter 7. Resilient Priority Queue

Having proved that the order invariants are maintained at all times, we now
prove the correctness of the resilient priority queue.

Lemma 7.2 The Deletemin operation returns the minimum uncorrupted
value in the priority queue or a corrupted value.

Proof. We recall that the Deletemin operation computes the minimum of the
first δ + 1 elements of U0 and D0. It compares these values with the minimum
of I, found in a scan, and returns the smallest of these elements. Since U0

and D0 are faithfully ordered, the minimum of their first δ+ 1 elements is either
the minimum uncorrupted value in these buffers, or a corrupted value even
smaller. Furthermore, according to the order invariants, all the values in layers
L1, . . . , Lk are faithfully larger than the minimum in D0. Therefore, the element
reported by Deletemin is the minimum uncorrupted value or a corrupted value.
2

7.2.2 Complexity

In this section we show that our resilient priority queue uses O(N) space and
that Insert and Deletemin take O(logN + δ) amortized time. We first prove
that the Pull and Push primitives restore the size invariants.

Lemma 7.3 If a size invariant is broken for a buffer in L0, invoking Pull or
Push on that buffer restores the invariants. Furthermore, during this operation
Pull and Push are invoked on the same buffer at most once. No other invariants
are broken before or after this operation.

Proof. Assume that Push is invoked on U0, and that it is called iteratively up
to some layer Ll. By construction of Push, the size invariants for all the up
buffers now hold. Since a Push steals δ elements from the down buffers, the
layers L0, . . . , Ll are traversed again and Pull is invoked on these as needed.
The last of these Pull operations might proceed past layer Ll. Similarly, a
Pull may cause an up buffer to overflow. However, since the cascading Push
operations left |Ui| = 0 for i ≤ l, any new Push are invoked on up buffers only
on layer Ll+1 or higher, thus Push is invoked on each buffer at most once. A
similar argument works for the Pull operation. 2

Lemma 7.4 The resilient priority queue uses O(N + δ) space to store N ele-
ments.

Proof. The insertion buffer always uses O(logN + δ) space. We prove that the
remaining layers use O(N) space. For each layer we use O(δ) space for storing
structural information reliably. In all layers, except the last one, the down buffer
contains Ω(δ2) elements by invariant 3. This means that for each of these layers
the elements stored in the down buffer dominate the space complexity. The
structural information of the last layer requires additional O(δ) space. 2

7.2. Analysis 91

The space complexity of the priority queue can be reduced to O(N) without
affecting the time complexity, by storing the structural information of L0 in safe
memory, and by doubling or halving the insertion buffer during the lifetime of
the algorithm such that it always uses O(|I|) space.

Lemma 7.5 Each Insert and Deletemin takes O(logN + δ) amortized time.

Proof. We define the potential function:

Φ =
k∑
i=1

(c1 · (logN − i) · |Ui|+ c2 · i · |Di|)

We use Φ to analyze the amortized cost of a Push operation. In a Push
operation on Ui, buffers Ui, Di, and Ui+1 are merged. The elements are then
distributed into new buffers U ′i , D

′
i, and U ′i+1, such that |U ′i | = 0, |D′i| = |Di|−δ,

and |U ′i+1| = |Ui+1|+ |Ui|+ δ. This gives the following change in potential ∆Φ:

∆Φ = −|Ui| · c1 · (logN − i)− δ · c2 · i+ (|Ui|+ δ) · c1(logN − (i+ 1))
= −c1 · |Ui|+ δ(−c2 · i+ c1 · logN − c1 · i− c1) .

Since the Push is invoked on Ui, invariant 4 is not valid for Ui and there-
fore |Ui| ≥ si

2 = 2i (log2 n + δ2). Thus:

∆Φ ≤ −c1 ·|Ui|+c1 ·δ ·logN ≤ −c1 ·2i ·(log2N+δ2)+c1 ·δ ·logN ≤ −c1 ·c′ ·|Ui| ,
(7.1)

for some constant c′ > 0.
Since faithfully merging two sequences of size N takes O(N + δ2) time [56],

the time used for a Push on Ui is upper bounded by cm ·(|Ui|+ |Di|+ |Ui+1|+δ2),
where cm depends on the resilient merge. This includes the time required for
retrieving reliably stored variables. Adding the time and the change in potential
we are able to get the amortized cost less than zero by tweaking c1 based on
equation (7.1). This is because |Ui| is Ω(δ2) and at most a constant fraction
smaller than the participants in the merge.

A similar analysis works for the Pull primitive. We now calculate the
amortized cost of Insert and Deletemin. We ignore any Push or Pull
operations since their amortized costs are negative. The amortized time for
inserting an element in I, sorting I, and merging it with U0 is O(logN + δ) per
operation. The change in potential when adding elements to L0 is O(logN)
per element. The time needed to find the smallest element in a Deletemin is
O(logN + δ), and the change in potential when an element is deleted from L0

is negative.
The cost of global rebuilding is dominated by the cost of sorting, which

is O(N logN + δ2). There are Θ(N) operations between each rebuild, which
leads to O(logN + δ) time per operation, since δ ≤ N , and this concludes the
proof. 2

Theorem 7.1 The resilient priority queue takes O(N) space and uses amor-
tized O(logN + δ) time per operation.

92 Chapter 7. Resilient Priority Queue

7.3 Lower bound

In this section we prove that any resilient priority queue takes Ω(logN + δ) time
for either Insert or Deletemin in the comparison model, under the assumption
that no elements are stored in reliable memory between operations. This implies
optimality of our resilient priority queue under these assumptions. We note that
the reliable memory may contain any structural information, e.g. pointers, sizes,
indices.

Theorem 7.2 A resilient priority queue containing N elements, with N > δ,
uses Ω(logN + δ) comparisons to perform Insert followed by Deletemin.

Proof. Consider a priority queue Q with N elements, with N > δ, that uses
less than δ comparisons for an Insert followed by a Deletemin. Also, Q does
not store elements in reliable memory between operations. Assume that no
corruptions have occurred so far. Without loss of generality we assume that all
the elements in Q are distinct. We prove there exists a series of corruptions C,
|C| ≤ δ, such that the result of an Insert of an element e followed by a
Deletemin returns the same element regardless of the choice of e.

Let k < δ be the number of comparisons performed by Q during the two
operations. We force the result of each comparison to be the same regardless
of e by suitable corruptions. In all the comparisons involving e, we ensure that e
is the smallest. We do so by corrupting the value which e is compared against
if necessary, by adding some positive constant c ≥ e to the other value. If two
elements different than e are compared, we make sure the outcome is the same
as if no corruptions had happened. If one of them was corrupted, adding c to the
other one reestablishes their previous ordering. If both of them were corrupted
by adding c, their ordering is unchanged and no corruptions are needed. Forcing
any comparison to give the desired outcome requires at most one corruption,
and therefore |C| ≤ k < δ.

We now consider the value e′ returned by Deletemin on Q. If e = e′ then
we choose e to be larger than some element x ∈ Q not affected by a corruption
in C. Such a value exists because the size of the priority queue is larger than
δ. Since e = e′ > x, Q returned an uncorrupted element that was not the
minimum uncorrupted element in Q. If e 6= e′ we choose e to be smaller than
any element in Q. With such a choice of e, no corruptions are required and the
value returned by Q was not corrupted, but still larger than e. This proves Q is
not resilient.

Adding the classical Ω(logN) bound for priority queues in the comparison
model the result follows. 2

Chapter 8

Resilient Dictionaries

In this chapter we describe two optimal resilient static dictionaries, a randomized
one and a deterministic one, as well as a dynamic dictionary.

Randomized static dictionary: We introduce a resilient randomized static
dictionary that support searches in O(logN+δ) time, matching the bounds
for randomized searching in [56]. We note however that our dictionary is
somewhat simpler and uses only O(log δ) worst case random bits, whereas
the algorithm in [56] uses expected O(log δ · logN) random bits. On the
downside, our dictionary assumes that the corruptions are performed
by a non-adaptive adversary, i.e. an adversary that does not perform
corruptions based on the behavior of the algorithm.

Deterministic static dictionary: We give the first optimal resilient static
deterministic dictionary. It supports searches in a sorted array in O(logN+
δ) time in the worst case, matching the lower bounds from [60]. Unlike its
randomized counterpart, the deterministic dictionary does not make any
assumptions regarding the way in which corruptions are performed.

Dynamic dictionary: We introduce a deterministic dynamic dictionary that
significantly improves over the resilient search trees by Finocchi et al. [58].
It supports searches in O(logN + δ) in the worst case, and insertions and
deletions in O(logN + δ) time amortized. Also, it supports range queries
in O(logN + δ + k) time, where k is the output size.

8.1 Optimal randomized static dictionary

In this section we introduce a simple randomized resilient search algorithm. It
searches for a given element in a sorted array using worst case O(log δ) random
bits and expected time O(logN+δ), assuming that corruptions are performed by
a non-adaptive adversary. The running time matches the algorithm by Finocchi
et al. [56], which, however, uses expected O(logN · log δ) random bits. The
main idea of our algorithm is to implicitly divide the sorted input array in 2δ
disjoint sorted sequences S0, . . . , S2δ−1, each of size at most dN/2δe. The j’th
element of Si, Si[j], is the element at position posi(j) = 2δj + i in the input
array. Intuitively, this divides the input array into dN/2δe consecutive blocks

93

94 Chapter 8. Resilient Dictionaries

of size 2δ, where Si[j] is the i’th element of the j’th block. Note that, since 2δ
disjoint sequences are defined from the input array and at most δ corruptions
are possible, at least half of the sorted sequences S0, . . . , S2δ−1 do not contain
any corrupted elements.

The algorithm generates a random number k ∈ {0, . . . , 2δ− 1} and performs
an iterative binary search on Sk. We store in safe memory k, the search key e,
and the left and right indices, l and r, used by the binary search. The binary
search terminates when l and r are adjacent in Sk, and therefore 2δ elements
apart in the input array, since posk(r) − posk(l) = 2δ when r = l + 1. If the
binary search was not mislead by corruptions, then the location of e is between
posk(l) and posk(r) in the input array. To check whether the search was mislead,
we perform the following verification procedure. Consider the neighborhoods
Nl and Nr, containing the 2δ + 1 elements in the input array situated to the
left of posk(l) and to the right of posk(r) respectively. We compute the number
sl = |{z ∈ Nl | z ≤ e}| of elements in Nl that are smaller than e in O(δ) time by
scanning Nl. Similarly, we compute the number sr of elements in Nr that are
larger than e. If sl ≥ δ+ 1 and sr ≥ δ+ 1, and the search key is not encountered
in Nl or Nr, we decide whether it lies in the array or not by scanning the
2δ − 1 elements between posk(l) and posk(r). If sl or sr is smaller than δ + 1, a
corruption has misguided the search. In this case, a new k is randomly selected
and the binary search is restarted.

Theorem 8.1 The randomized dictionary supports searches in O(logN + δ)
expected time and uses O(log δ) expected random bits.

Proof. We first prove the correctness of the algorithm. Assume that sl ≥ δ + 1
and e 6∈ Nl. Since only δ corruptions are possible, there exists an uncorrupted
element in Nl strictly smaller than e. Because the input array is sorted, no
uncorrupted elements to the left of posk(l) in the input array are equal to e. By
a similar argument, if sr ≥ δ + 1 and e 6∈ Nr, then no uncorrupted elements to
the right of posk(r) in the input array are equal to e. If no corrupted elements
are encountered during the binary search, all the uncorrupted elements of Nl

are smaller than e, and therefore sl ≥ δ + 1. Similarly, we have sr ≥ δ + 1, and
the algorithm terminates after scanning the elements between l and r.

We now analyze the running time. Each iteration generates a random number
k ∈ {0, . . . , 2δ − 1}, using O(log δ) random bits. The sorted sequences induced
by different k’s are disjoint, thus at most δ of them may contain corruptions.
Since there are 2δ sorted sequences, the probability of selecting a value k that
leads to a corruption-free sequence is at least 1/2, and therefore the expected
number of iterations is at most two. Each iteration uses O(logN) time for the
binary search and O(δ) time for the verification. We conclude that a search uses
expected O(log δ) random bits and O(logN + δ) expected time. 2

We note that for each iteration an adaptive adversary can learn about the
subsequence Sk on which we perform the binary search by investigating the
elements accessed. Subsequently a single corruption suffices to force the search
path to end far enough from its correct position such that the verification
fails. In this situation, the algorithm performs O(δ) iterations and therefore

8.2. Optimal static dictionary 95

LV RVQ

︷ ︸︸ ︷2δ ︷ ︸︸ ︷2δ︷ ︸︸ ︷
︸ ︷︷ ︸

δ + 1

. . .
Block

. . .

Figure 8.1: The structure of a block. The left and right verification segments,
LV and RV , contain 2δ elements each, and the query segment Q contains δ+ 1
elements.

O(δ(logN + δ)) time regardless of the random choices of subsequences on which
to perform the binary search.

We obtain a worst case bound of O(log δ) random bits by using a standard
derandomization technique. In the i’th iteration we perform the binary search on
sequence Sh(i), for h(i) = (r0+ir1+i2r2+i3r3) mod k, where k is a prime number
with 2δ ≤ k < 4δ, and ri are chosen uniformly at random in {0, . . . , k − 1}. By
construction h(i) is a 4-wise independent hash function [76], which suffices to
obtain an expected constant number of iterations for our algorithm [95].

8.2 Optimal static dictionary

In this section we close the gap between lower and upper bounds for deterministic
resilient searching algorithms. We present a resilient algorithm that searches for
an element in a sorted array in O(logN + δ) time in the worst case, which is
optimal [60]. It is an improvement of the previously published best deterministic
dictionary, which supports searches in O(logN + δ1+ε) time [56]. We reuse the
idea presented in the design of the randomized algorithm and define disjoint
sorted sequences to be used by a binary search algorithm. Similarly to the
randomized algorithm, we design a verification procedure to check the result
of the binary search. We design the adapted binary search and the verification
procedure such that we are guaranteed to advance only one level in the binary
search for each corrupted element misleading the search. We count the number
of detected corruptions and adjust our algorithm accordingly to ensure that no
element is used more than once, excepting a final scan performed only once on
two adjacent blocks. The total time used for verification is O(δ).

We divide the input array into implicit blocks. Each block consists of 5δ + 1
consecutive elements of the input and is structured in three segments: the
left verification segment, LV , consists of the first 2δ elements, the next δ + 1
elements form the query segment, Q, and the right verification segment, RV ,
consists of the last 2δ elements of the block, see Figure 8.1. The left and right
verification segments, LV and RV , are used only by the verification procedure.
The elements in the query segment are used to define the sorted sequences
S0, . . . , Sδ, similarly to the randomized dictionary previously introduced. The
j’th element of sequence Si, Si[j], is the i’th element of the query segment of
the j’th block, and is located at position posi(j) = (5δ + 1)j + 2δ + i in the

96 Chapter 8. Resilient Dictionaries

47312523 29 32 35 4110 12 13843 18 21 14−∞
876543210−1 9 10 11 12 13 14 15 16 17

∞

Figure 8.2: Example of binary search on a sequence Sk, for the search key
21. The arrows show the direction of the search. The emphasized element is
corrupted.

input array.
We store a value k ∈ {0, . . . , δ} in safe memory identifying the sequence

Sk on which we currently perform the binary search. Also, k identifies the
number of corruptions detected. Whenever we detect a corruption, we change
the sequence on which we perform the search by incrementing k. Since there
are δ + 1 disjoint sequences, there exists at least one sequence without any
corruptions.

Binary search. The binary search is performed on the elements of Sk. Sim-
ilarly to the randomized algorithm, we store in safe memory the search key,
e, and the left and right sequence indices, l and r, used by the binary search.
Initially, l = −1 is the position of an implicit −∞ element. Similarly, r is the
position of an implicit ∞ to the right of the last element. Since each element in
Sk belongs to a distinct block, l and r also identify two blocks, Bl and Br.

Each step in the binary search compares the search key e against the element
at position i = b(l + r)/2c in Sk. Assume without loss of generality that this
element is smaller than e. We set l to i and decrement r by one. We then
compare e with Sk[r]. If this element is larger than e, the search continues.
Otherwise, if no corruptions have occurred, the position of the search element
is in block Br or Br+1 in the input array. When two adjacent elements are
identified as in the case just described, or when l and r become adjacent, we
invoke a verification procedure on the corresponding blocks. See also Figure 8.2.

The verification procedure determines whether the two adjacent blocks,
denoted Bi and Bi+1, are correctly identified. If the verification succeeds, the
binary search is completed, and all the elements in the two corresponding
adjacent blocks, Bi and Bi+1 are scanned. The search returns true if e is found
during the scan, and false otherwise. If the verification fails, the search may
have been mislead by corruptions and we backtrack it two steps. To facilitate
backtracking, we store two word-sized bit-vectors, d and f in safe memory. The
i’th bit of d indicates the direction of the search and the i’th bit of f indicates
whether there was a rounding in computing the middle element in the i’th step
of the binary search respectively. We can easily compute the values of l and r
in the previous step of the binary search by retrieving the relevant bits of d and
f . If the verification fails, it detects at least one corruption and therefore k is
incremented, thus the search continues on a different sequence Sk.

8.2. Optimal static dictionary 97

Verification phase. Verification is performed on two adjacent blocks, Bi
and Bi+1. It either determines that e lies in Bi or Bi+1 or detects corruptions.
The verification is an iterative algorithm maintaining a value which expresses
the confidence that the search key resides in Bi or Bi+1. We compute the left
confidence, cl, which is a value that quantifies the confidence that e is in Bi or
to the right of it. Intuitively, an element in LVi smaller than e is consistent with
the thesis that e is in Bi or to the right of it. However an element in LVi larger
than e is inconsistent. Similarly, we compute the right confidence, cr, to express
the confidence that e is in Bi+1 or to the left of it.

We compute cl by scanning a sub-interval of the left verification segment, LVi,
of Bi. Similarly, the right confidence is computed by scanning the right veri-
fication segment, RVi+1, of Bi+1. Initially, we set cl = 1 and cr = 1. We scan
LVi from right to left starting at the element at index vl = 2δ − 2k in LVi.
Intuitively, by the choice of vl we ensure that no element in LVi is accessed
more than once. Similarly, we scan RVi+1 from left to right beginning with the
element at position vr = 2k. In an iteration we compare LVi[vl] and RVi+1[vr]
against e. If LVi[vl] ≤ e, cl is increased by one, otherwise it is decreased by one
and k is increased by one. Similarly, if RVi+1[vr] ≥ e, cr is increased; otherwise,
we decrease cr and increase k. The verification procedure stops when min(cr, cl)
equals δ − k + 1 or 0. The verification succeeds in the former case, and fails in
the latter. See also Figure 8.3.

2 3 5 7 12 14 18 21 23 24 28 49 31 32 35 40 41 45.
→→→→ ←

234cl cr

→→←
38 71

012

︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷LVi Qi RVi ︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷LVi+1 Qi+1 RVi+1

Figure 8.3: A verification step for δ = 3, with k = 1 initially. The search
key is 45. The verification algorithms stops with cr = 0, reporting failure. The
emphasized elements are corrupted.

Theorem 8.2 The resilient algorithm searches for an element in a sorted array
in O(logN + δ) time.

Proof. We first prove that when cl or cr decrease during verification, a corruption
has been detected. We increase cl when an element smaller than e is encountered
in LVi, and decrease it otherwise. Intuitively, cl can been seen as the size of a
stack S. When we encounter an element smaller than e, we treat it as if it was
pushed, and as if a pop occurred otherwise. Initially, the element g from the
query segment of Bi used by the binary search is pushed in S. Since g was used
to define the left boundary in the binary search, g < e at that time. Each time
an element LVi[v] < e is popped from the stack, it is matched with the current
element LVi[vl]. Since LVi[v] < e < LVi[vl] and vl < v, at least one of LVi[vl]
and LVi[v] is corrupted, and therefore each match corresponds to detecting at
least one corruption. It follows that if 2t− 1 elements are scanned on either side
during a failed verification, then at least t corruptions are detected.

98 Chapter 8. Resilient Dictionaries

We now argue that no single corrupted cell is counted twice. A corruption
is detected if and only if two elements are matched during verification. Thus it
suffices to argue that no element participates in more than one matching. We
first analyze corruptions occurring in the left and right verification segments.
Since the verification starts at index 2(δ − k) in the left verification segment
and k is increased when a corruption is detected, no element is accessed twice,
and therefore not matched twice either. A similar argument holds for the right
verification segment. Each failed verification increments k, thus no element from
a query segment is read more than once. In each step of the binary search both
the left and the right indices are updated. Whenever we backtrack the binary
search, the last two updates of l and r are reverted. Therefore, if the same block
is used in a subsequent verification, a new element from the query segment is
read, and this new element is the one initially on the stack. We conclude that
elements in the query segments, which are initially placed on the stack, are
never matched twice either.

To argue correctness we prove that if a verification is successful, and e is not
found in the scan of the two blocks, then no uncorrupted element equal to e
exists in the input. If a verification succeeds and e is not found in either block,
then cl ≥ δ − k + 1. Since only δ − k more corruptions are possible, there is
at least one uncorrupted element in LVi smaller than e and thus there can be
no uncorrupted elements equal to e to the left of Bi in the input array. By a
similar argument, if cr ≥ δ − k + 1, then all uncorrupted elements to the right
of Bi+1 in the input array are larger than e.

We now analyze the running time. We charge each backtracking of the
binary search to the verification procedure that triggered it. Therefore, the total
time of the algorithm is O(logN) plus the time required by verifications. To
bound the time used for all verification steps we use the fact that if O(f) time is
used for a verification step, then Ω(f) corruptions are detected or the algorithm
ends. At most O(δ) time is used in the last verification for scanning the two
blocks. 2

8.3 Dynamic dictionary

In this section we describe a linear space resilient deterministic dynamic dictio-
nary supporting searches in optimal O(logN + δ) worst case time and range
queries in optimal O(logN + δ + k) worst case time, where k is the size of the
output. The amortized update cost is O(logN + δ).

Structure. The sorted sequence of elements is partitioned into a sequence
of leaf structures, each storing Θ(δ logN) elements. For each leaf structure we
select a guiding element, and we place these O(N/(δ logN)) guiding elements
in the leaves of a reliably stored binary search tree. Each guiding element is
chosen such that it is larger than all uncorrupted elements in the corresponding
leaf structure.

For this reliable top tree T , we use the (non-resilient) binary search tree
in [35], which consists of h = log |T |+O(1) levels when containing |T | elements.

8.3. Dynamic dictionary 99

Top tree Leaf structure

O(1)

︷ ︸︸ ︷

︸ ︷︷ ︸ ︸ ︷︷ ︸
Θ(δ) Θ(δ)

. . .

. . .

Θ(δ)

Θ(logN)

︸ ︷︷ ︸

B

B0 B1 Bb−1

Figure 8.4: The structure of the dynamic dictionary.

In the full version [36] it is shown that the tree can be maintained such that
the first h− 2 levels are complete. We lay the tree in memory in left-to-right
breadth first order, as specified in [35]. It uses linear space, and an update costs
amortized O(log2 |T |) time. A global rebuilding is performed when |T | changes
by a constant factor.

All the elements and pointers in the top tree are stored reliably, using
replication. Since a reliable value takes O(δ) space, O(δ|T |) space is used for
the entire structure. The time used for storing and retrieving a reliable value
is O(δ), and therefore the additional work required to handle the reliably stored
values increases the amortized update cost to O(δ log2 |T |) time.

The leaf structure consists of a top bucket B and b buckets, B0, . . . , Bb−1,
where logN ≤ b ≤ 4 logN . Each bucket Bi contains between δ and 6δ input
elements, stored consecutively in an array of size 6δ, and uncorrupted elements
in Bi are smaller than uncorrupted elements in Bi+1. For each bucket Bi, the
top bucket B associates a guiding element larger than all elements in Bi, a
pointer to Bi, and the size of Bi, all stored reliably. Since storing a value reliably
uses O(δ) space, the total space used by the top bucket is O(δ logN). The
guiding elements of B are stored as a sorted array to enable fast searches using
the deterministic resilient search algorithm from Section 8.2.

Lemma 8.1 The dynamic dictionary uses O(N) space to store N elements.

Proof. Since a leaf structure stores Θ(δ logN) input elements, the top tree
contains O(N/(δ logN)) nodes, using O(δ|T |) = O(δN/(δ logN)) = o(N) space.
Each of the O(N/(δ logN)) leaf structures uses O(δ logN) space and therefore
the total space used for leaf structures is O(N). 2

Searching. The search operation consists of two steps. It first locates a leaf
in the top tree T , and then searches the corresponding leaf structure. Let h
denote the height of T . If h ≤ 3, we perform a standard tree search from the
root of T using the reliably stored guiding elements and pointers. Otherwise, we

100 Chapter 8. Resilient Dictionaries

locate two internal nodes, v1 and v2, with guiding elements g1 and g2, such that
g1 < e ≤ g2, where e is the search key. Since h−2 is the last complete level of T ,
level ` = h− 3 is complete and contains only internal nodes. The breadth first
layout of T ensures that elements of level ` are stored consecutively in memory.
The search operation locates v1 and v2 using the deterministic resilient search
algorithm from Section 8.2 on the array defined by level `. The search only
considers the 2δ + 1 cells in each node containing guiding elements and ignores
memory used for auxiliary information, e.g. sizes and pointers. Although they
are stored using replication, the guiding elements are considered as 2δ+1 regular
elements in the search. Since the space used by the auxiliary information is
the same for all nodes, these gaps in the memory layout of level ` are easily
excluded from the search. We modify the resilient searching algorithm previously
introduced such that it reports two consecutive blocks with the property that if
the search key is in the structure, it is contained in one of them. The reported
two blocks, each of size 5δ + 1, span O(1) nodes of level ` and the guiding
elements of these are queried reliably to locate v1 and v2. The appropriate
leaf can be in either of the subtrees rooted at v1 and v2, and we perform a
standard tree search in both using the reliably stored guiding elements and
pointers. Searching for an element in a leaf structure is performed by using the
resilient search algorithm from Section 8.2 on the top bucket, B, similar to the
way v1 and v2 were found in T . The corresponding reliably stored pointer is
then followed to a bucket Bi, which is scanned.

Range queries can be performed by scanning the level `, starting at v, and
reporting relevant elements in the leaves below it.

Lemma 8.2 The search operation of the dynamic dictionary uses O(logN + δ)
worst case time. A range query reporting k elements is performed in worst case
O(logN + δ + k) time.

Proof. The initial search in the top tree takes O(logN + δ) worst case time by
Theorem 8.2. Traversing the O(1) levels to a leaf takes time O(δ). Searching
in the top bucket of the leaf structures uses O(log logN + δ) time, again using
Theorem 8.2. The final scan of a bucket takes time O(δ).

In a range query, the elements reported in any leaf completely contained in
the query range pay for the O(δ logN) time used for going through the bottom
part of the top tree and scanning the top bucket. The search pays for the
rightmost traversed leaf. 2

Updates. Efficiently updating the structure is performed using standard
bucketing techniques. To insert an element into the dictionary, we first perform
a search to locate the appropriate bucket Bi in a leaf structure, and then the
element is appended to Bi and the size of Bi in the top bucket is updated.
When the size of Bi increases to 6δ, we split it into two buckets, Bs and Bg, of
almost equal sizes. We compute a guiding element that splits Bi in O(δ2) time
by repeatedly scanning Bi and extracting the minimum element. The element
m returned by the last iteration is kept in safe memory. In each iteration, we
select a new m which is the minimum element in Bi larger than the current

8.3. Dynamic dictionary 101

m. Since at most δ corruptions can occur, Bi contains at least 2δ uncorrupted
elements smaller than m and 2δ uncorrupted elements larger, after |Bi|/2 = 3δ
iterations. The elements from Bi smaller than m are stored in Bs, and the
remaining ones are stored in Bg. The guiding element for Bs is m, while Bg
preserves the guiding element of Bi. The new split element is reliably inserted
in the top bucket using an insertion sort step, by scanning and shifting the
elements in B from right to left, and placing the new element at its appropriate
position. Similarly, when the size of the top bucket becomes 4 logN , it is split
in two new leaf structures. The first leaf structure consists of the first 2 logN
bottom buckets, and the second leaf structure contains the rest. The second
leaf structure is associated with the original guiding element, and the guiding
element of the new leaf structure is the the last guiding element in its top bucket.
This new guiding element is inserted into the top tree.

Deletions are handled similarly by first searching for the element and then
removing it from the appropriate bucket. When an element is deleted from a
bucket, we ensure that the elements in the affected bucket are stored consecutively
by swapping the deleted element with the last element. If the affected bucket
holds fewer than δ elements after the deletion, it is merged with a neighboring
bucket. If the resulting bucket contains more than 6δ elements, it is split as
described above. If the top bucket contains less than logN guiding elements,
it is merged with a neighboring leaf structure which is found using a search.
Following this, the original leaf is deleted from the top tree.

Lemma 8.3 The insert and delete operations of the dynamic dictionary take
O(logN + δ) amortized time each.

Proof. An update in the top tree takes O(δ log2N) time and requires Ω(δ logN)
updates in the leaf structures. Thus each update costs amortized O(logN)
time for operations in the top tree. Splitting and merging a bucket of a leaf
structure takes time O(δ logN) for updates to the top bucket and O(δ2) time for
computing a split element for a bucket. A bucket is split or merged every Ω(δ)
operations resulting in an amortized update cost of O(logN + δ). Appending or
removing a single element to a bucket takes worst case time O(δ) for updating
the size. Adding the O(logN + δ) cost of the initial search concludes the proof.

2

Theorem 8.3 The resilient dynamic dictionary structure uses O(N) space
while supporting searches in O(logN + δ) time worst case with an amortized
update cost of O(logN + δ). Range queries with an output size of k is performed
in worst case O(logN + δ + k) time.

102 Chapter 8. Resilient Dictionaries

Chapter 9

I/O-Efficient Resilient Algorithms

In this chapter we study algorithms and data structures for external memory in
the presence of an unreliable internal and external memory.

Memory corruptions are of particular concern for applications dealing with
massive amounts of data since such applications typically run for a very long
time, and are thus more likely to encounter memory cells containing corrupted
data.

Current resilient algorithms do not scale past the internal memory of a
computer and thus, it is currently not possible to work with large sets of data
I/O-efficiently while maintaining resiliency to memory corruptions. Since both
models become increasingly interesting as the amount of data increases, it is
natural to consider whether it is possible to achieve resilient algorithms that
use the disk optimally. Very recently, this was also proposed as an interesting
direction of research by Finocchi et al. [57, 61].

9.1 Our Contribution

The work in this chapter combines the faulty memory RAM and the external
memory model in the natural way. The model has three levels of memory: a
disk, an internal memory of size M , and O(1) CPU registers. All computation
takes place on elements placed in the registers. The content of any cell on disk
or in internal memory can be corrupted at any time, but at most δ corruptions
can occur. Moving elements between memory and registers takes constant time
and transferring a chunk of B consecutive elements between disk and memory
costs one I/O. Transfers between the different levels are atomic, no data can be
corrupted while it is being copied. Correctness of an algorithm is proved with
the assumption that an adaptive adversary may perform corruptions during
execution. For randomized algorithms we assume that the random bits are
hidden from the adversary. In two natural variants of our model it is assumed
that corruptions take place only on disk, or only in memory.

In this chapter, we present I/O-efficient solutions to all problems that, to the
best of our knowledge, have previously been considered in the faulty memory
RAM. It is not clear that resilient algorithms can be optimal both in time and in
I/O-complexity. Most techniques for designing I/O-efficient algorithms naturally

103

104 Chapter 9. I/O-Efficient Resilient Algorithms

I/O Complexity Assumptions I/O Tolerance Time Tolerance
(max δ) (max δ)

Det. Dict. O
(

1
ε logB N + δ

B1−ε

)
1

logB < ε < 1 O(B1−ε logB N) O(logN)
Ran. Dict. O(logB N + δ

B) Memory Safe O(B logB N) O(logN)
P. Queue O(1

1−ε
1
B logM/B(N/M)) δ ≤M ε, ε < 1 O(M ε) O(logN)

Sorting O(1
1−εSort(N)) δ ≤M ε, ε < 1 O(M ε) O(

√
N logN)

Table 9.1: The first column shows the I/O upper bounds presented in this
chapter with the assumptions shown in the second column. The third and fourth
column shows how many corruptions the algorithms can tolerate while still
matching the optimal algorithms in the I/O and comparison model respectively.
Note that the restriction imposed by the time bounds are orders of magnitude
stronger than the ones imposed by the I/O bounds for realistic values of M , B
and N .

try to arrange data on disk such that few blocks need to be read in order to
extract the information needed, whereas resilient algorithms try to put little
emphasis on individual, potentially corrupted, memory cells.

In the I/O model, a comparison-based dictionary with optimal queries
can be achieved with a B-tree [29], which supports queries and updates in
O(logB N) I/Os. It is also known that any resilient comparison-based search
algorithm must examine Ω(logN + δ) memory cells [61]. Combining these we
get a simple lower bound of Ω

(
logB N + δ

B

)
I/Os, and Ω(logN + δ) time for

a resilient comparison-based I/O-efficient static ditionary. In Section 9.2 we
prove a stronger lower bound of Ω

(
1
ε logB N + δ

B1−ε

)
I/Os for a search, for all

logB N ≤ δ ≤ B logN and ε given by the equation δ = B1−ε

ε logB N . In the
case where δ = Θ(B

logB loglogB N), setting ε = log logB
logB gives a lower bound of

Ω(loglogB N + δ
B logB) which is ω(logB N + δ

B). We come to the interesting
conclusion that no deterministic resilient dictionary can obtain an I/O bound
of O(logB N + δ

B) without some assumptions on δ. The lower bound is valid
for randomized algorithms as long as the internal memory is unreliable. For
deterministic algorithms, the lower bound also holds if the internal memory is
reliable and corruptions only occur on disk.

In Section 9.3 we construct a resilient dictionary supporting searches using
expected O

(
logB N + δ

B

)
I/Os and O(logN + δ) time for any δ if corruptions

occur exclusively on disk. Thus, we have an interesting separation between
the I/O complexity of resilient randomized and resilient deterministic searching
algorithms. This also proves that it is important whether it is the disk or the
internal memory that is unreliable.

In Section 9.4 we present an optimal resilient static dictionary supporting
queries in O

(
1
c logB N + α

B1−c + δ
B

)
I/Os and O(logN + δ) time when logN ≤

δ ≤ B logN and 1
logB ≤ c ≤ 1. Queries use O(logB N+ δ

B) I/Os and O(log n+δ)
time for δ ≤ logN and δ > B logN . Additionally, in Section 9.5, we construct
randomized and deterministic dynamic dictionaries with optimal query bounds
using our static dictionaries.

9.2. Lower Bound for Dictionaries 105

Finally, in Section 9.6 we describe a resilient multi-way merging algorithm.
We use this algorithm to design an optimal resilient sorting algorithm using
O(1

1−εSort(N)) I/Os and O(N logN + αδ) time under the assumption that
δ ≤M ε, for 0 ≤ ε < 1. The multi-way merging algorithm is also used to design
a resilient priority queue for the case δ ≤ M ε, where 0 ≤ ε < 1. Our priority
queue supports Insert and Deletemin in optimal O(1

1−ε(1/B) logM/B(N/M))
I/Os amortized, matching the bounds for non-resilient external memory priority
queues. The amortized time bound for both operations is O(logN +δ) matching
the time bounds of the optimal resilient priority queue presented in Chapter 7.

Table 9.1 shows an overview of the upper bounds in this chapter. The
two last columns in the table shows how many corruptions our algorithms can
tolerate while still achieving optimal bounds in the I/O model and comparison
model respectively. Note that the bounds on δ required to get optimal time
are orders of magnitude smaller than the bounds required to get optimal I/O
performance for realistic values of N , M and B. We conclude that it is possible,
under realistic assumptions, to get resilient algorithms that are optimal in both
the I/O-model and the comparison model without restricting δ more than what
was required to obtain optimal time bounds in the faulty memory RAM.

9.2 Lower Bound for Dictionaries

Any resilient searching algorithm must examine Ω(logN+δ) memory cells in the
comparison model [61]. The Ω(logN) term follows from the comparison model
lower bound for searching. It is well-known that comparison-based searching in
the I/O model requires expected Ω(logB N) I/Os. Since any resilient searching
algorithm must read at least Ω(δ) elements to ensure at least some non-corrupted
information is the basis for the output, we get the following trivial lower bound.

Lemma 9.1 For any comparison-based randomized resilient dictionary the
average-case expected search cost is Ω

(
logB N + δ

B

)
I/Os.

In this section we prove a stronger lower bound on the worst-case number of
I/Os required for any deterministic resilient static dictionary in the comparison
model. We do not make any assumptions on the data structure used by the
dictionary, nor on the space it uses. Additionally, we do not bound the amount
of computation time used in a query and we assume that the total order of all
elements stored in the dictionary are known by the algorithm initially. During
the search for an element e, an algorithm gains information by performing block
I/Os, each I/O reading B elements from disk. Before a block of B elements is
read into memory the adversary can corrupt the elements in the block. The
adversary is allowed to corrupt up to δ elements during the query operation, but
does not have to reveal when it chooses to do so. Also, the adversary adaptively
decides what the rank of the search element has among the N dictionary elements.
Of course, the rank must be consistent with the previous uncorrupted elements
read by the algorithm.

106 Chapter 9. I/O-Efficient Resilient Algorithms

Theorem 9.1 Given N and δ, any deterministic resilient static dictionary
requires worst-case Ω

(
1
ε logB N

)
I/Os for a search, for all ε where 1

logB ≤ ε ≤ 1
and δ ≥ 1

εB
1−ε logB N .

Proof. We design an adversary that uses corruptions to control how much
information any correct query algorithm gains from each block transfer.

Let ε be a constant such that 1
logB ≤ ε ≤ 1. The strategy of the adversary

is as follows. For each I/O, the adversary narrows the candidate interval where
e can be contained in by a factor Bε. Initially, the candidate interval consists
of all N elements. For each I/O, the adversary implicitly divides the sorted
set of elements in the candidate interval into Bε slabs of equal size. Since the
search algorithm only reads B elements in an I/O, there must be at least one
slab containing at most B1−ε of these elements. The adversary corrupts these
elements, such that they do not reveal any information, and decides that the
search element resides in this slab. The remaining elements transferred are not
corrupted and are automatically consistent with the interval chosen for e. The
game is then played recursively on the elements of the selected slab, until all
elements in the final candidate interval have been examined.

For each I/O, the candidate interval decreases by a factor Bε. The algorithm
has no information regarding elements in the slab except for the corrupted
elements from the I/Os performed so far. After k I/Os the candidate interval
has size N

(Bε)k and the adversary has introduced at most kB1−ε corruptions. The
game continues as long as there is at least one uncorrupted element among the
elements remaining in the candidate interval, which the adversary can choose as
the search element. All corrupted elements may reside in the current candidate
interval, and the game ends when the size of the candidate interval, N

(Bε)k ,
becomes smaller than or equal to the total number of introduced corruptions,
kB1−ε. It follows that at least Ω

(
logBε

N
B1−ε

)
= Ω

(
1
ε logB N

)
I/Os are required.

The adversary introduces at most B1−ε corruptions in each step. If ε satisfies
1
εB

1−ε logB N ≤ δ, then the adversary can play the game for at least 1
ε logB N

rounds and the theorem follows. 2

For deterministic algorithms it does not matter whether elements can be
corrupted on disk or in internal memory. Since the adversary is adaptive it
knows which block of elements an algorithm will read into internal memory next,
and may choose to corrupt the elements on disk just before they are loaded into
memory, or corrupt the elements in internal memory just after they have been
written there. In randomized algorithms where the adversary does not know the
algorithm’s random choices it cannot determine which block of elements will be
fetched from disk before the transfer has started. Therefore, the adversary can
follow the strategy above only if it can corrupt elements in internal memory.

By setting δ = 1
εB

1−ε logB N in Theorem 9.1, we get the following corollary.

Corollary 9.1 Any deterministic resilient static dictionary requires worst-case
Ω(1

ε logB N) = Ω(δ
B1−ε) I/Os for a search, where δ ∈ [logB N,B logN], and ε

given by δ = 1
εB

1−ε logB N .

The trivial I/O lower bound for a resilient searching algorithm is Ω
(
logB N + δ

B

)
.

Setting ε = log logB
logB in Theorem 9.1 shows that this is not optimal.

9.3. Randomized Static Dictionary 107

Corollary 9.2 For δ = B
logB loglogB N any deterministic resilient static dictio-

nary requires worst-case Ω(logB
log logB (logB N + δ

B)) I/Os for a search.

9.3 Randomized Static Dictionary

In this section we describe a simple I/O-efficient randomized static dictionary,
that is resilient to corruptions on the disk. Corruptions in memory are not
allowed, thus the adversarial lower bound in Theorem 9.1 does not apply. The
dictionary supports queries using expected O

(
logB N + δ

B

)
I/Os and O(logN +

δ) time. The algorithm is similar to the randomized binary search algorithm
in [61]. Remember that, if only elements on disk can be corrupted, the lower
bound from Theorem 9.1 also holds for deterministic algorithms. This means
that deterministic and randomized algorithms are separated by the result in
this section.

The idea is to store the N elements in the dictionary in sorted order in
an array S and to build 2δ B-trees [29], denoted T1, . . . , T2δ, of size bN2δ c. The
i’th B-tree Ti stores the 2δj + i’th element in S for j = 0, . . . , bN2δ c − 1. Each
node in each tree is represented by a faithfully ordered array of Θ(B) search
keys. The nodes of the B-tree are laid out in left to right breadth first order,
to avoid storing pointers, i.e. the c’th child of the node at index k has index
Bk + c− (B − 1).

The search for an element e proceeds as follows. A random number r1 ∈
{1, . . . , 2δ} is generated, and the root block of Tr1 is fetched into the internal
memory. In this block, a binary search is performed among the search keys
resulting in an index, i, of the child where the search should continue. A new
random number r2 ∈ {1, . . . , 2δ} is generated, and the i’th child of the root in
tree Tr2 is fetched and the algorithm proceeds iteratively as above. The search
terminates when a leaf is reached and two keys S[2δj+i] and S[2δ(j+1)+i] have
been identified such that S[2δj + i] ≤ e < S[2δ(j + 1) + i]. If the binary search
was not mislead by corruptions of elements, then e is located in the subarray
S[2δj + i, . . . , 2δ(j + 1) + i]. To check whether the search was mislead, the
following verification procedure is performed. Consider the neighborhoods L =
S[2δ(j−1)+i−1, . . . , 2δj+i−1] and R = S[2δ(j+1)+i+1, . . . , 2δ(j+2)+i+1],
containing the 2δ + 1 elements in S situated to the left of S[2δj + i] and to the
right of S[2δ(j + 1) + i] respectively. The number sL = |{z ∈ L | z ≤ e}| of
elements in L that are smaller than e is computed by scanning L. Similarly, the
number sR of elements in R that are larger than e is computed. If sL ≥ δ + 1
and sR ≥ δ + 1, and the search key is not encountered in L or R, we decide
whether it is contained in the dictionary or not by scanning the subarray
S[2δj, . . . , 2δ(j + 1)]. If sL or sR is smaller than δ + 1, at least one corruption
has misguided the search. In this case, the search algorithm is restarted.

Theorem 9.2 The data structure described is a linear space randomized dic-
tionary supporting searches in expected O

(
logB N + δ

B

)
I/Os and O(logN + δ)

time assuming that memory cells are incorruptible and block transfers are atomic.

Proof. The proof roughly follows the proof of [56]. First, we prove correctness

108 Chapter 9. I/O-Efficient Resilient Algorithms

of the algorithm. Assume that sL ≥ δ + 1 and e 6∈ L. Since only δ corruptions
are possible, there exists at least one uncorrupted element in L smaller than e.
Because S is sorted, no uncorrupted elements to the left of S[2δj] in S can be
equal to e. By a similar argument, if sR ≥ δ+ 1 and e 6∈ R, then no uncorrupted
elements to the right of S[2δ(j + 1)] in S are equal to e. If no corruptions are
encountered during the B-tree search, all the uncorrupted elements of L are less
than or equal to e, and therefore sL ≥ δ+ 1. Similarly, we have sR ≥ δ+ 1, and
the algorithm terminates after scanning S[2δj, . . . , 2δ(j + 1)].

In each step, the algorithm chooses a random B-tree among the 2δ B-trees,
and loads the next node from the randomly chosen B-tree to guide the search.
The adversary cannot know which B-tree that is used in any iteration, since he
does not know the random bits and block reads are atomic. Let βi be the number
of nodes containing corruptions on level i in each of the B-trees. Then, the
probability that the node used in iteration i contains corruptions is at most βi

2δ
and thus the probability that the algorithm does not use any blocks containing
corrupted elements is

∏logB N
i=1

(
1− βi

2δ

)
which is at least 1

2 [C3]. It follows that
the expected number of restarts caused by misguided searches due to faults is
at most 2. 2

If memory cells were corruptible the atomic transfer assumption would be
of little use. The adversary could simply corrupt the elements in the inter-
nal memory after the block transfer completes, decreasing the benefit of the
randomization.

9.4 Optimal Deterministic Static Dictionary

In this section we present a linear space deterministic resilient static dictionary.
Let c be a constant such that 1

logB ≤ c ≤ 1. The dictionary supports queries in
O
(

1
c logB N + α

B1−c + δ
B

)
I/Os and O(logN + δ) time. In Section 9.2 we proved

a lower bound on the I/O complexity of resilient dictionaries, and by choosing c
in the above bound to minimize the expression for α = δ, this bound matches
the lower bound. Thus, this dictionary is optimal.

Our data structure is based on the B-tree and the resilient binary search
algorithm from Chapter 8. In a standard B-tree search one corrupted element
can misguide the algorithm, forcing at least one I/O in the wrong part of the
tree. To circumvent this problem, each guiding element in each internal node is
determined by taking majority of B1−c copies. This gives a trade-off between
the number of corruptions required to misguide a search, and the fan-out of
the tree, which becomes Bc. Additionally, each node stores 2δ + 1 copies of
the minimum and maximum element contained in the subtree, such that the
search algorithm can reliably check whether it is on the correct path in each
step. We ensure that the query algorithm avoids reading the same corrupted
element twice by ensuring that any element is read at most once. The exact
layout of the tree and the details of the search operation are as follows.

Structure: Let S be the set of elements contained in the dictionary and let
N denote the size of S. The dictionary is a Bc-ary search tree T built on N

δ

9.4. Optimal Deterministic Static Dictionary 109

leaves. The elements of S are distributed to the leaves in faithful order such
that each leaf contains δ elements. Each leaf is represented by a guiding element
which is smaller than the smallest uncorrupted element in the leaf and larger
than the largest uncorrupted element in the preceding leaf. The top tree is built
using these guiding elements. The tree is stored in a breadth-first left-to-right
layout on disk, such that no pointers are required.

Each internal node u in T stores three types of elements; guiding elements,
minimum elements, and maximum elements, stored consecutively on disk. The
guiding elements are stored in d(2δ + 1)/B1−ce identical blocks. Each block
contains B1−c copies of each of the Bc guiding elements in sorted order such that
the first B1−c elements are copies of the smallest guiding element. This means
that each guiding element is stored 2δ + 1 times and can be retrieved reliably.
The minimum elements are 2δ + 1 copies of the guiding element for the leftmost
leaf in the subtree defined by u, stored consecutively in d2δ+1

B e blocks. Similarly
the maximum elements are 2δ + 1 copies of the guiding element for the leaf
following the rightmost leaf in the subtree defined by u, stored consecutively in
d2δ+1

B e blocks. Additionally, minimum and maximum elements are stored with
each leaf. The minimum are 4δ copies of the guiding element representing the
leaf, stored consecutively in 4δ

B blocks, and the maximum elements are 4δ copies
of the guiding element representing the subsequent leaf, stored consecutively in
4δ
B blocks. These are used to verify that the algorithm found the only leaf that
may store an uncorrupted element matching the search element.

Query: A query operation for an element q, uses an index k that indicates
how many chunks of B1−c elements the algorithm has discarded during the
search, initially k = 0. Intuitively, a chunk is discarded if the algorithm detects
that Ω(B1−c) of its elements are corrupted. The query operation traverses the
tree top-down, storing in safe memory the index k, and O(1) extra variables
required to traverse the tree using the knowledge of its layout on disk. In an
internal node u, the algorithm starts by checking whether u is on the correct
path in the tree using the copies of the minimum and maximum elements stored
in u. This is done by scanning B1−c of the 2δ+1 copies of the minimum element
starting with the kB1−c’th copy, counting how many of these that are larger
than q. If B1−c/2 or more copies of the minimum element are larger than q the
block is discarded by incrementing k and the search is restarted (backtracked)
at node v, where v = u if u is root of the tree and the parent of u otherwise.
The maximum elements are checked similarly. If the algorithm backtracks, k is
increased ensuring that the same element is never read more than once.

If the checks succeed the k’th block storing copies of the Bc guiding elements
of u is scanned from left to right. The majority value of each of the B1−c

copies of each guiding element is extracted in sorted order using the majority
algorithm [33] and compared to q, until a retrieved guiding element larger than
q is found or the entire block is read. The traversal then continues to the
corresponding child. If any invocation of the majority algorithm fails to select a
value, or two fetched guiding elements are out of order, the block is discarded
as above by increasing k and backtracking the search to the parent node.

Upon reaching a leaf, the algorithm verifies whether the search found the
correct leaf. This is achieved by running a variant of the verification procedure

110 Chapter 9. I/O-Efficient Resilient Algorithms

designed for the same purpose in Chapter 8. Counters cl and cr, which are
initially 1, are stored in safe memory. Then the copies of the minimum and
maximum element are scanned in chunks of B1−c elements, starting from the
2kB1−c’th element. If the majority of elements in a chunk of B1−c copies of
the minimum element are smaller than the search element, cl is increased by
1. Otherwise, cl is decreased and k increased by one. The copies of maximum
elements are treated similarly. Note that every decrement of cl or cr signals
that at least B1−c

2 corruptions have been found. Thus, cl represents the number
of chunks scanned that has not yet been contradicted, where the majority of
copies indicates that the search element is in the current leaf or in leafs to the
right. Similar for cr. If min{cl, cr} reaches 0, we backtrack to the parent of the
leaf as above. If min{cl, cr}B1−c

2 gets larger than δ−k(B
1−c

2) + 1 the verification
succeeds. The algorithm finishes by scanning the δ elements stored in the leaf,
returning whether it finds q or not.

Lemma 9.2 The data structure is a linear space resilient dictionary supporting
queries in O

(
1
c logB N + α

B1−c + δ
B

)
I/Os, for any 1/ logB ≤ c ≤ 1.

Proof. A value is only erroneously retrieved when at least B1−c

2 of the copies
used to determine it are corrupted. If k is incremented because of a failed check
in an internal node u, then at least one value in the parent of u was erroneously
retrieved or at least B1−c

2 copies of the minimum or maximum value read at u
were corrupted. If k is increased during a verification of a leaf, the majority
of elements in one chunk of B1−c copies of the minimum (maximum) element
was larger (smaller) than the search element and in another the majority was
smaller (larger) than the search element. Therefore, k is only increased when
B1−c

2 corruptions are detected. Since k increases before any backtracking is
performed, the algorithm never reads the same element twice, proving that all
corruptions counted are distinct.

The algorithm finishes when min{cl, cr}B1−c

2 ≥ δ − kB2 + 1 during the
verification of a leaf. Since the adversary has at most δ − kB2 corruptions left,
in at least one chunk of B1−c copies of the minimum element read during the
verification, more than half of the elements are uncorrupted. Since the majority
of copies in this block are smaller than the search element, no uncorrupted
elements matching the search key can be in leafs to the left. Similar for the
blocks containing copies of the maximum, proving that the correct leaf is found.

To bound the I/O complexity, we count how many nodes of the tree the
algorithm visits, that are not on the correct root to leaf path. If a search is
guided in the wrong direction (away from the correct root to leaf path), the
majority of B1−c copies of a guiding element in the relevant block are corrupted.
For each additional step performed by the algorithm after a wrong turn, either
the minimum or the maximum chunk scanned must contain B1−c

2 corruptions.
In the verification step, each time a minimum and a maximum block is

scanned either k or min{cl, cr} is increased. Therefore, if 2t− 1 I/Os were per-
formed by a failed verification k increased by t, meaning that tB1−c

2 corruptions
were detected. We conclude that the algorithm uses O(logBc N + α

B1−c + δ
B) =

O(1
c logB N + α

B1−c + δ
B) I/Os. 2

9.5. Dynamic Dictionaries 111

To obtain optimal time bounds for the dictionary, we use the resilient binary
search algorithm from Chapter 8 on each block, instead of scanning it. If more
than B1−c

2 corruptions are discovered during the search of a block, it is discarded
as above. Otherwise, B1−c

2 supporting elements are found on both sides of an
element, and the algorithm continues to the corresponding child as before. This
reduces the time used per node to O(logB + B1−c). Verification takes O(δ)
time in total.

Lemma 9.3 For any 1
logB ≤ c ≤ 1, queries use O((B1−c + logB)(1

c logB N +
α

B1−c) + δ) time.

Corollary 9.3 If δ > B logN , queries use O(δB) I/Os and O(δ) time.

Proof. Follows from Lemma 9.2 and 9.3 by setting c = 1
logB in Lemma 9.2 and

9.3, i.e. T is a binary tree. 2

Corollary 9.4 If δ < logN , queries use O(logB N) I/Os and O(logN) time.

Proof. Follows from Lemma 9.2 and 9.3 by setting c = 1− log logB
logB i.e. T has

degree B
logB . 2

Corollary 9.5 If logN ≤ δ ≤ B logN for any 1
logB ≤ c ≤ 1, queries use

O(1
c logB N + α

B1−c + δ
B) I/Os and O(logN + δ) time.

Proof. Follows from Lemma 9.2 and 9.3 by selecting c ∈ [1
logB , 1− log logB

logB] such
that 1

c logB N = δ
B1−c . 2

9.5 Dynamic Dictionaries

In this section we present a dynamic I/O-efficient resilient dictionary based on
the techniques in used for the dynamic dictionary in Chapter 8 and the static
dictionary presented in Section 9.4. The dynamic dictionary supports queries
and updates in O(1

c logB N + α
B1−c + δ

B) I/Os and O(logN + δ) time, worst-case
and amortized respectively for any fixed constant c in the range 1

logB ≤ c ≤ 1.

9.5.1 Structure

The data structure consists of a search tree, T , constructed on a set of Θ(N/(δ log3N))
leaf structures, each containing Θ(δ log3N) elements.

The top-level search tree T is based on the binary trees of Brodal et al. [35],
with all elements and pointers replicated 2δ + 1 times. We maintain T such
that all levels of the tree, except possibly the last O(1) levels, are complete [35].
Additionally, we maintain an auxiliary static dictionary DT , described in Sec-
tion 9.4, containing the replicated guiding elements stored in the lowest level
of T that is guaranteed to be complete.

112 Chapter 9. I/O-Efficient Resilient Algorithms

A leaf structure contains Θ(δ log3N) elements distributed, in sorted order,
into Θ(log3N) buffers of size Θ(δ). The buffers are the leaves of a three level
search tree LT with fan-out Θ(logN). Similar to T the components of LT are
stored reliably. Finally, the 2δ + 1 copies of each of the Θ(logN) elements in
each internal node of LT are stored in a static dictionary (Section 9.4). Note
that the elements in the buffers stored in the leaves of LT , however, are not
replicated.

9.5.2 Operations

A query operation for an element q initially queries the dictionary DT . The
constant sized subtrees of T rooted at the nodes returned by this query are
traversed by reliably determining the replicated pointers and guiding elements.
This traversal identifies a leaf structure. The corresponding tree LT is traversed
starting from the root, using the static dictionaries stored in the internal nodes
of LT to guide the search, and retrieving the replicated pointers to traverse the
tree reliably. Upon reaching a leaf in LT , its associated buffer is scanned and
the query returns true if q is found, otherwise it returns false.

To delete an element e from the dictionary it is first removed from the buffer
that contains it. If the buffer becomes too small it is merged with a neighboring
buffer, and the representative of the merged buffer becomes the largest of the
two guiding elements associated with the respective buffers before the merge.
The smaller guiding element is then removed from all ancestors of the merged
leafs in LT by completely rebuilding them. If the leaf structure L now contains
too few elements it is merged with a neighboring leaf structure in T and rebuild.
In this case the top tree T is also updated using the algorithm of [35] and the
reliably stored elements and structural information. This update may alter the
set of elements stored in the lowest complete level of T . Each new element in the
lowest complete level overwrites the element it replaced in the static dictionary
DT . An insert is handled similarly.

Theorem 9.3 The data structure described is a deterministic dynamic resilient
dictionary supporting searches and updates in O(1

c logB N + α
B1−c + δ

B) I/Os
and O(logN + δ) time, worst-case and amortized respectively.

Proof. The top tree T uses O(|T |δ/B) = O(N/B) blocks and the size of each
leaf structure is dominated by the elements stored in the leaf buffers.

In a query, one static dictionary storing O(N
log3N

) elements and three static
dictionaries storing O(δ logN) elements are searched, O(1) replicated values are
retrieved reliably, and a buffer storing O(δ) elements is scanned.

Completely rebuilding a static dictionary from a sorted set of N replicated
elements takes O(δN/B) I/Os and O(δN) time. Therefore, rebuilding three
nodes in LT during an update takes O(δ logN) time and O(δB logN) I/Os. Since
the size of the buffers in the leaves can vary by a constant factor, this is only
needed every Θ(δ) updates, meaning that the amortized cost of updating LT
is O(logN

B) I/Os and O(logN) time. Rebuilding an entire leaf structure from a
sorted set of buffers takes O(δB log3N) I/Os and O(δ log3N) time and this only

9.6. Sorting 113

happens every Θ(δ log3N) updates. Thus, the amortized cost of updating a leaf
structure is O(1

B) I/Os and O(1) time.
The update time for the top tree T as presented in [35] is O(log2N). Since

all components of T are stored reliably, updating T takes O(δ log2N) time and
O(d δB e log2N) I/Os. When T is updated, all elements that have been replaced at
the lowest guaranteed complete level of T are overwritten by the value replacing
them in this level in the auxiliary static dictionary DT . In the static dictionary
from Section 9.4, an element can exist replicated O(1) times on each level of
the tree. Therefore, it takes O(δ 1

c logB N) time and O(d δ
B1−c e1c logB N) I/Os

to update such a value, and amortized O(log2N) elements are changed in each
update of T . Again, since the size of the leaf structures can vary within a
constant fraction, updates to T are only needed every Θ(δ log3N) update, thus
the amortized update cost for T is O(1) I/Os and O(1) time. 2

9.6 Sorting

In this section we present a resilient multi-way merging algorithm and use it
to design a resilient I/O-efficient sorting algorithm. It is also used in the next
section to design a resilient I/O-efficient priority queue. First we show how to
merge γ faithfully ordered lists of total size x when γ ≤ min{MB , Mδ }.

9.6.1 Multi-way merging:

Initially, the algorithm constructs a perfectly balanced binary tree, T , in memory
on top of the γ buffers being merged. Each edge of the binary tree is equipped
with a buffer of size 5δ+1. Each internal node u ∈ T stores the state of a running
instance of the PurifyingMerge resilient binary merging algorithm described in
Chapter 6 that works in rounds. Racall that, in each round O(δ) elements from
both input buffers are read and the next δ elements in the faithful order are
output. If corrupted elements are found, these are moved to a fail buffer and
the round is restarted. The algorithm merges elements from the buffers on u’s
left child edge and right child edge into the buffer of u’s parent edge. The states
and sizes of all buffers are stored as reliable variables. The entire tree including
all buffers and state variables are stored in internal memory, along with one
block from each of the γ input streams and one block for the output stream of
the root. Instead of storing a fail buffer for each instance of PurifyingMerge, a
global shared fail buffer F is stored containing all detected corrupted elements.

Let bl and br be the buffers on the edges to the left and right child respectively
and let b denote the buffer on the edge from u to its parent. If u is the root, b
is the output buffer. The elements are merged using the fill operation, which
operates on u, as follows. First, it checks whether bl and br contain at least
4δ + 1 elements, and if not they are filled recursively. Then, the stored instance
of the PurifyingMerge algorithm is resumed by running a round of the algorithm
outputting the next δ elements to its output stream. The multi-way merging
algorithm is initiated by invoking fill on the root of T which runs until all

114 Chapter 9. I/O-Efficient Resilient Algorithms

elements have been output. Then, the elements moved to F during the fill are
merged into the output using NaiveSort and UnbalancedMerge as in [61].

Lemma 9.4 Merging γ = min{MB , Mδ } buffers of total size x ≥M uses O(x/B)
I/Os and O(x log γ + αδ) time.

Proof. The correctness follows from Lemma 1 in [61]. The size of T is O(γ(δ +
B)) = O(min{MB , Mδ }(δ + B)) = O(M). We use γ I/Os to load the first block
in each leaf of T and O(x/B) I/Os for reading the entire input and writing the
output. The final merge with F takes O(x/B) I/Os. Since T fits completely in
memory we perform no other I/Os.

Merging two buffers of total size n using PurifyingMerge takes O(n+ αδ)
time where α is the number of detected corruptions in the input buffers. Since
detected corruptions are moved to the global fail buffer each corruption is only
charged once. Each element passes through log γ nodes of T and the final merge
using NaiveSort and UnbalancedMerge takes O(x+ αδ) time. 2

9.6.2 Sorting

Assuming δ ≤M ε for 0 ≤ ε < 1, we can use the multi-way merging algorithm
to implement the standard external memory M1−ε-way merge sort from [7]
matching the optimal external memory sorting bound for constant ε.

Theorem 9.4 Our resilient sorting algorithm uses O(1
1−εSort(N)) I/Os and

O(N logN + αδ) time assuming δ ≤M ε.

9.7 Priority queue

In this section we describe a comparison-based resilient priority queue which
is optimal with respect to both time and I/O performance assuming that
δ ≤ M ε. An optimal I/O-efficient priority queue uses Θ(1/B logM/B(N/M))
I/Os amortized per operation [7]. An Ω(logN + δ) time lower bound for
comparison-based resilient priority queues was proved in Chapter 7.

Our priority queue is based on an amortized version of the worst-case optimal
external memory priority queue of [37] and uses our new multi-way merging
algorithm to move elements between disk and internal memory.

The priority queue consists of a part on disk, denoted L, and three structures,
D, I and F , in internal memory. We maintain that D stores the smallest elements
in the priority queue and that I stores newly inserted elements. We maintain that
D has more than δ+ 1 elements and that both I and D have at most M + δ+ 1
elements, the former ensures that there is at least one uncorrupted element in
D. Finally, the buffer F , of size 2δ, stores possibly corrupted elements.

The structure on disk, L is a linked list of levels. Each level consists of a
number of faithfully ordered sequences, represented by linked lists of blocks of
size max{B, δ}, stored in a linked list. Let N` denote the number of buffers at
level `, and let Li`, 0 ≤ i ≤ N` denote the i’th buffer of level `. The elements at
level ` is L` = L0

` ∪ · · · ∪ LNi
` . We define the parameter γ = min(M/B,M/δ)

9.7. Priority queue 115

and maintain that N` < γ and that |L`| < γ`+1M . Let h denote the index
of the highest level, the first level is level 0. The pointers in the linked lists
as well as buffer offsets and sizes are stored as reliable variables. We describe
two operations, Pull and Push on L that extracts and adds M elements to L
respectively.

We will need the following result on selection in the faulty memory RAM:
We say that element x in a buffer X has faithful-rank r if there is at least
r−α− δ uncorrupted elements in X smaller than x and at most |X| − r+α+ δ
uncorrupted elements of X larger than x.

Lemma 9.5 Given an integer k and a faithfully ordered sequence S, |S| < M ,
an element with a faithful-rank k in S can be selected in O((α+ 1)δ) time. The
element returned has index i ∈ {k, . . . , k + α} in S.

Proof. The algorithm maintains an index k′, initialized to k in safe memory.
Initially S[k′] i copied into a safe memory variable. The algorithm then checks
whether the majority of the 2δ + 1 elements immediately to the left of S[k′] are
smaller than S[k′], and whether the majority of the 2δ + 1 immediately to the
right are larger than S[k′]. If this is the case S[k′] is returned. Otherwise, the
algorithm increments the value of k′ by one and restarts. The complexity of
the algorithm depends on the number of iterations. An iteration fails to select
an element if the element at S[k′] is corrupted to a value larger than δ + 1 of
the 2δ + 1 preceding elements or a value smaller than the δ + 1 of the 2δ + 1
succeeding elements. If S[k′] is uncorrupted the algorithm always terminates
and returns S[k′] and thus at most α iterations are performed. These arguments
also prove correctness of the algorithm. 2

9.7.1 Operations on L
This section describes the basic operations used to manipulate L. Let merger(`, x)
denote an invocation of the multi-way merging algorithm that extracts x ele-
ments from level `. Let T be the binary tree with N` leaves used in the merging
algorithm.

If x < |L`| we do not output all the elements of L`. In that case we run
the merger without fetching new elements from the leaves of T once x elements
have been output. This empties all the buffers of T . The extra elements are
gathered into a buffer E of size at most 6M . We prepend E to a buffer of level
` making sure this buffer remains faithfully ordered. If there is a buffer, Lj`
with |Lj` | < 6δ we simply append this buffer to E and sort the result using
the resilient sorting algorithm. If no such buffer exist we use the selection
algorithm from Lemma 9.5 with k = 2δ + 2 for all N` buffers of level ` in turn
- remembering the maximum element returned so far in the reliable memory.
The algorithm from Lemma 9.5 works by repeatedly trying different elements
and checking whether or not it is consistently ordered with the 2δ + 1 elements
to its left and the 2δ + 1 elements to its right. If not it tries the neighboring
elements and continues in this fashion. We modify the algorithm such that a
candidate element that doesn’t work are moved to our global fail buffer F and

116 Chapter 9. I/O-Efficient Resilient Algorithms

the front of the the list is compacted. Since each round and the compaction take
O(δ) time, the entire operation takes O(α′δ) time where α′ is the number of
corrupted elements we sample. By moving corrupted elements to F , we ensure
that we never spend δ time in the selection algorithm for the same corruption
more than once.

If the maximum element is from buffer Lj` we take the first 6δ elements of Lj`
and merge them with E, using the complete binary merging algorithm [56] and
prepend the resulting buffer to Lj` . Finally, the extracted elements are returned.

Lemma 9.6 An invocation of merger(`,x) for x ≥M returns the x faithfully
smallest elements from L` using O(x/B) I/Os and O(x logN` + αδ) time and
leaves all buffers of L` faithfully ordered.

Proof. The I/O-complexity follows from Lemma 9.4. Extracting the x elements
from the merger and emptying the remaining elements into E uses O(x logN` +
αδ) time by Lemma 9.4. The O(N`) invocations of the selection algorithm and
performing compactions use O(N`δ + α′δ) = O(M + α′δ) = O(x + α′δ) time
where α′ is the number of corrupted elements chosen as selection candidates.

We empty the merger into a buffer E and locate a buffer m in which E
added to. Finding this list involves using selection N` times and merging
the first 6δ elements of the buffer with the elements of E, for a total cost of
O(N`δ + δα+M) = O(M + δα) = O(x+ δα).

We must also prove that the faithful ordering of the buffer Lj` in which we
insert the elements of E is maintained. Recall that Lj` was the buffer in which
the selection algorithm from Lemma 9.5 returned the largest element r when
invoked with k = 2δ + 2. Let y be the maximum uncorrupted element of E, we
now prove that y ≤ r.

Let Lp` be the buffer from which y originated and let c be the element
returned by the selection algorithm for Lp` . Since c has faithful-rank 2δ+ 2 there
must be at least one uncorrupted element in Lp` smaller than c, this element is
also smaller than y and thus y ≤ c. Since r was the maximum among all the
selections we know that r ≥ c and thus we conclude that y ≤ c ≤ r. 2

Pushing elements to L
The Push operation inserts a buffer, A, of size M into L. It does so by simply
adding it as a new list of level i = 0 and incrementing Ni by one. If Ni = γ all
elements of level i are merged into a new list, A′ = merger(i, |Li|) which is then
recursively inserted into level i+ 1, level i is now empty.

Lemma 9.7 The Push operation adds M elements to L and maintains that
N` < γ and |L`| < γ`+1M for 0 ≤ ` ≤ h and that all buffers in L remain
faithfully ordered. For each visited level, `, it uses O(|L`| log γ +αδ+N`δ) time
and O(|L`|/B) I/Os while pushing |L`| elements to the next level.

Proof. By construction, the number of buffers in each level is maintained by
Push. We now prove that |L`| < γ`+1 for all levels ` after the operation.

9.7. Priority queue 117

This claim is proved by induction. Initially, all lists on level 0 has size M ,
since they are inserted when the I buffer is full and we push M elements into L.
Now assume that the claim holds for level i. Push is invoked on level i, only
when Ni = γ. Since all buffers have size γi and there are γ of them, the size of
merger(i, |Li|) is at most |Li| = γi+1 and thus, the list inserted on level i + 1
is not to large. Elements moved to the fail buffer only makes levels smaller.
The correctness of the multi-way merger proves that the buffers of L remain
faithfully ordered. 2

Pulling elements from L
The Pull operation iterates from level i = 0 to level h and maintains a faithfully
ordered buffer S of size M+δ which contains elements that are faithfully smaller
than elements in L0 ∪ · · · ∪ Li−1. Furthermore, an index ` ≤ i is maintained
with the property that |Lj | is unchanged for j ≤ i, j 6= `, and L` contains M + δ
fewer elements than before the Pull.

Initially S = merger(0,M + δ), i = 1 and ` = 0. Each iteration proceeds as
follows. First the M +δ faithfully smallest elements from level i are extracted by
invoking A = merger(i,M+δ). The complete binary merging algorithm from [56]
is then invoked on A and S to produce a buffer C of size 2(M + δ). We now split
C into two halves C1 = C[1, . . . ,M + δ] and C2 = C[M + δ + 1, . . . , 2(M + δ)].
We set S = C1. We place C2 in level ` or level i. To do this we perform the same
operation we used to put E back into L in the multi-way merging algorithm.
The only difference is that we look at all buffers on level i and on level `. If C2

is placed on level ` we set ` = i for the next iteration. When all levels have been
visited, the first M elements of A are merged with D. The remaining elements
are inserted into I.

Lemma 9.8 The Pull returns M + δ elements in faithful order and the M
first are the faithfully smallest elements of L. All buffers in L remain sorted.
Ignoring the O(α) elements moved to the fail buffer, the size of all but one level
remains the same, and the last level contains M + δ fewer elements. A Pull
uses O(hMB) I/Os and O(hM logN` + αδ) time.

Proof. We first prove, that the M smallest uncorrupted elements of L are
extracted, we then prove that buffers in L remain sorted, and finally we prove
the time and I/O bounds.

1. To prove (1) we basically need to prove that the following invariant
holds: After performing an iteration of the Pull algorithm at level i
the M − δ − α smallest uncorrupted elements of A are smaller than any
uncorrupted element in L0 ∪ · · · ∪ Li. Since |A| = M + δ, this invariant
implies that the M first elements of A are smaller than any uncorrupted
elements in L0 ∪ · · · ∪ Li.
Before proving the invariant we need to prove that the smallest M + δ−α
uncorrupted elements of C are in C1 which become the new S. Let X
denote the set containing the M + δ − α smallest uncorrupted elements in

118 Chapter 9. I/O-Efficient Resilient Algorithms

C and let m = max{x ∈ X}. Since C is faithfully ordered, all elements of
X appear faithfully ordered in C and there are no uncorrupted elements
larger than m in positions before m by definition of X. Thus, the only
elements not in X that can be stored in C before m are corrupted elements.
There are at most α of these and thus, the index of m is smaller than
M + δ−α+α = M + δ, implying that all of X is in C1 = C[1, . . . ,M + δ].

We prove that the invariant holds by induction. It holds in the base case
by Lemma 9.6. For the general case, assume that we have just completed
the iteration at level i and let α′ denote the number of corruptions before
the most recent iteration, and α ≥ α′ the number of corruption after the
iteration. Let X ′ be the M + δ − α smallest elements after the iteration
and X the M + δ−α′ smallest elements before. We need to prove that any
element in X ′ is smaller than any uncorrupted element in L0, . . . ,Li under
the assumption that any element from X is smaller than any uncorrupted
element in L0, . . . ,Li−1. Since all the elements of X ′ are uncorrupted, it
is enough to prove that the largest element, m ∈ X ′ is smaller than all
uncorrupted elements in L0 ∪ · · · ∪ Li.
We split the proof in two cases.

• m ∈ X ′ − X: In this case m originates from A ⊂ Li. By the
correctness of the merger, m is smaller than everything remaining in
Li. m is also, by definition of X ′, smaller than everything in A−X ′.
We need to prove that m is also smaller than everything in L0 ∪ · · · ∪
Li−1. Assume there is an element x ∈ X larger than m. If so, we
have that m ≤ x ≤ y for any uncorrupted element y ∈ L0∪· · ·∪Li−1,
by the induction hypothesis. We now prove that it is impossible for
m to be larger than all elements of X, we do this by contradiction
and assume that m is bigger than all x ∈ X. Thus, for m to be
the M + δ − α′ largest uncorrupted in C1 it must be smaller than
at least |X| − |X ′| + 1 = α′ − α + 1 elements from X. But since
m is uncorrupted and larger than all the elements of X which are
uncorrupted, each of the elements from X that are not in X ′ must
be corrupted instead. Thus α′ − α+ 1 elements needs to have been
corrupted in S or corrupted during the merge, which is impossible
by definition of α and α′.
• m ∈ X ∩ X ′: By the induction hypothesis, x is smaller than all

uncorrupted elements of L0 ∪ · · · ∪ Li−1. It remains to be shown that
m is also smaller than all elements of Li. Since m was from X, and
thus not from A, we know that the number of elements in S, but not
in X ′, is |S − (X ′ ∩ S)| ≥ |S| − |X ′|+ 1 = α′ + 1 and by definition of
α′, there is at least one uncorrupted element of S not in X ′ and the
smallest of these elements are smaller than x by definition of X ′, but
larger than all remaining uncorrupted elements in S − S ∪X ′ and Li
by Lemma 9.6.

2. We need to prove that all lists remain sorted after Pull. The only change
to the lists happen when elements are removed from the lists by the merger,

9.7. Priority queue 119

and when the elements left in the merger are re-inserted in level ` or level
i. Removing elements from a buffer does not change the order of the
remaining elements. The second part was proved in Lemma 9.6.

3. The complexity of the Pull operation is upper bounded by the invocations
of merger(`,M + δ) for 0 ≤ ` ≤ h.

2

9.7.2 Operations on internal buffers

The internal data structures, D and I, are implemented using the optimal
internal memory resilient dynamic dictionaries presented in Chapter 8. Recall
that these dictionaries maintain n elements under updates and searches in
amortized O(log n+ δ) time per operation and use O(n) space.

To insert x into the priority queue, we simply insert it into I. If I grows to
size M we push M elements into L. We do this by using the resilient binary
merging algorithm to merge I and D into a new buffer E. We now re-insert the
first |D| − δ elements of E into a D, the next δ are put in I and the remaining
M elements are pushed to L using the Push operation. If |D| < δ + 1 now it is
filled by a Pull operation.

A Deletemin finds the minimum element in F , in the first δ+ 1 elements of
D and of the first min(δ+1, |I|) elements of I and returns the minimum of these
three, the element is deleted from its buffer. To find the δ + 1 smallest elements
from D and I respectively, we need to extract the δ+ 1 minimum elements from
the resilient dictionaries in Chapter 8. This dictionary stores the elements in
buffers of size Θ(δ) and one can move between successor and predecessor buffers
in O(δ) time. If a Deletemin causes D to become smaller than δ + 1, we pull
M + δ from L and fill D with the M first elements. The last δ elements are put
into I. If this causes I to become larger than M we empty I into L as above.

Since h, the number of levels of L, might not decrease even if Deletemin
is invoked many times, we use global rebuilding and rebuild the entire data
structure every Θ(N) operations.

Theorem 9.5 Our data structure is a linear space resilient priority queue sup-
porting operations Insert and Deletemin in amortized O(1

1−ε(1/B) logM/B(N/M))
I/Os and O(logN + δ) time, assuming δ ≤M ε for 0 ≤ ε < 1.

Proof. To bound the cost of Deletemin and Insert we bound the number of
levels in L. Since a level L` is pushed to higher levels only if it is full and since we
use global rebuilding, the highest level in the priority queue is h = O(logγ(N/M)).
Both Push and Pull use O(1/B) I/Os and O(log γ) time per element they
touch on each level. Therefore, the total time, including the operations on I
and D is O(h log γ + logM + δ) = O(logN + δ) per element. Furthermore, we
use a total of O(αδ) time to cope with corrupted elements. Thus, the total time
used to perform N operations is O(N((logγ(N/M))(log γ) + logM + δ) +αδ) =
O(N logN + δN + αδ), or amortized O(logN + αδ/N + δ) = O(logN + δ) per
operation.

120 Chapter 9. I/O-Efficient Resilient Algorithms

The total I/O cost per element is O(1
Bh) = O(1

B logγ(N/M)). Thus, the
I/O complexity for N operations is O(N(1

B) logγ(N/M)) = O(1
1−εSort(N)), or

O(1
1−ε(1/B) logM/B(N/M)) amortized per element. 2

Bibliography

Papers included in this dissertation

[D1] P. K. Agarwal, L. Arge, T. Mølhave, and B. Sadri. I/O-efficient algorithms
for computing contours on a terrain. In SCG ’08: Proceedings of the
twenty-fourth annual symposium on Computational geometry, pages 129–
138, New York, NY, USA, 2008. ACM.

[D2] L. Arge, T. Mølhave, and N. Zeh. Cache-oblivious red-blue line segment
intersection. In ESA ’08: Proceedings of the 16th annual European
symposium on Algorithms, pages 88–99, Berlin, Heidelberg, 2008. Springer-
Verlag.

[D3] G. S. Brodal, R. Fagerberg, A. G. Jørgensen, G. Moruz, and T. Mølhave.
Optimal resilient dynamic dictionaries. Technical Report DAIMI PB-585,
Department of Computer Science, Aarhus University, November 2007.

[D4] G. S. Brodal, A. G. Jørgensen, and T. Mølhave. Fault tolerant external
memory algorithms. In WADS ’09: Proceedings of the 11th Algorithms and
Data Structures Symposium., volume 5664 of Lecture Notes in Computer
Science, pages 411–422, Berlin, Heidelberg, 2009. Springer-Verlag.

[D5] A. Danner, T. Mølhave, K. Yi, P. K. Agarwal, L. Arge, and H. Mitasova.
TerraStream: from elevation data to watershed hierarchies. In GIS ’07:
Proceedings of the 15th annual ACM international symposium on Advances
in geographic information systems, pages 1–8, New York, NY, USA, 2007.
ACM.

[D6] A. G. Jørgensen, G. Moruz, and T. Mølhave. Priority queues resilient
to memory faults. In WADS ’07: Proceedings of the 10th International
Workshop on Algorithms and Data Structures, volume 4619 of Lecture
Notes in Computer Science, pages 127–138, Berlin, Heidelberg, 2007.
Springer-Verlag.

121

122 Chapter 9. I/O-Efficient Resilient Algorithms

Other papers coauthered by the author of this
dissertation

[C1] L. Arge, L. Deleuran, K. D. Larsen, T. Mølhave, and M. Revsbæk. Prac-
tical and efficient algorithms for computing massive contour maps. In
preparation.

[C2] L. Arge and T. Mølhave. GIS ved MADALGO. Geoforum Danmark, 104,
May 2009.

[C3] G. S. Brodal, R. Fagerberg, I. Finocchi, F. Grandoni, G. Italiano, A. G.
Jørgensen, G. Moruz, and T. Mølhave. Optimal resilient dynamic dictio-
naries. In ESA ’07: Proceedings of the 15th annual European symposium
on Algorithms, volume 4708 of Lecture Notes in Computer Science, pages
347–358. Springer-Verlag, Berlin, Heidelberg, 2007.

[C4] G. S. Brodal, A. G. Jørgensen, and T. Mølhave. Counting in the presence
of memory faults. Submitted, 2009.

[C5] J. M. Eshøj, P. K. Bøcher, J.-C. Svenning, T. Mølhave, and L. Arge.
Impacts of 21st century sea-level rise on a major city (Aarhus, Denmark)
– an assessment based on fine-resolution digital topography and a new
flooding algorithm. Submitted, 2009.

Other references

[1] M. Abadi, M. Budiu, Úlfar Erlingsson, and J. Ligatti. Control-flow in-
tegrity. In Proc. 12th ACM conference on Computer and communications
security, pages 340–353, 2005.

[2] P. K. Agarwal, L. Arge, and A. Danner. From point cloud to grid DEM: A
scalable approach. In A. Riedl, W. Kainz, and G. Elmes, editors, Progress
in Spatial Data Handling. 12th International Symposium on Spatial Data
Handling, pages 771–788. Springer-Verlag, 2006.

[3] P. K. Agarwal, L. Arge, T. M. Murali, K. R. Varadarajan, and J. S.
Vitter. I/O-efficient algorithms for contour-line extraction and planar
graph blocking. In Proc. 9th ACM-SIAM Sympos. Discrete Algorithms,
pages 117–126, 1998.

[4] P. K. Agarwal, L. Arge, and K. Yi. I/O-efficient construction of constrained
Delaunay triangulations. In Proc. European Symposium on Algorithms,
pages 355–366, 2005.

9.7. Priority queue 123

[5] P. K. Agarwal, L. Arge, and K. Yi. I/O-efficient batched union-find and
its applications to terrain analysis. In Proc. 22nd Annu. ACM Sympos.
Comput. Geom., 2006.

[6] A. Aggarwal and J. S. Vitter. The input/output complexity of sorting
and related problems. Communications of the ACM, 31(9):1116–1127,
1988.

[7] A. Aggarwal and J. S. Vitter. The input/output complexity of sorting
and related problems. Commun. ACM, 31:1116–1127, 1988.

[8] D. Ajwani, A. Beckmann, R. Jacob, U. Meyer, and G. Moruz. On
computational models for flash memory devices. In J. Vahrenhold, editor,
Proc. of the 8th International Symposium on Experimental Algorithms,
SEA 2009, volume 5526 of Lecture Notes in Computer Science. Springer,
2009.

[9] D. Ajwani, I. Malinger, U. Meyer, and S. Toledo. Characterizing the
performance of flash memory storage devices and its impact on algorithm
design. In Proc. of the 7th International Workshop on Experimental
Algorithms, WEA 2008, volume 5038 of Lecture Notes in Computer Science.
Springer, 2008.

[10] L. Arge. External memory data structures. In J. Abello, P. M. Pardalos,
and M. G. C. Resende, editors, Handbook of Massive Data Sets, pages
313–358. Kluwer Academic Publishers, 2002.

[11] L. Arge. The buffer tree: A technique for designing batched external data
structures. Algorithmica, 37(1):1–24, 2003.

[12] L. Arge, M. A. Bender, E. D. Demaine, B. Holland-Minkley, and J. Ian Munro.
An optimal cache-oblivious priority queue and its application to graph
algorithms. SIAM Journal on Computing, 36(6):1672–1695, 2007.

[13] L. Arge, M. A. Bender, E. D. Demaine, B. Holland-Minkley, and J. I.
Munro. Cache-oblivious priority queue and graph algorithm applications.
In Proc. 34th Annual ACM Symposium on Theory of Computing, pages
268–276, 2002.

[14] L. Arge, H. Blunck, and A. H. Jensen. I/O-efficient nearest neighbor
algorithms for grid dem quality evaluation. In preparation, 2009.

[15] L. Arge, G. S. Brodal, and R. Fagerberg. Cache-oblivious data structures.
In D. Mehta and S. Sahni, editors, Handbook of Data Structures and
Applications, chapter 34, page 27. CRC Press, 2005.

[16] L. Arge, J. Chase, P. Halpin, L. Toma, D. Urban, J. S. Vitter, and R. Wick-
remesinghe. Flow computation on massive grid terrains. GeoInformatica,
7(4):283–313, 2003.

124 Chapter 9. I/O-Efficient Resilient Algorithms

[17] L. Arge, A. Danner, H. Haverkort, and N. Zeh. I/O-efficient hierar-
chical watershed decomposition of grid terrain models. In A. Riedl,
W. Kainz, and G. Elmes, editors, Progress in Spatial Data Handling.
12th International Symposium on Spatial Data Handling, pages 825–844.
Springer-Verlag, 2006.

[18] L. Arge, A. Danner, and S.-H. Teh. I/O-efficient point location using
persistent B-trees. In Proc. Workshop on Algorithm Engineering and
Experimentation, 2003.

[19] L. Arge, K. H. Hinrichs, J. Vahrenhold, and J. S. Vitter. Efficient bulk
operations on dynamic R-trees. Algorithmica, 33(1):104–128, 2002.

[20] L. Arge and M. Revsbæk. I/O-efficient contour tree simplification. Sub-
mitted, 2009.

[21] L. Arge, L. Toma, and J. S. Vitter. I/O-efficient algorithms for problems
on grid-based terrains. ACM Journal on Experimental Algorithmics, 6(1),
2001.

[22] L. Arge, L. Toma, and N. Zeh. I/O-efficient topological sorting of planar
dags. In Proc. ACM Symposium on Parallel Algorithms and Architectures,
pages 85–93, 2003.

[23] L. Arge, D. E. Vengroff, and J. S. Vitter. External-memory algorithms
for processing line segments in geographic information systems. Proc.
European Symposium on Algorithms, pages 295–310, 1995.

[24] LAS Specification Version 1.3 – R10. The American Society for Pho-
togrammetry & Remote Sensing (ASPRS), August 2009.

[25] Y. Aumann and M. A. Bender. Fault tolerant data structures. In Proc.
37th Annual Symposium on Foundations of Computer Science, pages
580–589, Washington, DC, USA, 1996. IEEE Computer Society.

[26] H. Bar-El, H. Choukri, D. Naccache, M. Tunstall, and C. Whelan. The
sorcerer’s guide to fault attacks. Proceedings of the IEEE, 94(2):370–382,
2006.

[27] G. D. Battista and R. Tamassia. Algorithms for plane representations of
acyclic digraphs. Theor. Comput. Sci., 61(2-3):175–198, 1988.

[28] R. Baumann. Soft errors in advanced computer systems. IEEE Design
and Test of Computers, 22(3):258–266, 2005.

[29] R. Bayer and E. McCreight. Organization and maintenance of large
ordered indexes. Acta Informatica, 1:173–189, 1972.

[30] M. A. Bender, R. Cole, and R. Raman. Exponential structures for cache-
oblivious algorithms. In Proc. International Colloquium on Automata,
Languages, and Programming, pages 195–207, 2002.

9.7. Priority queue 125

[31] D. Boneh, R. A. DeMillo, and R. J. Lipton. On the importance of checking
cryptographic protocols for faults. In Eurocrypt, pages 37–51, 1997.

[32] R. S. Borgstrom and S. R. Kosaraju. Comparison-based search in the
presence of errors. In Proc.25th Annual ACM symposium on Theory of
Computing, pages 130–136, 1993.

[33] R. S. Boyer and J. S. Moore. MJRTY: A fast majority vote algorithm. In
Automated Reasoning: Essays in Honor of Woody Bledsoe, pages 105–118,
1991.

[34] G. S. Brodal and R. Fagerberg. Cache oblivious distribution sweep-
ing. In Proc. International Colloquium on Automata, Languages, and
Programming, pages 426–438, 2002.

[35] G. S. Brodal, R. Fagerberg, and R. Jacob. Cache-oblivious search trees
via binary trees of small height. In Proc. 13th Annual ACM-SIAM
Symposium on Discrete Algorithms, pages 39–48, 2002.

[36] G. S. Brodal, R. Fagerberg, and R. Jacob. Cache-oblivious search trees via
trees of small height. Technical Report ALCOMFT-TR-02-53, ALCOM-
FT, May 2002.

[37] G. S. Brodal and J. Katajainen. Worst-case efficient external-memory
priority queues. In Proc. 6th Scandinavian Workshop on Algorithm
Theory, volume 1432 of Lecture Notes in Computer Science, pages 107–118.
Springer Verlag, Berlin, 1998.

[38] H. Carr, J. Snoeyink, and U. Axen. Computing contour trees in all
dimensions. Computational Geometry: Theory and Applications, 24:75–94,
2003.

[39] L. P. Chew. Constrained delaunay triangulations. Algorithmica, 4:97–108,
1989.

[40] Y.-J. Chiang, M. T. Goodrich, E. F. Grove, R. Tamassia, D. E. Vengroff,
and J. S. Vitter. External-memory graph algorithms. In Proc. ACM-
SIAM Symposium on Discrete Algorithms, pages 139–149, 1995.

[41] Y.-J. Chiang, M. T. Goodrich, E. F. Grove, R. Tamassia, D. E. Vengroff,
and J. S. Vitter. External-memory graph algorithms. In Proc. 6th
ACM-SIAM Sympos. Discrete Algorithms, pages 139–149, 1995.

[42] Y.-J. Chiang and C. T. Silva. I/O optimal isosurface extraction. In Proc.
IEEE Visualization, pages 293–300, 1997.

[43] B. S. Chlebus, A. Gambin, and P. Indyk. Shared-memory simulations
on a faulty-memory dmm. In Proc. 23rd International Colloquium on
Automata, Languages and Programming, pages 586–597, 1996.

126 Chapter 9. I/O-Efficient Resilient Algorithms

[44] B. S. Chlebus, L. Gasieniec, and A. Pelc. Deterministic computations on a
pram with static processor and memory faults. Fundamenta Informaticae,
55(3-4):285–306, 2003.

[45] C. Constantinescu. Trends and challenges in VLSI circuit reliability. IEEE
micro, 23(4):14–19, 2003.

[46] A. Danner. I/O Efficient Algorithms and Applications in Geographic
Information Systems. PhD thesis, Department of Computer Science, Duke
University, 2006.

[47] M. de Berg, P. Bose, K. Dobrindt, M. J. van Kreveld, M. H. Overmars,
M. de Groot, T. Roos, J. Snoeyink, and S. Yu. The complexity of rivers
in triangulated terrains. In Proc. of the 8th Canadian Conference on
Computational Geometry, pages 325–330, 1996.

[48] M. de Berg, O. Cheong, H. Haverkort, J.-G. Lim, and L. Toma. The
complexity of flow on fat terrains and its I/O-efficient computation. Com-
putational Geometry, In Press, 2009.

[49] B. Demsky and M. C. Rinard. Goal-directed reasoning for specification-
based data structure repair. IEEE Transactions on Software Engineering,
32(12):931–951, 2006.

[50] H. Edelsbrunner. Geometry and Topology for Mesh Generation. Cam-
bridge University Press, England, 2001.

[51] H. Edelsbrunner, J. Harer, and A. Zomorodian. Hierarchical Morse
complexes for piecewise linear 2-manifolds. In Proc. ACM Sympos.
Comput. Geom., pages 70–79, 2001.

[52] H. Edelsbrunner, D. Letscher, and A. Zomorodian. Topological persistence
and simplification. In Proc. IEEE Sympos. Found. Comput. Sci., pages
454–463, 2000.

[53] H. Edelsbrunner, D. Letscher, and A. Zomorodian. Topological persistence
and simplification. Discrete and Computational Geometry, 28(4):511–533,
2002.

[54] B. Elkarablieh, I. Garcia, Y. L. Suen, and S. Khurshid. Assertion-based
repair of complex data structures. In Proc. 22nd IEEE/ACM International
Conference on Automated Software Engineering, pages 64–73, 2007.

[55] I. Fary. On straight lines representation of planar graphs. Acta Sci. Math.
Szeged, 11:229–233, 1948.

[56] I. Finocchi, F. Grandoni, and G. F. Italiano. Optimal resilient sorting and
searching in the presence of memory faults. In Proc. 33rd International
Colloquium on Automata, Languages and Programming, volume 4051 of
Lecture Notes in Computer Science, pages 286–298. Springer, 2006.

9.7. Priority queue 127

[57] I. Finocchi, F. Grandoni, and G. F. Italiano. Designing reliable algorithms
in unreliable memories. Computer Science Review, 1(2):77–87, 2007.

[58] I. Finocchi, F. Grandoni, and G. F. Italiano. Resilient search trees. In
Proc. 18th ACM-SIAM Symposium on Discrete Algorithms, pages 547–554,
2007.

[59] I. Finocchi, F. Grandoni, and G. F. Italiano. Optimal resilient sorting
and searching in the presence of dynamic memory faults. Theoretical
Computer Science, 2009. To appear.

[60] I. Finocchi and G. F. Italiano. Sorting and searching in the presence
of memory faults (without redundancy). In Proc. 36th Annual ACM
Symposium on Theory of Computing, pages 101–110, New York, NY, USA,
2004. ACM Press.

[61] I. Finocchi and G. F. Italiano. Sorting and searching in faulty memories.
Algorithmica, 52(3):309–332, 2008.

[62] G. Franceschini. Proximity mergesort: Optimal in-place sorting in the
cache-oblivious model. In Proceedings of the 15th Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA), pages 291–299. SIAM, 2004.

[63] G. Franceschini and R. Grossi. Optimal cache-oblivious implicit dictio-
naries. In Proceedings of the 30th International Colloquium on Automata,
Languages and Programming (ICALP), pages 316–331, 2003.

[64] M. Frigo, C. E. Leiserson, H. Prokop, and S. Ramachandran. Cache-
oblivious algorithms. In Proc. IEEE Symposium on Foundations of
Computer Science, pages 285–298, 1999.

[65] J. Garbrecht and L. Martz. The assignment of drainage directions over
flat surfaces in raster digital elevation models. Journal of Hydrology,
193:204–213, 1997.

[66] M. T. Goodrich, J.-J. Tsay, D. E. Vengroff, and J. S. Vitter. External-
memory computational geometry. In Proc. IEEE Symposium on Founda-
tions of Computer Science, pages 714–723, 1993.

[67] S. Govindavajhala and A. W. Appel. Using memory errors to attack a
virtual machine. In IEEE Symposium on Security and Privacy, pages
154–165, 2003.

[68] J. Gudmundsson, M. H. Hammar, and M. J. van Kreveld. Higher order
delaunay triangulations. Computational Geometry Theory & Applications,
23(1):85–98, Jul 2002.

[69] H. Haverkort and J. Janssen. Simple I/O-efficient flow accumulation on
grid terrains. Abstract collection Workshop on Massive Data Algorithms,
Aarhus, 2009.

128 Chapter 9. I/O-Efficient Resilient Algorithms

[70] D. Howe, M. Costanzo, P. Fey, T. Gojobori, L. Hannick, W. Hide, D. P.
Hill, R. Kania, M. Schaeffer, S. St Pierre, S. Twigger, O. White, and
S. Yon Rhee. Big data: The future of biocuration. Nature, 455(7209):47–
50, September 2008.

[71] K. H. Huang and J. A. Abraham. Algorithm-based fault tolerance for
matrix operations. IEEE Transactions on Computers, 33:518–528, 1984.

[72] Intel. Intel R© CoreTM i7 Processor Extreme Edition Series and Intel R© CoreTM i7
Processor Datasheet - Volume 1. Technical report, June 2009.

[73] M. Isenburg, Y. Liu, J. Shewchuk, and J. Snoeyink. Streaming com-
putation of Delaunay triangulations. In Proceedings of SIGGRAPH,
2006.

[74] M. Isenburg, Y. Liu, J. Shewchuk, J. Snoeyink, and T. Thirion. Generating
raster DEM from mass points via TIN streaming. In M. Raubal, H. Miller,
A. Frank, and M. Goodchild, editors, Geographic Information Science
- Fourth International Conference, GIScience 2006, Münster, Germany,
September 2006., 2006.

[75] S. Jenson and J. Domingue. Extracting topographic structure from digital
elevation data for geographic information system analysis. Photogram-
metric Engineering and Remote Sensing, 54(11):1593–1600, 1988.

[76] A. Joffe. On a set of almost deterministic k-independent random variables.
Annals of Probability, 2(1):161–162, 1974.

[77] D. Kelly. Fundamentals of planar ordered sets. Discrete Math., 63(2-
3):197–216, 1987.

[78] S. Kutten and D. Peleg. Tight fault locality. SIAM Journal on Computing,
30(1):247–268, 2000.

[79] N. L. Lea. An aspect driven kinematic routing algorithm. In A. J. Parsons
and A. D. Abrahams, editors, Overland Flow: Hydraulics and Erosion
Mechanics. Chapman & Hall, New York, 1992.

[80] T. Leighton and Y. Ma. Tight bounds on the size of fault-tolerant merging
and sorting networks with destructive faults. SIAM Journal on Computing,
29(1):258–273, 2000.

[81] A. Lempel, S. Even, and I. Cederbaum. An algorithm for planarity testing
of graphs. In Theory of Graphs: Internat. Symposium (Rome 1966),
pages 215–232, New York, 1967. Gordon and Breach.

[82] W. Lorensen and H. Cline. Marching cubes: a high resolution 3d surface
construction algorithm. Comput. Graph., 21(4):163–170, 1987.

[83] P. Lyman and H. R. Varian. How much information? 2003.

9.7. Priority queue 129

[84] C. Mallet and F. Bretar. Full-waveform topographic lidar: State-of-the-art.
International Journal of Photogrammetry and Remote Sensing, 64:1–16,
January 2009.

[85] L. Mitas and H. Mitasova. Spatial interpolation. In P. Longley, M. F.
Goodchild, D. J. Maguire, and D. W. Rhind, editors, Geographic Infor-
mation Systems - Principles, Techniques, Management, and Applications.
Wiley, 1999.

[86] H. Mitasova, L. Mitas, and R. S. Harmon. Simultaneous spline interpola-
tion and topographic analysis for lidar elevation data: methods for open
source gis. IEEE Geoscience and Remote Sensing Letters, 2(4):375–379,
2005.

[87] E. Moet, M. van Kreveld, and A. F. van der Stappen. On realistic terrains.
Computational Geometry, 41(1-2):48 – 67, 2008. Special Issue on the
22nd European Workshop on Computational Geometry (EuroCG), 22nd
European Workshop on Computational Geometry.

[88] J. I. Munro and S. S. Rao. Succint representation of data structures.
In D. Mehta and S. Sahni, editors, Handbook of Data Structures and
Applications, chapter 37. CRC Press, 2005.

[89] NASA and Japan (METI). NASA, Japan release most complete topo-
graphic map of earth, June 2009.

[90] Community cleverness required. Nature, 455, 9 2008.

[91] M. H. Nodine, M. T. Goodrich, and J. S. Vitter. Blocking for external
graph searching. Algorithmica, 16(2):181–214, 1996.

[92] G. Novark, E. D. Berger, and B. G. Zorn. Exterminator: Automatically
correcting memory errors with high probability. Communications of the
ACM, 51(12):87–95, 2008.

[93] J. F. O’Callaghan and D. M. Mark. The extraction of drainage networks
from digital elevation data. Computer Vision, Graphics and Image
Processing, 28, 1984.

[94] U. F. Petrillo, I. Finocchi, and G. F. Italiano. The price of resiliency: a
case study on sorting with memory faults. Algorithmica, 53(4):597–620,
2009.

[95] S. Pettie and V. Ramachandran. Minimizing randomness in minimum
spanning tree, parallel connectivity, and set maxima algorithms. In Proc.
13th Annual ACM-SIAM Symposium on Discrete Algorithms, pages 713–
722, Philadelphia, PA, USA, 2002. Society for Industrial and Applied
Mathematics.

[96] D. K. Pradhan. Fault-tolerant computer system design. Prentice-Hall,
Inc., 1996.

130 Chapter 9. I/O-Efficient Resilient Algorithms

[97] B. Ravikumar. A fault-tolerant merge sorting algorithm. In Proc. 8th
Annual International Conference on Computing and Combinatorics, pages
440–447, 2002.

[98] G. Reeb. Sur les points singuliers d’une forme de Pfaff complétement
intégrable ou d’une fonction numérique. Comptes Rendus de L’Académie
ses Sciences, pages 847–849, 1946.

[99] M. Z. Rela, H. Madeira, and J. G. Silva. Experimental evaluation of
the fail-silent behaviour in programs with consistency checks. In Proc.
26th Annual International Symposium on Fault-Tolerant Computing, pages
394–403, 1996.

[100] M. Revsbæk. I/O efficient algorithms for batched union-find with dynamic
set properties and its applications to hydrological conditioning. Master’s
thesis, Aarhus University, Denmark, 2007.

[101] R. Sibson. Interpolating multivariate data, chapter A Brief Description of
Natural Neighbor Interpolation, pages 21–36. John Wiley & Sons, 1981.

[102] C. Silva, Y. Chiang, J. El-Sana, and P. Lindstrom. Out-of-core algorithms
for scientific visualization and computer graphics. In Visualization’02,
2002. Course Notes for Tutorial 4.

[103] R. A. Skelton. Cartography. History of Technology, 6:612–614, 1958.

[104] S. P. Skorobogatov and R. J. Anderson. Optical fault induction attacks.
In Proc. 4th International Workshop on Cryptographic Hardware and
Embedded Systems, pages 2–12, 2002.

[105] P. Soille, J. Vogt, and R. Colombo. Carving and adaptive drainage
enforcement of grid digital elevation models. Water Resources Research,
39(12):1366–1375, 2003.

[106] R. Tamassia and F. P. Preparata. Dynamic maintenance of planar
digraphs, with applications. Algorithmica, 5(4):509–527, 1990.

[107] R. Tamassia and I. Tollis. A unified approach to visibility representations
of planar graphs. Discrete & Computational Geometry, 1:321–341, 1986.

[108] R. Tamassia and J. S. Vitter. Optimal parallel algorithms for transitive clo-
sure and point location in planar structures. In SPAA ’89: Proceedings of
the first annual ACM symposium on Parallel algorithms and architectures,
pages 399–408, New York, NY, USA, 1989. ACM Press.

[109] D. Tarboton. A new method for the determination of flow directions
and contributing areas in grid digital elevation models. Water Resources
Research, 33:309–319, 1997.

[110] Tezzaron Semiconductor. Soft errors in electronic memory - a white paper.
http://www.tezzaron.com/about/papers/papers.html, 2004.

9.7. Priority queue 131

[111] A. Tribe. Automated recognition of valley lines and drainage networks
from grid digital elevation models: a review and a new method. Journal
of Hydrology, 139:263–293, 1992.

[112] J. van den Bercken, B. Seeger, and P. Widmayer. A generic approach to
bulk loading multidimensional index structures. In Proc. International
Conference on Very Large Databases, pages 406–415, 1997.

[113] R. van der Pas. Memory hierarchy in cache-based systems. Technical
report, Sun Microsystems, Sant a Clara, California, U.S.A., 2002.

[114] M. van Kreveld, R. van Oostrum, C. Bajaj, V. Pascucci, and D. Schikore.
Contour trees and small seed sets for isosurface traversal. In Proc. ACM
Annual Symposium on Computational Geometry, pages 212–219, 1997.

[115] J. J. van Zyl. The shuttle radar topography mission (srtm): a breakthrough
in remote sensing of topography. Acta Astronautica, 48(5-12):559 – 565,
2001.

[116] P. J. Varman and R. M. Verma. An efficient multiversion access structure.
IEEE Transactions on Knowledge and Data Engineering, 9(3):391–409,
1997.

[117] K. L. Verdin and J. P. Verdin. A topological system for delineation and
codification of the Earth’s river basins. Journal of Hydrology, 218:1–12,
1999.

[118] J. S. Vitter. Algorithms and Data Streams for External Memory. Foun-
dations and Trends in Theoretical Computer Science. now Publishers,
Hanover, MA, 2008.

[119] J. P. Wilson and J. C. Gallant. Terrain Analysis : Principles and
Applications. John Wiley & Sons, New York, NY, 2000.

[120] K.-C. Wu and D. Marculescu. Soft error rate reduction using redundancy
addition and removal. In Proc. 2008 conference on Asia and South Pacific
design automation, pages 559–564, 2008.

[121] J. Xu, S. Chen, Z. Kalbarczyk, and R. K. Iyer. An experimental study of
security vulnerabilities caused by errors. In Proc.International Conference
on Dependable Systems and Networks, pages 421–430, 2001.

[122] S. S. Yau and F.-C. Chen. An approach to concurrent control flow
checking. IEEE Transactions on Software Engineering, SE-6(2):126–137,
1980.

