
Perfect-Information Games with Cycles

Daniel Andersson

PhD Dissertation

Department of Computer Science
Aarhus University

Denmark





Perfect-Information Games with Cycles

A Dissertation
Presented to the Faculty of Science

of Aarhus University
in Partial Fulfilment of the Requirements for the

PhD Degree

by
Daniel Andersson

July 31, 2009





Abstract

This dissertation presents algorithmic and complexity-theoretic results on games,
puzzles and optimization. The major theme is perfect-information games played
on finite directed graphs.

• We show that Washburn’s deterministic graphical games—a natural gen-
eralization of Zermelo’s chess-like games to arbitrary zero-sum payoffs—
can be solved in almost-linear time using a comparison-based algorithm.

• We establish polynomial-time equivalence of solving several well-known
classes of zero-sum games with moves of chance: stochastic games with
terminal payoffs, mean payoffs, discounted payoffs, or parity conditions.

• Motivated by their connection to positional Nash equilibria, we investigate
the concept of strategy improvement cycles in deterministic multi-player
games with terminal payoffs. We obtain partial results and outline the
limits of this technique.

A minor theme is the complexity of puzzles, following a long tradition of
hardness results for well-known puzzle types. Hiroimono is a 600-year-old tour
puzzle wherein stones are to be collected from a grid. We show that deciding
the solvability of such a puzzle is NP-complete. A similar result is also shown
for Hashiwokakero, wherein islands are to be connected by bridges.

Finally, we consider shortest path network interdiction—destroying parts of
a network to maximize the length of the shortest path. Khachiyan et al. con-
sidered a model with vertex-local budgets of edge removals. We generalize their
model and results by adding the capability of partial interdiction of edges. We
also establish a connection to deterministic graphical games.
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Chapter 1

Introduction

1.1 Games

Game theory is the study of interactions that contain elements of competition
or conflict. Informally, a game is any situation wherein two or more decision-
makers together determine one outcome, but disagree on which outcome they
prefer. As such situations are abundant, this is clearly a very general and poten-
tially applicable concept. Game theory originated in the field of economics [58]
but has been applied to a wide variety of subjects, ranging from evolutionary
biology [53] to international relations [44].

In more detail, a game generally consists of the following basic ingredients.

1. A set of players I.

2. For each player i ∈ I, a set of strategies Si from which player i must select
one strategy.

3. A map from
∏

i∈I Si to a set of outcomes A. An element of
∏

i∈I Si is
called a strategy profile.

4. For each player, a real-valued payoff function defined on A. Each player
seeks to maximize his payoff.

This manner of specifying a game is called the normal form. Figure 1.1 presents
a concrete example of a game in normal form.

The special case of a game with two players that have totally opposing
interests, i.e., the gain of one equals the loss of the other, is called a zero-
sum game (as the payoffs sum to zero in each outcome). Many of the games
considered herein will have this property. When describing such a game, it is
sufficient to specify the payoff for one of the players, typically Player 1, whom
we then also refer to as “Max” (with Player 2 being “Min”). Even more of a
special case are win/lose/draw games; to model these, we can simply define the
payoff to a player to be 1, −1 or 0 in case he wins, loses, or there is a draw,
respectively.

When a game has been defined, we can start to ask questions about it. These
can be of a descriptive nature: Which strategies will the players select? (What
will the outcome be?) Alternatively, we can adopt the viewpoint of a single

3



4 Chapter 1. Introduction

Figure 1.1: A two-player game in normal form. Player 1 selects a row, and
Player 2 simultaneously selects a column. The first and second components
of the corresponding matrix entry is the resulting payoff to Player 1 and 2,
respectively.

Figure 1.2: A traditional Tangram puzzle: Rearrange the seven pieces on the
left to form the figure on the right.

player: If I were Player 1, which strategy should I select? These two viewpoints
are intimately related, and some thought is required to make questions such as
these mathematically well-defined.

1.2 Games vs. Puzzles and Optimization

Games are commonly associated (or confused) with puzzles. In our terminology,
games are interactive and competitive, while puzzles are solitary. Informally, in
a puzzle, your task is to search for some kind of solution that satisfies a given set
of constraints. You will know when you have found it, and you can show it to
other people to convince them that you solved the puzzle. For them, checking
whether your proposed solution is correct is a much easier task than solving
the puzzle from scratch. An example of a puzzle in this sense is a Tangram; see
Figure 1.2.

With the definition of a game given above, a “one-player game” simply
becomes another way to describe the well-known concept of an optimization
problem. A classic example is the shortest path problem: Given a graph and
two of its vertices s and t, find the shortest path from s to t. The strategies of
the corresponding one-player game are the s–t paths, and the utility function
simply gives the negated length of each path (translating minimization into
maximization).

Both puzzles and optimization problems immediately lend themselves to
fairly well-defined computational formulations: Given a puzzle, find a solution.
Given a graph, find the shortest path. For games however, this is not so im-
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mediate. We could try to mimic optimization problems: Given a game, find
an “optimal” strategy for Player 1. Of course, the term “optimal” is a priori
meaningless, since the outcome also depends on the other players, who in turn
may reason about Player 1, and so on. We will however encounter some special
cases where this term can be reasonably defined. A more puzzle-like approach
would be to define some criteria for what outcomes are “likely”, i.e., some con-
straints that a “reasonable” strategy profile should satisfy. We will consider
both of these approaches.

Best Guarantees: Maximin Strategies. Let us take the viewpoint of
Player 1 in the game in Figure 1.1. What would be a good strategy? If we
select A, then we can in the best case get payoff 5, but in the worst case, if
Player 2 selects d, we get −2. If we only care about the worst case, C is our
best choice; it guarantees a payoff of at least −1. This is called a maximin
strategy—it maximizes (among our strategies) our minimum (among Player 2’s
strategies) payoff. Although this approach may seem overly pessimistic, the
guarantee we obtain is very strong, as it holds against any opponent, even an
irrational one.

Stable Situations: Nash Equilibria. In a game, an equilibrium is a strat-
egy profile which is in some sense “stable”. Consider again the game in Figure
1.1 and suppose Player 1 chooses B and Player 2 chooses d. This strategy pro-
file, (B, d), has the following stability property: No player can obtain a better
payoff by changing his strategy (assuming all other players stay put). Such a
profile is called a Nash equilibrium. In general, a game can have any number of
equilibria, with differing payoffs.

In the case of zero-sum games, there is a connection between Nash equilibria
and maximin strategies: If a zero-sum game has a Nash equilibrium (X, y), then
X must also be a maximin strategy for Player 1 and y likewise for Player 2.
Thus, if we denote by v the payoff to Player 1 resulting from (X, y), then Player
1 can guarantee to get at least v (by choosing X), and Player 2 can guarantee
that Player 1 gets at most v (by choosing y). This unique number v is called
the value of the game. If a game has a value, maximin strategies are sometimes
referred to as optimal strategies.

Mixed Strategies. It is common to augment a game by considering mixed
strategies—essentially allowing players to randomize their choice of strategy.
Formally, a new game is defined, where the strategies of each player are all
probability distributions on his strategies in the original game. Payoffs are
defined as expectations of the payoff distributions induced in the original game.
In this context, the term pure strategy is used to describe both the strategies
in the original game and the distributions that put all probability mass in one
point. Whenever we include mixed strategies, this will be explicitly mentioned.

Von Neumann [57] proved that zero-sum games with finite strategy sets that
are augmented in this way always have a value. Nash [43] later generalized this
to the existence of equilibria in n-player games. Although these are landmark
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results in the theory of games, they will not be applicable to most of the games
we will consider, as the strategy sets will be infinite.

1.3 Algorithms and Complexity

This dissertation treats many computational problems related to games, puz-
zles, and optimization. We seek to construct efficient algorithms for solving
these problems or, failing that, establish some hardness results.

The algorithmic viewpoint we adopt is that of an “offline” problem—the
entire input (e.g., a game) is given at once to the algorithm, which then, after
some computation, produces the entire output (e.g., a maximin strategy). Our
main criterion for evaluating an algorithm is its asymptotic worst-case running
time as a function of input size. We use O, Ω, and Θ to denote upper, lower,
and tight asymptotic bounds, respectively.

Unless otherwise noted, our algorithms run on a standard random access
machine, with inputs somehow encoded as binary strings. In this case, payoffs,
ideally arbitrary real numbers, are assumed to be rational to allow for straight-
forward encoding and computation. Sometimes we consider comparison-based
algorithms, whose only access to the real numbers in their input goes through
an “oracle” that answers queries about which of two numbers is greater. In
this model, we may also study the number of such comparisons as a separate
measure of efficiency and consider trade-offs between time and comparisons
(see [12,30] for other work in this spirit).

To investigate the relative hardness of problems we use reductions—if A can
be efficiently reduced to B, then A cannot be much harder than B. Most of the
time, we will use Turing reductions (also known as Cook reductions), where A
is solved using an oracle that solves B. In our treatment of puzzles, we will use
the stricter notion of a many-one (or Karp) reduction, where an instance of A
is transformed into an instance of B having the same answer.



Chapter 2

Games on Graphs

2.1 Games with Several Steps

The normal form for games is very general, and most games, if not all, can
be put into that form. However, for many games the normal form is not the
most natural or practical. It is sometimes useful to consider models with more
structure, where strategies are not monolithic and abstract. In particular, many
games are played over time, with several actions, or moves, chosen in sequence,
perhaps alternatingly between players. During the course of play, the set of
available moves may change. A simple real-life example is Tic-Tac-Toe.

Trees. To model games with several steps, we can use the extensive form,
also known as a game tree. Figure 2.1 shows an example. The nodes of the
tree correspond to possible states of the world, called positions. Starting from
the root, the players build a path through the tree, a play, down to a terminal
position (leaf) which determines the resulting payoffs. Here, we will restrict our
attention to the case of perfect-information games—when a player is to move,
he knows the current position as well as the full history of all previous moves.

As shown in Figure 2.1, an extensive form game can be put into normal
form simply by defining the strategy set of a player to be the Cartesian product
of all sets of moves he may have to choose from. However, the size of the
corresponding normal form representation grows exponentially in the size of
the game tree.

It is easy to construct a Nash equilibrium in a game tree using the method
of backward induction [58]: For each position in a bottom-up fashion, fix a move
that maximizes the current player’s payoff, assuming future play will follow the
previously fixed moves. Figure 2.1 shows a Nash equilibrium constructed this
way.

Acyclic Graphs. A game where the same state can be reached in more than
one way (like Tic-Tac-Toe) is more conveniently represented using a directed
acyclic graph, a game graph, rather than a tree. Figure 2.2 shows an example.
In this model, a position only specifies the possible future of play, but does not
encode the full history. However, the players still remember the full history, and

7
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Figure 2.1: A two-player game played on a tree (top). Each node represents a
non-terminal position of the game, wherein the current player (indicated inside
the node) selects one of its outgoing arcs. The topmost node is the starting
position. Terminal positions are tuples specifying payoffs. In the normal form
(bottom) representation of this game, the strategy sets are Cartesian products
of sets of moves. A Nash equilibrium is indicated in bold.

may base their strategy on it. We can “unfold” the graph into an equivalent
game tree, at the cost of a potentially exponential increase in size. We can
however perform backward induction without such unfolding; we simply have
to topologically order the positions so that we can process each position after
all its successors. The Nash equilibrium thus constructed consists of strate-
gies with a special property: The move made at a position is independent of
how that position was reached. Such memory-less, or positional, strategies are
particularly easy to represent (a fixed selection of one move per position) and
analyze, and they are therefore of considerable interest. A Nash equilibrium
consisting of only such strategies will itself also be called positional; Figure 2.2
shows an example.

2.2 Cycles and Infinite Play

Looking at the directed acyclic graph representation, one may find it natural
to also consider arbitrary finite game graphs with cycles. Although this step
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Figure 2.2: A three-player game played on a directed acyclic graph (top). It
can be “unfolded” into an equivalent game tree (bottom). A positional Nash
equilibrium (and its counterpart in the tree) is indicated in bold.

might superficially seem small, it has fundamental ramifications. A cycle in the
game graph corresponds to the possibility of visiting some positions more than
once, and in general, an unbounded or even infinite number of times. Thus, the
sets of strategies become infinite (with the positional ones as a finite subset).
The play may never end, and we must decide how to interpret this eventuality.

The study of games with cycles dates back to Zermelo’s classic 1913 treat-
ment of chess [61]. In his model, any infinite play is considered a draw. In
modern terms, Zermelo set out to prove that chess has a value (i.e., either
White can guarantee to win, or Black can guarantee to win, or both players
can guarantee not to lose). Paper 1 provides a more detailed historical survey
of the “chess-like” games captured by this model. In contrast, in their seminal
treatment of games [58], von Neumann and Morgenstern explicitly forbid the
possibility of infinite play. Although they also consider chess, they model it
as a finite duration game by defining the play to immediately end in a draw
whenever a position is repeated. Of course, if players are restricted to only use
positional strategies, the two models coincide.

Payoff Models. The simplest way to handle infinite play is, like Zermelo,
to combine all infinite plays into one outcome. Without loss of generality, this
outcome is assumed to give payoff 0 to all players. This terminal payoff model
is studied in Paper 1 for zero-sum games and in Paper 3 for multi-player games.
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Figure 2.3: Zero-sum discounted-payoff game. The player to move is indicated
by vertex shape: 2 for Max and © for Min. The two positional strategies
indicated in bold give Max the payoff 8+ 9

10 ·2+ 92

102 ·6+ 93

103 ·3+ 94

104 ·2+. . . = 40175
271 .

A more general approach is to let payoffs accumulate throughout a play.
By assigning payoffs to moves rather than terminals, each player receives an
infinite stream p0, p1, p2, . . . of intermediate payoffs. Terminal positions are
typically disallowed in such models, but they can be simulated using “self-
loops”. We cannot define the total payoff p to a player simply as the sum
of all his intermediate payoffs, since this sum does not necessarily converge.
Sometimes, the limit average is used: p := lim infn→∞

1
n

∑n−1
i=0 pi, also called

the mean payoff. However, there is another type of “average” which turns out
to be both mathematically and practically motivated: the discounted sum, i.e.,
p :=

∑∞
i=0 β

ipi for some β between 0 and 1. Figure 2.3 shows an example.
There are at least three ways to interpret β: as a measure of inflation (later
payoffs are less valued due to inflation), as a measure of interest (earlier payoffs
can be invested to yield interest), or as an expectation in the presence of a
stopping probability (after each move, with probability 1−β some event occurs
that nullifies all later payoffs). Discounting can also be used in chess-like games,
where it incentivizes the players to win as quickly as possible or postpone their
loss for as long as possible [59].

A quite different method for evaluating infinite plays appears in so-called
parity games. In these win/lose games, each position has an integer priority,
and the winner is determined by the parity of the highest priority that appears
infinitely often. Parity games and many other win/lose games on graphs arose
in connection with temporal logics and model-checking problems [26].

Moves of Chance. A common extension to any game model is to add moves
of chance, i.e., positions that do not belong to any of the players, but where
“Nature” chooses a move at random. Thus, even when strategies are fixed, the
play becomes a random object (in the case of positional strategies, a Markov
chain on the positions). The payoffs are then naturally defined as expectations.
Mean-payoff and discounted-payoff games with moves of chance can naturally be
viewed as the competitive versions of infinite-horizon Markov decision processes
[47]; see [18] for a treatment from this viewpoint.

Game models that allow for moves of chance are generally called stochastic
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Table 2.1: Classification and overview of references to previous work on zero-
sum perfect-information games on graphs.

Terminal Parity Mean Discounted
Deterministic [59,61] [16,29] [2, 15] [27,63]

Stochastic [9, 41] [6, 7] [25, 39] [52]

games, with the others being deterministic. Some authors count Nature as
half a player and refer to stochastic two-player games as “21

2 -player games” [7].
Several classes of zero-sum games with both cycles and moves of chance are
studied in Paper 2.

2.3 Results

2.3.1 The Zero-Sum Case

The four different payoff models defined above together with the option of
adding moves of chance, result in a total of eight distinct classes of games,
which have all appeared in the literature under various names; see Table 2.1.
The most basic question about a zero-sum game is whether it has a value. For
all these eight classes, it turns out the answer is always affirmative and that
something even stronger is true: Each player not only has an optimal strategy,
but one that is both optimal and positional. In other words, all the games have
positional Nash equilibria, but for zero-sum games this property is more often
called positional determinacy.

Positional determinacy for chess-like games, i.e., deterministic terminal-
payoff games with payoffs in {−1, 0, 1}, was established in a line of research
started by Zermelo [61], whose arguments were later corrected and generalized
by König [36] and Kalmár [32]; see Paper 1. A more advanced model was intro-
duced in the seminal work of Shapley [52], who considered stochastic games with
discounted payoffs.1 Liggett and Lippman [39] established positional determi-
nacy for stochastic mean-payoff games by correcting a proof by Gillette [25].
Their result also applies to terminal-payoff games via a trivial reduction. For
deterministic and stochastic parity games, positional determinacy was proved
by Emerson and Jutla [16] and Chatterjee et al. [7], respectively. A special
case of stochastic terminal-payoff games was considered by Condon [9] under
the name simple stochastic games. Ehrenfeucht and Mycielski [15] considered
deterministic mean-payoff games.

In the light of these existence results, it is natural to consider the computa-
tional problem for each class: Given an explicitly represented game, compute its
value and an optimal positional strategy for each player. We call this the prob-
lem of solving a game. Sometimes, we shall talk about the value of a particular
position, which is simply the value of the (modified) game where that position
is used as the starting position. For all the games here, it is in fact possible to

1Shapley’s model actually allows for simultaneous moves. The positional determinacy of
the perfect-information case that we consider here follows as a special case of his proof.
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find positional strategies that are optimal regardless of which position is used
as the starting position.

The folklore method of retrograde analysis is used in practice to solve chess
endgames (where only a few pieces remain), but it can theoretically solve any
chess-like game in full; see Paper 1 for historical details. Washburn showed
that the generalization of chess-like games to arbitrary zero-sum payoffs, i.e.,
deterministic terminal-payoff games (by Washburn called deterministic graphi-
cal games), can also be solved in polynomial time. However, while retrograde
analysis has a running time that is linear in the total size of the game graph
(i.e., the number of positions and moves), Washburn’s algorithm has a running
time that is cubic in the number of positions. In Paper 1, we revisit Washburn’s
games to investigate whether more efficient algorithms can be constructed, with
running times closer to that of retrograde analysis. We develop almost-linear
time algorithms and study the comparison complexity of the problem, since
the sorting of payoffs turns out to play a crucial role. We show that much
sorting can be avoided by locating and focusing on the most relevant payoffs.
On the other hand, we show that to find the values of all positions, a complete
sorting is generally unavoidable. Although our algorithms constitute a signifi-
cant improvement over Washburn’s results, we leave the existence of linear time
algorithms as an intriguing open problem.

For the seven remaining classes of games, it is unknown whether they can
be solved in polynomial time. In several cases, randomized subexponential-time
algorithms are known, starting with Ludwig [41] for simple stochastic games,
whose ideas were adapted by Björklund and Vorobyov [2] for deterministic
mean-payoff games, and put in a general framework by Halman [27]. For parity
games, Jurdziński et al. [29] obtain a deterministic subexponential-time algo-
rithm using a different approach, which does not easily generalize to the other
classes. One of the most promising and widely applicable solution methods,
the Hoffman-Karp algorithm, was recently shown to require exponential time
in the worst case [22].

For all eight classes considered here, the associated decision problem “Given
a game and a threshold t, is the value at least t?” is in both NP and coNP, since
an optimal positional strategy for Player 1 or 2 shows that the answer is “yes”
or “no”, respectively (for all eight classes, the one-player version is solvable in
polynomial time by, e.g., linear programming).

There are known polynomial-time reductions between several of these classes.
In the deterministic case, solving parity games reduces to solving mean-payoff
games [26], which in turn reduces to solving discounted-payoff games [63]. In
Paper 2, we consider reductions between the stochastic classes. By general-
izing results for deterministic games and combining them with some existing
reductions, we manage to complete the picture: All four stochastic models are
actually polynomial-time equivalent, i.e., if any one of them is solvable in poly-
nomial time then all of them are. Whether any such equivalence holds between
any of the deterministic game models is an open problem. For the sake of
completeness, we untwine the tasks of computing values and constructing op-
timal strategies, and we also distinguish between unary and binary encodings
of payoffs and probabilities. We show that all these variants are polynomial-
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Figure 2.4: Non-zero-sum discounted-payoff game. The first move is chosen by
a coin-toss (“?”). The unique stationary Nash equilibrium is for Player 1 and
2 to choose the self-loop with probability 1/3 and 7/12, respectively.

time equivalent. In contrast, unary discount factors enable polynomial-time
algorithms [40].

2.3.2 The General Case

Non-zero-sum perfect-information games on graphs, with two or more play-
ers, have received less attention than their zero-sum and imperfect-information
counterparts. Raghavan and Filar recognize this in their survey on stochastic
games and suggest the perfect-information case as a promising area of study [48].

In this section we shall consider mixed strategies, i.e., strategies that use
randomization. Such strategies did not show up in our discussion about the
zero-sum games, because for those games we know that there are positional
optimal strategies, which are also optimal against any mixed strategy. We will
mainly be interested in a special type of mixed strategies. A stationary strategy
(also behavior strategy) can be seen as a randomized version of (pure) positional
strategies. Informally, a stationary strategy is memory-less, but it may use
randomization. Thus, a stationary strategy for a player can be specified as a
mapping from the positions of that player to probability distributions on the
possible moves from each position. In our terminology, “positional” becomes
synonymous with “stationary and pure”. A stationary Nash equilibrium is one
consisting only of stationary strategies.2

It follows from a general theorem by Fink [19] that all stochastic discounted-
payoff games have stationary Nash equilibria. However, a simple example by
Zinkevich et al. [62] shows, in our terminology, that such games do not always
have positional Nash equilibria, i.e., the randomization in the stationary strate-
gies of Fink is, in some sense, necessary; see Figure 2.4. It is interesting to
note that randomization in strategies is never “necessary” for the acyclic games
(they always have positional Nash equilibria). Thus, the introduction of cycles
into a model can result in a need for randomization.

Thuijsman and Raghavan [55] consider stochastic mean-payoff games and
show that although Nash equilibria can be constructed using pure history-

2Many authors instead define “stationary equilibrium” to be a profile of stationary strate-
gies that is a Nash equilibrium regardless of which position is chosen as the starting position.
This is called subgame perfection for game trees. We can simulate this stronger notion in a
stochastic game by adding a starting position that randomly moves to any other position.
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Figure 2.5: Non-zero-sum terminal-payoff game without stationary Nash equi-
libria. A (history-dependent) Nash equilibrium: Player 2 always chooses right,
and Player 1 chooses left if he is the first player to move and right otherwise.

dependent strategies, stationary Nash equilibria do not generally exist, even
for two players. A similar example, using only terminal payoffs, is shown in
Figure 2.5. However, since these counterexamples use moves of chance, this
leaves the door open for the deterministic case.

In Paper 3 we consider deterministic terminal-payoff games. Boros et al. [3,
4] have previously considered both more general and more special models. They
established some conditions that that guarantee the existence of positional Nash
equilibria (they used the term Nash-solvability), but they left the general case
open.

A natural candidate method to search for positional Nash equilibria, if they
exist, would be repeated strategy improvement: Starting from any positional
strategy profile, repeatedly pick some player who can improve his strategy and
update it, until either equilibrium is reached (no player can improve), or a
profile is repeated (the search is cycling). In the latter case, we do not find an
equilibrium, yet cannot conclude that one does not exist. However, if we could
prove that no such “improvement cycles” exist, the existence of positional Nash
equilibria would immediately follow.

Kukushkin [37,38] first considered this concept of “improvement acyclicity”
in the context of game trees. He observed that if any type of improvement
is allowed, even trees can have improvement cycles, but for more restricted
forms of improvement, where changes are only allowed along the actual play,
improvement acyclicity holds. In Paper 3, extending the work of Kukushkin,
we investigate improvement acyclicity in games on graphs. We consider various
types of restricted improvements (while maintaining the connection to posi-
tional Nash equilibria), and establish improvement acyclicity results for two
cases: acyclic game graphs and two-player games. (Of course, for the acyclic
case, positional Nash equilibria can easily be constructed using backward in-
duction.) For two-player games, the existence of positional Nash equilibria was
proved independently, using different methods, by Sørensen and Gimbert—their
proof is included in Paper 3. We also establish negative results by exhibiting
many examples of improvement cycles, showing the limitations of improvement
cycles as a tool.
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2.4 Features of Games on Graphs

In a broad sense, our line of theoretical work aims to investigate and lend
insights into how different fundamental aspects of games, their “features”, af-
fect their feasibility from a computational perspective. Two examples of such
features are the presence of cycles and moves of chance. Cycles seem to add
considerable complexity; all the games under consideration here become easy
to solve when their graph is acyclic. Regarding moves of chance, a dramatic
example is chess-like games; they are solvable in linear time, but when moves of
chance are added to the model, it is no longer known whether polynomial time
algorithms exist. One way to interpret the equivalences of Paper 2 is to say
that the presence of moves of chance seems more significant than the particular
payoff model (with the caveat that all games considered therein might turn out
to be polynomial-time solvable).

A particularly illustrative example of the intrinsic difficulty of dealing with
cycles in games is given by the problem of strategy recovery. Consider a zero-
sum terminal-payoff game with cycles. We cannot apply backward induction,
since there is no “bottom up” ordering of the positions. But the difficulty runs
deeper than that. Suppose we are generously given the value of every position
in the game and are asked to construct an optimal strategy for Player 1. We
call this the strategy recovery problem. We might try to solve this problem
by simply making any locally optimal choice at each position—let Player 1
move to any successor with the same value (at least one must exist). While
this would always work in the acyclic case, it does not generally work in the
presence of cycles. To see this, consider a king & queen vs. king endgame in
chess. Although every position is “won” for the queen-equipped player, not
all his strategies will ensure that a checkmate is actually reached. In Papers
1 and 2 we show how strategy recovery can be performed in linear time for
deterministic and stochastic terminal-payoff games, respectively. However, we
do not know whether this problem can be solved even in polynomial time for
the case of mean-payoff games—even deterministic ones.

We have chosen to focus on the high-level features of games, rather than
their internal structure (e.g., how the chess-pieces move). Although we some-
times refer to popular games like chess, this should not be interpreted as sug-
gesting that our work is motivated by practical application to these particular
games—they simply serve as well-known and (mostly) well-defined examples
used to illustrate concepts and classes of games. An alternative approach to
the study of some chess-like games appears in the field of combinatorial game
theory [1]. In that setting however, games are typically represented implicitly
(by rules, rather than an explicit graph), and the focus is on finding closed
form expressions that determine the winner, or more generally on developing
an “arithmetic of games”.





Chapter 3

NP-Complete Puzzles

3.1 Everyday Complexity

Every day, millions of people around the world encounter the puzzle section in
their morning newspaper. For many of them, solving a Sudoku or some other
pencil puzzle is their only hands-on experience with well-specified computa-
tional tasks more challenging than the basic arithmetic needed for everyday
problems. Thus, a natural question for them to ponder—How hard could it be
to solve Sudoku puzzles?—can serve as a connection between their experience
and the field of computational complexity theory. Indeed, a wide range of dif-
ferent types of popular puzzles have been studied, analyzed and classified from
a complexity-theoretic perspective; this tradition dates back to the early years
of the field. Some surveys of the large collection of such results are given by
Demaine and Hearn [13], Robertson and Munro [49], Eppstein [17], and Kendall
et al. [34].

3.2 Formalizing Puzzles

In the context of computational complexity, a problem is actually an infinite
family of instances. The question under consideration is how the resources
needed to solve the problem increase with the size of the instances. This frame-
work is not designed for making statements about the difficulty of solving any
particular instance, since we are not considering any particular algorithm.1

That we tend to agree, at least to some extent, on which instances of a puzzle
are “hard” is likely due to many of us using similar methods for solving them.
Complexity theory, on the other hand, enables us to make very general state-
ments about what can be done by any algorithm, even those we did not think
of yet.

Although many puzzle types are well-specified and sufficiently formal “out
of the box”, some require generalization or other modifications to fit the com-
putational complexity framework. For example, a traditional Sudoku puzzle is
based on a 9 by 9 grid to be filled with digits between 1 and 9, but we can easily

1However, see [5] for an attempt to formalize the intuitive notion of “hard” instances using
Kolmogorov complexity.
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consider the natural generalization with an n2 by n2 grid to be filled with num-
bers between 1 and n2 [8,60]. Similarly, traditional Tangram puzzles are based
on a fixed set of seven pieces, but we can consider arbitrary sets of polygonal
pieces in general [45, page 211]. Sometimes, like in the case of crossword puz-
zles, only part of the problem can be meaningfully formalized—the challenge of
figuring out the clues/hints does not easily lend itself to formalization, but the
combinatorial aspect of fitting overlapping words together does [45, page 211].

Puzzles are in essence search problems, and the complexity class commonly
used to capture search problems is NP [24]. However, the class NP is defined
in terms of decision problems, i.e., problems where the output is either “yes”
or “no”. Informally, a decision problem is in NP if there is a short and easily
verifiable proof that the answer is “yes” whenever this is actually the case. From
this, it is immediate for most types of puzzles that the associated solvability
problem—Given a puzzle instance, is there a solution?—is in NP; a solution,
if one exists, is an easily verifiable proof. For many types of puzzles, it turns
out that this problem is in fact NP-complete. Thus, it cannot be solved in
polynomial time, unless all problems in NP can be solved in polynomial time.
The classic NP-complete problem is the Boolean satisfiability problem: Given
a Boolean formula, is there a satisfying truth assignment?

Paper 4 studies Hiroimono, a 600-year-old type of tour puzzle where stones
must be collected from a grid [10]. We show that deciding the solvability of
a given Hiroimono puzzle is NP-complete, using an elaborate reduction from
the Boolean satisfiability problem. Paper 5 does the same for Hashiwokakero,
a more recent puzzle from Japanese puzzle publisher Nikoli Co., where is-
lands must be connected by building bridges. Therein, we reduce from an
NP-complete special case of the Hamiltonian path problem.

Some types of puzzles do not “fit” in the class NP; this is typically due to
some solutions requiring an exponentially long sequence of “steps”, as in the
case of Rush Hour [20] (getting out of a traffic jam) and Sokoban [11] (pushing
boxes in a warehouse). For these puzzles, PSPACE—the class of problems
solvable using a polynomial amount of memory—can be used instead of NP.

3.3 Realism and Relevance

At first glance, the solvability problem for puzzles may seem utterly unrelated
to the task of a real life puzzle solver: the puzzles he encounters are always
solvable! That is, the problem he solves is actually a so-called promise problem:
Given a solvable puzzle, find a solution. However, it is clear that any efficient
algorithm for this promise problem can also be used to decide the solvability:
Given any instance (with unknown solvability status) just try the algorithm
and see what it outputs (possibly an error message). If it actually outputs a
solution, which we can check in polynomial time for NP problems, then the
answer is “yes”, otherwise it is “no”. Thus, the promise of the existence of a
solution does not significantly affect the applicability of our framework; we are
still able to prove lower bounds on the complexity of the puzzle solving problem.

Another, more serious, possible objection to the “realism” of our approach
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to puzzle complexity concerns uniqueness of solutions. Most real-life entertain-
ment puzzles often come with a stronger promise: there is a unique solution.
The theory for this kind of problem is not as developed as that of NP. Valiant
and Vazirani [56] considered the unique solution version of the Boolean satisfia-
bility problem. They proved that it cannot be solved in polynomial time unless
all problems in NP can be solved by randomized polynomial-time algorithms
(which can make random choices and are correct with high probability for any
instance). To extend this result to other unique solution problems by means of
reductions, we would have to use reductions that not only preserve solvability,
but also the uniqueness of the solution, so-called parsimonious reductions.

One may also consider the corresponding problem faced by the puzzle con-
structor: Given a puzzle and a solution, decide if there are other solutions.
This “another solution” type of problem has been shown to be NP-complete for
several types of puzzles [60].

While the theory of unique solutions is interesting in its own right, its con-
tribution to the realism of our modelling should not be overestimated. The
primary reason for a magazine to reject the Hiroimono puzzles constructed by
the reduction in Paper 4 would hardly be the fact that they may have multiple
solutions, but rather that they are huge and look “strange”.

Puzzles are interesting in that they are computational problems solved for
entertainment. The complexity-theoretic study of popular puzzles does seem to
indicate something about real life puzzle solving. Most “challenging” puzzles
turn out to be NP-complete in their natural generalization. In contrast, many
puzzles intended for younger children, like finding a path through a labyrinth,
have simple polynomial time algorithms. Still, perhaps the greatest value of this
line of research lies in its potential to popularize theoretical computer science
in general, by drawing upon common experiences. The first NP-completeness
results for Tetris [14] and Minesweeper [33] received mainstream media coverage
by CNN and the BBC.2 Interestingly, the formalizations used in these results
are arguably quite unrealistic in several ways, but they nevertheless succeeded
in raising interest and curiosity among people without any prior contact with
theoretical computer science.

2Somewhat less impressively, Paper 4 was referenced in the puzzle blog of Polish news
magazine Polityka.





Chapter 4

Local Network Interdiction

4.1 Network Interdiction

Networks are ubiquitous. Some are constructed for the purpose of transporta-
tion and communication, while others, less tangible, arise from our personal
ties in the form of social networks. Consequently, much effort has been spent
on methods for designing and optimizing the use and functionality of networks.
Finding shortest paths, minimum spanning trees, and maximum flows, are all
enormously applicable problems, for which an extensive body of theory and
algorithms has been developed.

The simplest models used for optimization, like the shortest path problem,
assume that parameters, like edge weights, are fully known in advance, and
that all components of the network work reliably and consistently. Network
interdiction problems concern design and optimization on networks in the pres-
ence of disruption or destruction, like the removal of edges or vertices. Here,
we will focus on the case where the cause of this disruption is an intentionally
malicious adversary, giving the problem a game-theoretic flavour. However, the
term “network interdiction” is sometimes also used for models with stochastic
or other non-strategic causes such as natural disasters, wear and tear, or human
error. Figure 4.1 shows a simple example of how disruption can affect network
usability.

4.2 History and Models

The study of network interdiction problems can be traced back at least to
the work by Ford and Fulkerson on the max-flow/min-cut problem, which was
motivated by interdiction of enemy railway networks [51]. In a network with
source s, sink t and unit capacities, the minimum cut problem simply asks
how many edges need to be removed to disconnect s from t. With arbitrary
capacities, we can consider a model where capacities are decreased: Given a
“budget” of total capacity that can be removed, choose where to spend this
budget to minimize the resulting maximum flow. Again, the optimal choice is
to reduce capacities across the minimum cut.

The commonly used model is a two-stage perfect-information game: The
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Figure 4.1: An example of network interdiction. Removing the crossed edges
increases the length of the shortest path from 21 to 26.

first player, called Interdictor, modifies the network subject to some given bud-
get constraints, and then the second player, called User or Operator, performs
some optimization on the modified network. Interdictor seeks to maximize the
minimum cost, or equivalently, minimize the maximum utility, for User. This
can be seen as a zero-sum case of the classic Stackelberg leader/follower com-
petition model [54].

Network interdiction problems have received considerable attention in the
military operations research community. The seminal work of McMasters and
Mustin [42], and later, Philips [46], considered minimizing the maximum flow.
Another common model is the maximization of the shortest path; see Israely
and Wood [28]. For the models used in applied operations research, the solu-
tion method typically involves modelling the problem as a mixed integer linear
program, which is then solved using specially tailored heuristics. The worst
case running time of the algorithms is typically super-polynomial. For those
models, this is most likely unavoidable, since the problems tend to be NP-hard
even in a simple form. For instance, the following simple version of shortest
path interdiction is NP-hard [50]: Given an s-t network, a budget k, and a
target l, decide whether Interdictor can remove k edges so that the length of
the shortest s-t path becomes at least l. Furthermore, Khachiyan et al. [35]
show that the length l is NP-hard to approximate within a factor less than 2.
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In Paper 6, following Khachiyan et al., we adopt an algorithmic viewpoint
that asks “What models are amenable to worst-case efficient algorithms?”.

4.3 Local Budgets

Khachiyan et al. [35] considered a version of shortest path interdiction on
weighted directed graphs where the budgets of Interdictor are local to each
vertex. That is, for each vertex v, Interdictor has a separate budget restricting
how outgoing edges from v may be removed. A simple type of budget would
be a number k(v) for each vertex, specifying how many outgoing edges may be
removed, but Khachiyan et al. also considered the more general case with each
budget specified as a family of all “affordable” subsets of the outgoing edges.
They showed that with such local budgets, optimal choices for Interdictor can
be computed in polynomial time using a modified Dijkstra’s algorithm.

In [35], the following example is used as an illustration: Each edge (u, v) has
an associated probability p(u, v) that contraband smuggling from city u to city
v can be carried out undetected. At each vertex, the local authorities can choose
some outgoing connections for intensive monitoring that catches all smuggling
(arguably, the local authorities might be more interested i monitoring incoming
edges instead of outgoing, but the model can easily be changed accordingly). If
the local authorities are working together (but with separate budgets) towards
the common goal of preventing smuggling between a source and a sink, then
we can model this as a shortest path interdiction problem with vertex-local
budgets by defining the weight of an edge (u, v) as − log p(u, v).

In Paper 6 we extend the model of Khachiyan et al. in two directions. First,
we add the capability of partial interdiction, i.e., instead of just removing edges,
Interdictor can choose how much to increase their weight (in the example, de-
crease the probability of successful smuggling). Also, we consider more general
ways for User to evaluate his paths. In the above example, there was a simple
transformation from probabilities to additive weights, but this may not always
be possible. Our extended model can also be efficiently solved using a modified
Dijkstra’s algorithm.

An interesting problem for future research is to investigate whether other
greedy graph algorithms, such as Prim’s algorithm for constructing minimum
cost spanning trees, can be similarly extended to handle some form of local
interdiction. Also for minimum spanning trees, the global budget version is
known to be NP-hard [21].

4.4 Connections to Games on Graphs

As noted in [35], there are connections between shortest path interdiction prob-
lems and some of the zero-sum games on graphs described in Chapter 2. Indeed,
in both cases are the two players influencing the formation of a path. If at each
vertex, Interdictor may either remove no edges or all but one edge (i.e., selecting
which one to keep), the correspondence becomes even more clear—each node is
completely controlled by either User or Interdictor.
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Figure 4.2: Reducing a (negative) deterministic graphical game (left) to a short-
est path interdiction problem with local budgets (right). On the left, the player
to move is indicated by vertex shape: 2 for Max and © for Min. On the right,
the number in each vertex is the number of outgoing edges Interdictor may
remove.

Figure 4.2 shows a deterministic graphical game and an equivalent shortest
path interdiction problem. Forming a cycle (i.e., infinite play) in the game,
corresponds to Interdictor disconnecting s from t in the interdiction instance—
his most preferred outcome. Therefore, this immediate reduction only works
when all terminal payoffs in the game are negative. In the reduction, these
payoffs are all shifted by the same amount (10 in Figure 4.2).

However, Paper 1 shows how the problem of solving any deterministic graph-
ical game can be reduced, in linear time, to solving games where all terminal
payoffs have the same sign. Thus, we obtain a linear-time reduction also from
the general case.

Bottlenecks. Note that the s-t paths in the network produced by the above
reduction only have a single non-zero weight. Thus, instead of minimizing
total weight, User would get the same result if he wanted a bottleneck shortest
path—one that minimizes the heaviest edge along the path.

Bottleneck variants have been considered for many classic optimization
problems on graphs [23], and often allow faster algorithms than their “total
sum” counterparts. This turns out to be the case also for interdiction with
local budgets. Paper 6 shows how the techniques of Gabow and Tarjan [23] can



4.4. Connections to Games on Graphs 25

be applied to yield an almost-linear time algorithm for bottleneck interdiction
with local budgets of edge removals. The time bound matches the best known
bound for the standard bottleneck shortest path problem in directed graphs
(for undirected graphs, linear time algorithms are known [31]).
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Paper 1

Deterministic Graphical
Games Revisited

Daniel Andersson, Kristoffer Arnsfelt Hansen
Peter Bro Miltersen, Troels Bjerre Sørensen

Abstract. Starting from Zermelo’s classical formal treatment of chess, we
trace through history the analysis of two-player win/lose/draw games with per-
fect information and potentially infinite play. Such chess-like games have ap-
peared in many different research communities, and methods for solving them,
such as retrograde analysis, have been rediscovered independently.

We then revisit Washburn’s deterministic graphical games, a natural gener-
alization of chess-like games to arbitrary zero-sum payoffs. We study the com-
plexity of solving deterministic graphical games and obtain an almost-linear
time comparison-based algorithm for finding optimal strategies in such games.
The existence of a linear time comparison-based algorithm remains an open
problem.

This paper is to appear in Journal of Logic and Computation. A shorter version
appeared in Proceedings of the Fourth Conference on Computability in Europe
(CiE 2008), LNCS 5028.
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1 Background

The most natural thing to do in the presence of potentially infinite
play seems to be to simply permit it. . .

—Alan Washburn [39]

1.1 Zermelo’s Treatment of Chess

In 1913, Zermelo published his classical treatment of chess [40, 32]. In modern
terms, Zermelo modelled chess using a finite directed graph, whose vertices are
the possible positions of the game, and whose arcs correspond to possible moves.
Here, a position means not only the configuration of the board, but also which
player is to move (and other state information regarding castling, en passant
moves etc.). Positions where play ends, i.e., terminal positions, are the sinks
of the graph. Each such position is labelled with 1,−1, or 0, according as the
position is a win for White, a win for Black, or a draw (stalemate), respectively.
This number is interpreted as a payment from Black to White, also known as
White’s payoff. White seeks to maximize this payoff, while Black seeks to
minimize it. In game-theoretic terms, chess is a zero-sum game. Accordingly,
we will also use the names Max and Min for White and Black, respectively. The
non-terminal positions, where a move (i.e., an outgoing arc) must be selected,
are partitioned between the two players, according as who is to move. The
players construct a path, starting from the designated starting position and
consisting of the arcs selected during the play. It is possible that the play never
ends, in which case the outcome is defined to be a draw, i.e., the payoff is 0.
Infinite play is also consistent with modern FIDE rules; the “50-move” rule
and the “threefold repetition” rule may permit a player to request a draw, but
they do not automatically terminate play. Following Ewerhart [11], we will call
games of this general form chess-like games (the game of chess as considered
by Zermelo corresponding to one particular graph).

Zermelo’s main motivation was to give mathematically rigorous definitions
of the concepts now known as “values” of positions and “optimal” strategies.
Zermelo set out to prove the following theorem: For each position, either White
can force a win (in modern terminology, defined formally below, the lower value
of the position is 1), or Black can force a win (the upper value of the position
is −1), or neither player can force a win, i.e., each player can force a draw or
better (both the lower and the upper value of the position is 0).

A crucial lemma used in his attempted proof was the following: If a player
can force a win, then he can guarantee this to occur within a number of moves
less than the total number of positions. In his proof of this lemma, Zermelo
implicitly assumes that if a position is visited twice during a play, the opponent
will choose the same move the second time. Thus, he fails to take into account
the possibility of history-dependent behavior. This flaw was later pointed out
by König, and a correct argument was given in [24], completing the proof of
Zermelo’s theorem.
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Strategies and Values. While Zermelo’s theorem established the existence
of values, the statement does not provide much information about the nature of
optimal strategies. In fact, Zermelo and König did not formally define strate-
gies, making it difficult to argue correctly about “optimal play” and contribut-
ing to later confusion regarding what was actually proved by Zermelo [32, 11].
A rigorous definition of strategies was contributed by Kalmár [18] in a more
general setting including all chess-like games. A strategy for a player is any plan
that specifies how he will choose the outgoing arc whenever he is to move. In
the modern understanding of the general term “strategy”, such a choice may
depend on the history of play (i.e., how the current position was reached) and
may use randomization. Strategies that do not use any of these two features are
called pure positional strategies. Thus, a pure positional strategy for a player
is simply a selection of one fixed arc for each of his positions.

The lower value of a position q is the supremum of numbers L such that Max
has a strategy that ensures a payoff of at least L against any counter-strategy
of Min when play starts from q. Similarly, the upper value of a position q is the
infimum of numbers U such that Min has a strategy that ensures a payoff of at
most U against any counter-strategy of Max when play starts from q. When
the upper and lower values are equal, this quantity is simply called the value
of the position. With this terminology, Zermelo’s theorem can be rephrased:
“Each position in a chess-like game has a value”.

A strategy for Max (Min) is called optimal for a position q if it guarantees
a payoff of at least (at most) the lower (upper) value of q against any counter-
strategy when play starts from q. Kalmár showed that each player has single
pure positional strategy that is optimal for all positions. A strategy with this
property is simply called optimal.

More extensive surveys of these early works of Zermelo, König and Kalmár
are given by Schwalbe and Walker [32] and Ewerhart [11]. Neither the origi-
nal works, nor these surveys, consider the problem of efficiently constructing
optimal strategies or computing values. This is the main concern of this paper.

Weak and Strong Solutions. In our computational setting, we will make
the following distinction.

• A weak solution is the value of the specified starting position v0 and for
each player a pure positional strategy that is optimal for v0.

• A strong solution is a list of the values of all positions and for each player
a pure positional strategy that is optimal for all positions.

In this paper, we consider the computational problem of finding a weak or
strong solution to a game given explicitly as a graph.

The difference between weak and strong solutions is analogous to the dif-
ference between the notions of Nash equilibria and subgame-perfect equilibria
defined for finite extensive-form games (see, e.g., [37]). In fact, when the game
graph of a chess-like game is a tree, this correspondence becomes completely
rigorous: The weak solutions of the chess-like game are exactly the Nash equi-
libria of the extensive form game defined by that tree, and the strong solutions
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are exactly the subgame-perfect equilibria. Figure 1 illustrates that the distinc-
tion is not inconsequential. In the weak solution on the left, Max (if he gets

Min

Max0

0 1

v0

0 Min

Max0

0 1

v0

0

1

Figure 1: The left solution is weak, the right is strong.

to move) is content to achieve payoff 0, the value of the game, even though he
could achieve payoff 1.

We shall say that we weakly (resp. strongly) solve a given game when we
compute a weak (resp. strong) solution to the game. Note that when talking
about strong solutions, the starting position is irrelevant and does not have to
be specified.

Some simple examples of chess-like games are given in Figure 2. In (a), the
unique strong solution is for Min to choose right and for Max to choose left.
Thus, the outcome is infinite play. In (b), the unique strong solution is for Min
to choose right and for Max to choose right. The values of both positions are
1, but we observe that it is not a sufficient criterion for optimal play to choose
a position with at least as good a value as your current position. In particular,
according to this criterion, Max could always choose left, but this would lead
to infinite play and a payoff of 0, which is a suboptimal outcome for Max.

1.2 Algorithms Solving Chess-Like Games

It is a common misconception [32, 11] that Zermelo used the method of back-
ward induction to solve chess. This method computes values in a “bottom-up”
fashion, starting from the terminals and ensuring that any position is evaluated
before its predecessors. Clearly, this is only possible for acyclic game graphs.
Backward induction was first given formal treatment by von Neumann and Mor-
genstern [38] in 1944. They explicitly disallow the possibility of infinite play in
their treatment of games [38, page 58].

Nevertheless, it is possible to reduce any chess-like game to a finite duration
game, which can then be solved using backward induction: The positions of

Min Max
1 −1

Min Max
1

(a) (b)

Figure 2: (a) Infinite play (b) All values are 1, but not all strategies are optimal
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the finite game are all those partial plays of the original game that do not
contain repeated positions or end at their first repeated position. Arcs are
defined in the obvious way. Hence, there are two types of terminal positions:
those partial plays actually being complete plays in the original game—these
are assigned the corresponding payoffs—and those partial plays ending at their
first repeated position—these are assigned the payoff zero. It is easy to verify
that the initial position of the game thus constructed has the same value as the
initial position of the original game. Note that this reduction blows up the size
of the game graph exponentially.

The backward induction algorithm has been the basis of a range of more
refined algorithms that evaluate typical acyclic games using time sublinear in
the size of the game graph (the number of positions and arcs). Sublinear time
is relevant when the game graph is represented implicitly (by the rules of the
game) rather than explicitly, and this is often the case in the practical applica-
tions. Examples of such possibly sublinear-time algorithms include α-β pruning
[23] and A∗ [16]. The challenge of generalizing these techniques to game graphs
with cycles has been called “the graph history interaction problem” in the AI
literature [28, 20]. This challenge has been addressed to the extent that the
value of, e.g., Checkers has been determined [31]—it is a draw. However, our
main focus in this paper is on the case of explicitly represented game graphs and
worst case complexity bounds. In this setting, a different bottom-up approach
is needed to handle games with potentially infinite play: retrograde analysis.

Retrograde analysis works by successively labelling positions with their val-
ues and coloring arcs green (“optimal”) or red (“redundant”). The green arcs
will form the optimal strategies. Initially, only terminal positions are labelled
with their values and no arcs are colored. Then, we repeatedly pick an uncol-
ored arc (u, v) with u unlabelled and v labelled with a non-zero label. Without
loss of generality, assume that this label is 1 (the case of −1 is handled sym-
metrically).

• If u belongs to Max, we color (u, v) green and label u with 1.

• If u belongs to Min, there are two cases: If (u, v) is the only uncolored
outgoing arc from u, then we color (u, v) green and label u with 1. If
there are other uncolored outgoing arcs from u, then we color (u, v) red.

When, eventually, no such arc (u, v) exists, then for each unlabelled position, we
arbitrarily color one of its uncolored outgoing arcs green and label the position
with 0.

The correctness of this algorithm can be established by a proof by induction
that the following three-part invariant is maintained.

1. Each non-terminal labelled position has exactly one outgoing green arc,
and each unlabelled position has at least one outgoing non-red arc.

2. For any red arc (u, v), the position v is labelled and the owner of u prefers
0 to the label of v.

3. For any player, consider a strategy that never uses red arcs and always
uses the green arc at labelled positions. For each labelled position u, such
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a strategy guarantees the player a payoff at least as good as the label of
u when play starts from u.

Like backward induction, retrograde analysis can be performed in time linear
in the size of the game graph.

The above argument not only proves that the algorithm correctly and ef-
ficiently computes values and optimal strategies, but it also proves that these
objects exist. We want to emphasize that this is arguably a simpler proof than
that of Kalmár (see, e.g., the exposition by Ewerhart [11]).

The term retrograde analysis originated in the context of a type of chess
puzzle where one must determine which moves could lead to a given (seemingly
inexplicable) position. Such a puzzle is called a retro. Of course, the entire
above algorithm is not used in this case, only the basic operation of following
an incoming arc to a given position.

While it is theoretically possible to solve the entire game of chess using
retrograde analysis, the game graph is much too large for this to be practical.
However, many endgames of chess, where only a few pieces remain, have been
completely solved using computers. The first published example is from 1970
by Ströhlein [35] (see also [27]). As computing power increased, more and more
interesting endgames were solved [36, 34]. Later findings have contradicted
many conventional beliefs based on experience and heuristics [34].

Ströhlein references Knuth [21, page 270] for the method used to solve the
endgames. This reference is to an exercise wherein Knuth describes the princi-
ple of retrograde analysis (without using that term) but leaves it to the reader
to devise an efficient implementation (and prove its correctness). Stiller [34]
credits Bellman [4] as the first to propose the use of retrograde analysis by
computers to solve chess endgames. While Bellman does discuss solving chess
endgames by dynamic programming, in particular the possible benefits of de-
composing game graphs into their strongly connected components, he does not
actually describe the necessary retrograde analysis step, nor does he mention
that term or provide any reference. Thus, it appears that both Knuth and Bell-
man considered the basic operation of retrograde analysis to be part of folklore.
Several later authors outside the chess solving community have described retro-
grade analysis without reference to that name or to any previous appearances.
For instance, Immerman [17] uses retrograde analysis to solve the “alternating
graph reachability problem”, and Condon [9] uses it to solve a chess-like special
case of her more general “simple stochastic games”.

1.3 Deterministic Graphical Games

Washburn [39] considered a natural generalization of chess-like games, where
terminal positions may have arbitrary zero-sum payoffs. Infinite play is still
interpreted as a zero payoff. Washburn named this class deterministic graphical
games. Thus, chess-like games are deterministic graphical games with payoffs
from the set {−1, 0, 1}. The term “graphical” refers only to the fact that the
positions and moves can be seen as the vertices and arcs of a directed graph,
possibly containing cycles, in contrast with the trees that are commonly used to
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model games of finite duration. There is no relation to a more recent use of the
term “graphical games” that refers to a succinct representation for multi-player
games [19].

The definitions of values and optimal strategies presented in Section 1.1
generalize verbatim to the case of deterministic graphical games. However, it
is not clear, a priori, that the corresponding existence results similarly general-
ize. To establish such existence results, Washburn recognizes a link between his
simple extension of chess-like games and the vast literature on so-called stochas-
tic games originating in Shapley [33]. He attributes the proofs of existence of
values and optimal positional strategies to Everett [10]. In fact, this attribu-
tion is arguably incorrect. Everett considers a more general class of games, and
while the games in this class do have values, these values cannot be strategically
guaranteed by the players, but only approximated arbitrarily well. However,
the existence of optimal strategies for deterministic graphical games does follow
from a general theorem of Liggett and Lippman [25], who corrected a proof of
Gillette [13].

Washburn [39] gave an algorithm for computing a strong solution to a de-
terministic graphical game. Washburn’s algorithm contains some elements of
retrograde analysis, but its running time is cubic in the number of positions.
The goal of the second part of this paper is to construct more efficient algo-
rithms, with time bounds closer to those achievable for chess-like games.

In [39], Washburn also considered a discounted version of deterministic
graphical games, where the payoff at a terminal depends on the number of
steps taken to reach it. This was later generalized by Baston and Bostock [3].
We will not consider such variants here.

Interesting natural examples of deterministic graphical games have been
solved by computers in practice. Awari is a game in the mancala family, where
the objective is to capture more stones than the opponent. It can be modelled
as a deterministic graphical game with payoffs in the range [−48, 48]. Romein
and Bal [30] strongly solve awari—it is a draw. However, to reduce the number
of states, they do not model it as a deterministic graphical game; they do
not include the current capture balance as part of the state, so payoffs are
instead accumulated throughout a play. They then make several passes of a
variant of retrograde analysis through the entire database, one for each possible
payoff. We note that their method leads to an algorithm for strongly solving
deterministic graphical games in Θ(mn) time, where m is the number of arcs
and n is the number of terminals.

1.4 Other Models

The study of more general two-player zero-sum games of infinite duration has
generated considerable interest. Within the computer science community, much
of the interest is due to their applicability to model-checking [14]. The simple
game models presented herein can be augmented in several ways. One can
introduce moves of chance, e.g., positions where a successor is chosen by a coin-
toss, as in Condon’s simple stochastic games [9]. Another extension is to assign
payoffs to non-terminal positions, and have payoffs accumulate throughout an
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infinite play, either as a limit average or a discounted average [41]. In both of
these models, the games possess optimal pure positional strategies, but it is a
long-standing open problem whether they can be solved in polynomial time,
although several subexponential algorithms are known [26, 15, 6] and many
equivalences have been established [25, 41, 8, 2].

Chess-like games share some features with the loopy games studied in the
field of combinatorial game theory [5]. However, in that setting, the focus is
on developing a theory for the composition of many games into one—a calculus
of games. This was originally inspired by the endgames of Go, where several
non-interacting parts may appear.

2 New Results

We consider the computational problems of finding a weak or a strong solution
to a given deterministic graphical game.

We observe below that if a list with the terminals ordered by payoff is given
as additional input, optimal strategies can be found in linear time, as in the
case of retrograde analysis. From this it follows that a deterministic graphical
game with n terminals and m arcs in the graph can be strongly solved in
time O(n log n + m) by a comparison-based algorithm. The main question we
approach in this paper is the following:

Main Question. Can a deterministic graphical game be (weakly
or strongly) solved in linear time by a comparison-based algorithm?

We believe this to be an interesting question, both in the context of solving
infinite duration games (deterministic graphical games being a very simple yet
non-trivial natural variant of the general problem) and in the context of the
study of comparison-based algorithms and comparison complexity. This paper
provides neither a positive nor a negative answer to the question, but we obtain
a number of partial results, described below.

Throughout this paper we consider deterministic graphical games with n
denoting the number of terminals (i.e., number of payoffs) and m denoting the
total size (i.e., number of arcs) of the graph defining the game. We can assume
m ≥ n, as terminals without incoming arcs are irrelevant.

Strategy Recovery in Linear Time. The example of Figure 2(b) shows
that it is not completely trivial to obtain a strong solution from a list of values
of the positions. We show that this task can be done in linear time, i.e., time
O(m). Thus, when constructing algorithms for obtaining a strong solution, one
can concentrate on the task of computing the values Val(u) for all u. Similarly,
we show that given the value of just the starting position, a weak solution to
the game can be computed in linear time.
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The Number of Comparisons. When considering comparison-based algo-
rithms, it is natural to study the number of comparisons separately from the
running time of the algorithm. By an easy reduction from sorting, we show
that there is no comparison-based algorithm that strongly solves a given game
using only O(n) comparisons. In fact, Ω(n log n) comparisons are necessary.

In contrast, Mike Paterson (personal communication) has observed that
a deterministic graphical game can be weakly solved using O(n) comparisons
and O(m log n) time. With his kind permission, his algorithm is included in
this paper. This also means that for the case of weak solutions, our main
open problem cannot be resolved in the negative using current lower-bound
techniques, as it is not the number of comparisons that is the bottleneck.

Our lower bound for strong solutions uses a game with m = Θ(n log n) arcs.
Thus, the following interesting open question concerning only the comparison
complexity remains: Can a deterministic graphical game be strongly solved
using O(m) comparisons? If the answer turns out to be “no”, it would resolve
our main open problem for the case of strong solutions.

Almost-Linear Time Algorithm for Weak Solutions. As stated above,
Mike Paterson has observed that a deterministic graphical game can be weakly
solved using O(n) comparisons and O(m log n) time. We refine his algorithm to
obtain an algorithm that weakly solves a game using O(n) comparisons and only
O(m log logn) time. Also, we obtain an algorithm that weakly solves a game in
time O(m+m(log∗m− log∗ m

n )) but uses a superlinear number of comparisons.
For the case of strongly solving a game, we have no better bounds than those
derived from the simple algorithm described in Section 3, i.e., O(m + n log n)
time and O(n log n) comparisons. Note that the bound O(m + m(log∗m −
log∗ m

n )) is in fact linear in m whenever m ≥ n log log . . . log n for a constant
number of ’log’s. Hence it is at least as good a bound as O(m + n log n), for
any setting of the parameters m,n.

3 Preliminaries

Definition 1. A deterministic graphical game (DGG) is a directed graph with
vertices partitioned into sets of non-terminals VMin and VMax, which are game
positions where player Min and Max, respectively, chooses the next move (arc),
and terminals T , where the game ends and Min pays Max the amount specified
by p : T → R. There is a specified starting position v0.

For simplicity, we will assume that terminals have distinct payoffs, i.e., that
p is injective. We can easily ensure this by artificially distinguishing terminals
with equal payoffs in some arbitrary (but consistent) fashion. We will also
assume that m ≥ n, since terminals without incoming arcs are irrelevant.

Definition 2. We denote by ValG(v) the value of position v in the game G.

For now, we will focus on computing values of positions. We shall later
see how to construct optimal strategies from these values. The definitions of a
strong and a weak solution are as stated in Section 1.1.
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The retrograde analysis algorithm described in Section 1.2 can be extended
to DGGs by adding the following selection criterion: Among all candidate arcs
(u, v), we choose one that maximizes the absolute value of the label of v. The
algorithm thus obtained will be referred to as generalized retrograde analysis.

To extend our correctness proof, we must simply add to part 3 of the invari-
ant: “Also, for each red arc (u, v) with u belonging to the player, the strategy
guarantees the player a payoff at least as good as the label of v.” For chess-like
games, this property follows from part 2 of the invariant.

For an efficient implementation, we can first order all terminals by payoff
in a list. Then, starting from the most positive or most negative terminal in
the list, we repeatedly analyze incoming arcs and propagate labels whenever
possible. After this, we can remove the terminal from the list, and repeat the
process. This gives the following.

Proposition 1. Given a DGG and a permutation that orders its terminals, we
can find a strong solution to the game in linear time.

We shall refer to this as the sorting method for strongly solving DGGs: First
sort the payoffs, and then apply Proposition 1.

Corollary 1. A DGG with m arcs and n terminals can be strongly solved in
O(m+ n log n) time.

We will be interested in reducing the number of terminals in a game. To
that end, we introduce the notion of merging terminals.

Definition 3. To merge a terminal s into another terminal t is to reconnect
all incoming arcs of s to t and then remove s. Two terminals are adjacent if
their payoffs have the same sign and no other terminal has a payoff in between.

The following lemma states the intuitive fact that when we merge two adja-
cent terminals, the only non-terminals affected are those with the corresponding
values, and they acquire the same value.

Lemma 1. If G′ is obtained from the DGG G by merging a terminal s into an
adjacent terminal t, then any optimal strategy in G is also optimal in G′, and
for each non-terminal v, we have

ValG′(v) =
{

ValG(v) if ValG(v) 6= p(s),
p(t) if ValG(v) = p(s).

(1)

Proof. Assume that 0 < p(s) < p(t) (the other cases are similar), and let σ and
τ be optimal strategies in G for Max and Min, respectively. It is easy to verify
the following for any choice of non-terminal starting position v.

• If ValG(v) ≥ p(t), then σ ensures ValG(v) or more in both G and G′, and
τ ensures ValG(v) or less in both G and G′.

• If ValG(v) = p(s), then σ ensures p(s) or more in G, hence p(t) or more
in G′, and τ ensures p(s) or less in G, hence p(t) or less in G′.
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Figure 3: Coarsening by merging {−4,−1} and {2, 3, 5}.

• If ValG(v) < p(s), then σ ensures ValG(v) or more in both G and G′, and
τ ensures ValG(v) or less in both G and G′.

By repeatedly merging adjacent terminals, we can merge a set of terminals
into one. We call this process coarsening. By Lemma 1, which describes the
relation between the original game and the resulting coarse game, the order in
which the terminals in a set are merged will be irrelevant. Figure 3 shows an
example of this.

Lemma 2. The signs of the values of all positions in a given DGG can be
determined in linear time.

Proof. Merge all terminals with positive payoffs into one, do likewise for those
with negative payoffs, and then solve the resulting coarse game by generalized
retrograde analysis. By Lemma 1, the values in the coarse game will have the
same sign as the corresponding values in the original game.

Clearly, arcs between positions with different values cannot be part of a
strong solution to a game. From this, the following lemma is immediate.

Lemma 3. In a DGG, removing an arc between two positions with different
values does not affect the value of any position.

Lemma 2, Lemma 3, and symmetry together allow us to restrict our at-
tention to games where all positions have positive values, as will be done in
subsequent sections.

Proposition 2. Given the value of the starting position of a DGG, a weak
solution can be found in linear time. If the values of all positions are known, a
strong solution can be found in linear time.

Proof. In the first case, let z be the value of the starting position v0. We
partition the payoffs in at most five intervals: (−∞,min(z, 0)), {min(z, 0)},
(min(z, 0),max(z, 0)), {max(z, 0)} and (max(z, 0),∞). We merge all terminals
in each of the intervals, obtaining a game with at most five terminals. A strong
solution for the resulting coarse game is found in linear time by generalized
retrograde analysis. The pair of strategies obtained is then a weak solution to
the original game, by Lemma 1.
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Figure 4: Implementing a sorting network by a deterministic graphical game.

In the second case, by Lemma 3, we can first discard all arcs between posi-
tions of different values. This disintegrates the game into smaller games where
all positions have the same value. We find a strong solution to each of these
games in linear time using generalized retrograde analysis. The union of these
solutions is a strong solution to the original game, by Lemma 3.

4 Solving Deterministic Graphical Games

4.1 Strongly

For solving DGGs in the strong sense, we currently know no asymptotically
faster method than completely sorting the payoffs. Also, the number of com-
parisons this method performs is, when we consider bounds only depending on
the number of terminals n, optimal. Any sorting network [22] can be imple-
mented by an acyclic DGG, by simulating each comparator by a Max-vertex
and a Min-vertex. Figure 4 shows an example of this. Thus, we have the
following tight bound.

Proposition 3. Strongly solving a DGG with n terminals requires Θ(n log n)
comparisons in the worst case.

Implementing the asymptotically optimal AKS-network [1] results in a game
with Θ(n log n) positions and arcs. Thus, it is still consistent with our current
knowledge that a DGG can be strongly solved using O(m) comparisons.

4.2 Weakly

The algorithms we propose for weakly solving DGGs all combine coarsening of
the set of payoffs with generalized retrograde analysis. By splitting the work be-
tween these two operations in different ways, we get different time/comparison
trade-offs. At one extreme is the sorting method; at the other is the follow-
ing algorithm due to Mike Paterson (personal communication). As noted in
Section 3, we can assume that all positions have positive values.

Algorithm. Given a DGG G with m arcs, n terminals, and starting position
v0, do the following for i = 0, 1, 2, . . .

1. Partition the current set of ni terminals around their median payoff.
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2. Solve the coarse game obtained by merging the terminals in each half.

3. Remove all positions that do not have values in the half containing ValG(v0).

4. Undo the merging of step 2 for the half containing ValG(v0).

When only one terminal remains, return its payoff as the value of v0.

Analysis. By Lemma 1, solving the coarse game correctly identifies which
half of the terminals contains the value of v0, and by Lemma 3, removing the
positions in step 3 does not affect the remaining positions.

Step 1 can be performed in O(ni) time (and comparisons) using the algo-
rithm of Blum et al. [7]. Step 2 takes O(m) time using generalized retrograde
analysis. Since ni is halved in each step, the number of iterations is O(log n),
and the total running time is O(m log n)—worse than the sorting method. How-
ever, the number of comparisons is O(n + n/2 + n/4 + . . .) = O(n), which is
optimal.

4.2.1 O(n) Comparisons and O(m log log n) Time

To improve the running time of Paterson’s algorithm, we stop and solve the
remaining game using the sorting method as soon as ni log ni ≤ n. This final
step takes O(m) time and O(n) comparisons.

The number of iterations becomes O(log n − log f(n)), where f(n) is the
inverse of n 7→ n log n, and since this equals O(log log n) we have the following.

Theorem 1. A DGG with m arcs and n terminals can be weakly solved in
O(m log logn) time and O(n) comparisons.

4.2.2 Almost-Linear Time

We can balance the partitioning and generalized retrograde analysis to achieve
an almost-linear running time, by a technique similar to the one used by Gabow
and Tarjan [12] and later generalized by Punnen [29]. Again, we assume that
all positions have positive values.

Algorithm. Given a DGG G with m arcs, n terminals, and starting position
v0, do the following for i = 0, 1, 2, . . .

1. Partition the current set of ni terminals into groups of size at most ni2
−m

ni .

2. Solve the coarse game obtained by merging the terminals in each group.

3. Remove all positions having values outside the group of ValG(v0).

4. Undo the merging of step 2 for the group of v0.

When ni2
−m

ni < 1, stop and solve the remaining game by the sorting method.
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Analysis. All steps can be performed in O(m) time. In particular, for the
first step we can do a “partial perfect quicksort”, where we always partition
around the median and stop at level dm/nie+ 1.

To bound the number of iterations, we note that ni satisfies the recurrence

ni+1 ≤ ni2
−m

ni , (2)

which by induction gives

ni ≤
n

bbb. . .b

}
i

(3)

where b = 2m/n. Thus, the number of iterations is O(log∗b n), where log∗b denotes
the number of times we need to apply the base b logarithm function to get below
1. This is easily seen to be the same as O(1 + log∗m− log∗ m

n ). We have now
established the following.

Theorem 2. A DGG with m arcs and n terminals can be weakly solved in
O(m+m(log∗m− log∗ m

n )) time.

When m = Ω(n log(k) n) for some constant k, this bound is O(m).
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Proceedings of the 15th Annual ACM Symposium on the Theory of Com-
puting, pages 1–9, 1983.

[2] D. Andersson and P. Miltersen. The complexity of solving stochastic games
on graphs. In preparation.

[3] V. Baston and F. Bostock. On Washburn’s deterministic graphical games.
In Differential Games — Developments in Modelling and Computation.
Springer, 1991.

[4] R. Bellman. On the application of dynamic programming to the determi-
nation of optimal play in chess and checkers. Proceedings of the National
Academy of Sciences of the United States of America, 53(2):244–246, 1965.

[5] E. R. Berlekamp, J. H. Conway, and R. K. Guy. Winning Ways for your
Mathematical Plays. Academic Press, 1982.

[6] H. Björklund and S. Vorobyov. A combinatorial strongly subexponential
strategy improvement algorithm for mean payoff games. Discrete Applied
Mathematics, 155(2):210–229, 2007.



Paper 1. Deterministic Graphical Games Revisited 49

[7] M. Blum, R. Floyd, V. Pratt, R. Rivest, and R. Tarjan. Linear time
bounds for median computations. In Proceedings of the 4th Annual ACM
Symposium on the Theory of Computing, pages 119–124, 1972.

[8] K. Chatterjee and T. A. Henzinger. Reduction of stochastic parity to
stochastic mean-payoff games. Inf. Process. Lett., 106(1):1–7, 2008.

[9] A. Condon. The complexity of stochastic games. Information and Com-
putation, 96:203–224, 1992.

[10] H. Everett. Recursive games. In H. W. Kuhn and A. W. Tucker, editors,
Contributions to the Theory of Games Vol. III, volume 39 of Annals of
Mathematical Studies. Princeton University Press, 1957.

[11] C. Ewerhart. Backward induction and the game-theoretic analysis of chess.
Games and Economic Behavior, 39:206–214, 2002.

[12] H. Gabow and R. Tarjan. Algorithms for two bottleneck optimization
problems. J. Algorithms, 9:411–417, 1988.

[13] D. Gillette. Stochastic games with zero stop probabilities. In M. Dresher,
A. Tucker, and P. Wolfe, editors, Contributions to the Theory of Games
III, volume 39 of Annals of Mathematics Studies, pages 179–187. Princeton
University Press, 1957.
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[24] D. König. Über eine Schlussweise aus dem Endlichen ins Unendliche. Acta
Sci. Math. Szeged, 3:121–130, 1927.

[25] T. M. Liggett and S. A. Lippman. Stochastic games with perfect informa-
tion and time average payoff. SIAM Review, 11(4):604–607, 1969.

[26] W. Ludwig. A subexponential randomized algorithm for the simple
stochastic game problem. Information and Computation, 117(1):151–155,
1995.

[27] T. Niblett and A. Roycroft. How the GBR class 0103 data base was created.
EG, 56, 1979.

[28] A. Palay. Searching with Probabilities. PhD thesis, Carnegie Mellon Uni-
versity, 1983.

[29] A. Punnen. A fast algorithm for a class of bottleneck problems. Computing,
56:397–401, 1996.

[30] J. Romein and H. Bal. Solving the game of awari using parallel retrograde
analysis. IEEE Computer, 36(10):26–33, 2003.

[31] J. Schaeffer, N. Burch, Y. Bjornsson, A. Kishimoto, M. Muller, R. Lake,
P. Lu, and S. Sutphen. Checkers is solved. Science, 2007.

[32] U. Schwalbe and P. Walker. Zermelo and the early history of game theory.
Games and Economic Behavior, 34:123–137, 2001.

[33] L. S. Shapley. Stochastic games. Proceedings of the National Academy of
Sciences, U.S.A., 39:1095–1100, 1953.

[34] L. Stiller. Multilinear algebra and chess endgames. In Games of No Chance.
MSRI Publications, 1996.
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Paper 2

The Complexity of Solving
Stochastic Games on Graphs

Daniel Andersson, Peter Bro Miltersen

Abstract. We consider well-known families of two-player zero-sum perfect-
information stochastic games played on finite directed graphs. Generalizing and
unifying results of Liggett and Lippman, Zwick and Paterson, and Chatterjee
and Henzinger, we show that the following tasks are polynomial-time equivalent.

• Solving stochastic parity games,

• Solving simple stochastic games,

• Solving stochastic terminal-payoff games with payoffs and probabilities
given in unary,

• Solving stochastic terminal-payoff games with payoffs and probabilities
given in binary,

• Solving stochastic mean-payoff games with rewards and probabilities given
in unary,

• Solving stochastic mean-payoff games with rewards and probabilities given
in binary,

• Solving stochastic discounted-payoff games with discount factor, rewards
and probabilities given in binary.

It is unknown whether these tasks can be performed in polynomial time. In the
above list, “solving” may mean either quantitatively solving a game (computing
the values of its positions) or strategically solving a game (computing an optimal
strategy for each player). In particular, these two tasks are polynomial-time
equivalent for all the games listed above. We also consider a more refined
notion of equivalence between quantitatively and strategically solving a game.
We exhibit a linear time algorithm that given a simple stochastic game or a
terminal-payoff game and the values of all positions of that game, computes
a pair of optimal strategies. Consequently, for any restriction one may put
on the simple stochastic game model, quantitatively solving is polynomial-time
equivalent to strategically solving the resulting class of games.

53
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1 Introduction

We consider some well-known families of two-player zero-sum perfect-information
stochastic games played on finite directed graphs.

• Simple stochastic games were introduced to the algorithms and complexity
community by Condon [6], who was motivated by the study of randomized
Turing machine models. A simple stochastic game is given by a finite
directed graph G = (V,E), with the set of vertices V also called positions
and the set of arcs E also called actions. There is a partition of the
positions into V1 (positions belonging to Player 1), V2 (positions belonging
to Player 2), VR (coin-toss positions), and a special terminal position 1.
Positions of VR have exactly two outgoing arcs, the terminal position 1
has none, while all positions in V1, V2 have at least one outgoing arc.
Between moves, a pebble is resting at some vertex u. If u belongs to a
player, this player should strategically pick an outgoing arc from u and
move the pebble along this edge to another vertex. If u is a vertex in VR,
nature picks an outgoing arc from u uniformly at random and moves the
pebble along this arc. The objective of the game for Player 1 is to reach
1 and should play so as to maximize his probability of doing so. The
objective for Player 2 is to prevent Player 1 from reaching 1.

• Stochastic terminal-payoff games is the natural generalization of simple
stochastic games where we allow

1. each vertex in VR to have more than two outgoing arcs and an arbi-
trary rational valued probability distribution on these,

2. several terminals with different payoffs, positive or negative.

In a stochastic terminal-payoff game, the outcome of the game is the
payoff of the terminal reached, with the outcome being 0 if play is infinite.
Generalizing the objectives of a simple stochastic game in the natural way,
the objective for Player 1 is to maximize the expected outcome while the
objective for Player 2 is to minimize it. Such generalized simple stochastic
games have sometimes also been called simple stochastic games in the
literature (e.g., [10]), but we shall refer to them as stochastic terminal-
payoff games in this paper.

• Stochastic parity games were introduced by Chatterjee, Jurdziński, and
Henzinger at SODA’04 [4] and further studied in [3, 2]. They are a natural
generalization of the non-stochastic parity games of McNaughton [16],
the latter having central importance in the computer-aided verification
community, as solving them is equivalent to model checking the µ-calculus
[7]. As for the case of simple stochastic games, a stochastic parity game
is given by a directed graph G = (V,E) with a partition of the vertices
into V1 (vertices belonging to Player 1), V2 (vertices belonging to Player
2), and VR (random vertices). Vertices of VR have exactly two outgoing
arcs, while all vertices in V1, V2 have at least one outgoing arc. Also,
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each vertex is assigned an integral priority. Between moves, a pebble is
resting at some vertex u. If u belongs to a player, this player should
strategically pick an outgoing arc from u and move the pebble along this
edge to another vertex. If u is a vertex in VR, nature picks an outgoing
arc from u uniformly at random and moves the pebble along this arc. The
play continues forever. If the highest priority that appears infinitely often
during play is odd, Player 1 wins the game; if it is even, Player 2 wins the
game.

• Stochastic mean-payoff games and stochastic discounted-payoff games were
first studied in the game theory community by Gillette [9] as the per-
fect information special case of the stochastic games of Shapley [17]. A
stochastic mean-payoff or discounted-payoff game G is given by a finite
set of positions V , partitioned into V1 (positions belonging to Player 1)
and V2 (positions belonging to Player 2). To each position u is associ-
ated a finite set of possible actions. To each such action is associated a
real-valued reward and a probability distribution on positions. At any
point in time of play, the game is in a particular position i. The player
to move chooses an action strategically and the corresponding reward is
paid by Player 2 to Player 1. Then, nature chooses the next position at
random according to the probability distribution associated with the ac-
tion. The play continues forever and the sum of rewards may therefore be
unbounded. Nevertheless, one can associate a finite payoff to the players
in spite of this, in more ways than one (so G is not just one game, but
really a family of games): For a stochastic discounted-payoff game, we fix
a discount factor β ∈ (0, 1) and define the outcome of the play (the payoff
to Player 1) to be

∞∑
i=0

βiri

where ri is the reward incurred at stage i of the game. We shall denote
the resulting game Gβ. For a stochastic mean-payoff game we define the
outcome of the play (the payoff to Player 1) to be the limiting average
payoff

lim inf
n→∞

(
n∑
i=0

ri)/(n+ 1).

We shall denote the resulting game G1. A natural restriction of stochastic
mean-payoff games is to deterministic transitions (i.e., all probability dis-
tributions put all probability mass on one position). This class of games
has been studied in the computer science literature under the names of
cyclic games [11] and mean-payoff games [18]. We shall refer to them as
deterministic mean-payoff games in this paper.

A strategy for a game is a (possibly randomized) procedure for selecting
which arc or action to take, given the history of the play so far. A pure positional
strategy is the very special case of this where the choice is deterministic and only
depends on the current position, i.e., a pure positional strategy is simply a map
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from positions to actions. If Player 1 plays using strategy x and Player 2 plays
using strategy y, and the play starts in position i, a random play P (x, y, i) of
the game is induced. We let ui(x, y) denote the expected outcome of this play
(for stochastic terminal-payoff, discounted-payoff, and mean-payoff games) or
the winning probability of Player 1 (for simple stochastic games and stochastic
parity games). A strategy x∗ for Player 1 is said to be optimal if for all positions
i it holds that,

inf
y∈S2

ui(x∗, y) ≥ sup
x∈S1

inf
y∈S2

ui(x, y) (1)

where S1 (S2) is the set of strategies for Player 1 (Player 2). Similarly, a strategy
y∗ for Player 2 is said to be optimal if

sup
x∈S1

ui(x, y∗) ≤ inf
y∈S2

sup
x∈S1

ui(x, y). (2)

For all games described here, the references above (a proof of Liggett and Lipp-
man [14] fixes a bug of a proof of Gillette [9] for the mean-payoff case) show
that

• Both players have pure positional optimal strategies x∗, y∗.

• For such optimal x∗, y∗ and for all positions i,

inf
y∈S2

ui(x∗, y) = sup
x∈S1

ui(x, y∗).

This number is called the value of position i. We shall denote it val(i).

These facts imply that when testing whether conditions (1) and (2) hold, it is
enough to take the infima and suprema over the finite set of pure positional
strategies of the players.

In this paper, we consider solving games. By solving a game G, we may
refer to two distinct tasks.

• Quantitatively solving G is the task of computing the values of all positions
of the game, given an explicit representation of G.

• Strategically solving G is the task of computing a pair of optimal positional
strategies for the game, given an explicit representation of G.

To be able to explicitly represent the games, we assume that the discount
factor, rewards and probabilities are rational numbers and given as fractions in
binary or unary. The notion of “quantitatively solving” is standard terminology
in the literature (e.g., [4]), while the notion of “strategically solving” is not
standard. We believe the distinction is natural, in particular since recent work
of Hansen et al. [12] shows that for some classes of games more general than
the ones considered in this paper, the two notions are not equivalent. Still, it
is relatively easy to see that for all the games considered here, once the game
has been strategically solved, we may easily solve it quantitatively.

With so many distinct computational problems under consideration, we
shall for this paper introduce some convenient notation for them. We will use
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superscripts q/s to distinguish quantitative/strategic solutions and subscripts
b/u to distinguish binary/unary input encoding (when applicable). For in-
stance, Means

b is the problem of solving a stochastic mean-payoff game strate-
gically with probabilities and rewards given in binary, and Simpleq is the prob-
lem of solving a simple stochastic game quantitatively. We use “�” to express
polynomial-time (Turing) reducibility.

Solving the games above in polynomial time are all celebrated open problems
(e.g., [6, 4]). Also, some polynomial time reductions between these challenging
tasks were known. Some classes of games are obviously special cases of others
(e.g., simple stochastic games and stochastic terminal-payoff games), leading to
trivial reductions, but more intricate reductions were also known. In particular,
a recent paper by Chatterjee and Henzinger [2] shows that solving stochastic
parity games reduces to solving stochastic mean-payoff games. Earlier, Zwick
and Paterson [18] showed that solving deterministic mean-payoff games reduces
to solving simple stochastic games. However, in spite of these reductions and
the fact that similar kinds of (non-polynomial time) algorithms, such as value
iteration and strategy iteration are used to actually solve all of these games in
practice, it does not seem that it was believed or even suggested that the tasks
of solving these different classes of games were all polynomial-time equivalent.
Our first main result is that they are, unifying and generalizing the previous
reductions (and also using them in a crucial way):

Theorem 1. The following tasks are polynomial-time (Turing) equivalent.

• Solving stochastic parity games,

• Solving simple stochastic games,

• Solving stochastic terminal-payoff games with payoffs and probabilities
given in unary,

• Solving stochastic terminal-payoff games with payoffs and probabilities
given in binary,

• Solving stochastic mean-payoff games with rewards and probabilities given
in unary,

• Solving stochastic mean-payoff games with rewards and probabilities given
in binary,

• Solving stochastic discounted-payoff games with discount factor, rewards
and probabilities given in binary.

Solving here may mean either “quantitatively” or “strategically”. In particular,
the two tasks are polynomial-time equivalent for all these classes of games.

Note that the equivalence between solving games with unary input en-
coding and solving games with binary input encoding means that there are
pseudopolynomial-time algorithms for solving these games if and only there are
polynomial-time algorithms. Note also that a “missing bullet” in the theorem
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is solving stochastic discounted-payoff games given in unary representation. It
is in fact known that this can be done in polynomial time (even if only the
discount factor is given in unary while rewards and probabilities are given in
binary), see Littman [15, Theorem 3.4].

One obvious interpretation of our result is that Condon “saw right” when
she singled out simple stochastic games as a representative model. In fact, our
result implies that if simple stochastic games can be solved in polynomial time,
then essentially all important classes of two-player zero-sum perfect-information
stochastic games considered in the literature can also be solved in polynomial
time.

Our second main result takes a closer look at the equivalence between quan-
titatively solving the games we consider and strategically solving them. Even
though Theorem 1 shows these two tasks to be polynomial-time equivalent, the
reductions from strategically solving games to quantitatively solving games in
general changes the game under consideration, i.e., strategically solving one
game reduces to quantitatively solving another. In other words, Theorem 1
does not mean a priori that once a game has been quantitatively solved, we can
easily solve it strategically. However, for the case of discounted-payoff games,
we trivially can: An optimal action can be determined “locally” by comparing
sums of local rewards and values. Our second result shows that we (less triv-
ially) can do such “strategy recovery” also for the case of terminal-payoff games
(and therefore also for simple stochastic games).

Theorem 2. Given a stochastic terminal-payoff game and the values of all its
vertices, a pair of optimal pure positional strategies can be computed in linear
time.

Theorem 2 means that algorithms that efficiently and quantitatively solve
simple stochastic games satisfying certain conditions (such as the algorithm of
Gimbert and Horn [10], which is efficient when the number of coin-toss vertices
is small) can also be used to strategically solve those games, in essentially the
same time bound. We leave as an open problem whether a similar algorithm
(even a polynomial-time one) can be obtained for stochastic mean-payoff games.

2 Proof of Theorem 1

Figure 1 shows a minimal set of reductions needed to establish all equivalences.
We first enumerate a number of trivial and known reductions and afterwards
fill in the remaining “gaps”.

For all games considered here, it is well-known that quantitatively solving
them reduces to strategically solving them: Once the strategies have been fixed,
a complete analysis of the resulting finite-state random process can be obtained
using linear algebra and the theory of Markov chains [13]. Also, for the case of
stochastic discounted-payoff games, the converse reduction is also easy: A strat-
egy is optimal if and only it in each position chooses an action that maximizes
the sum of the reward obtained by this action and the discounted expected
value of the next position. Thus, Discounteds

b � Discountedq
b.
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Figure 1: Reductions used in the proof of Theorem 1.

Of course, each problem with unary input encoding trivially reduces to the
corresponding binary version. Also, it is obvious that stochastic terminal-payoff
games generalize simple stochastic games, and the only numbers that appear
are 0, 1 and 1

2 , so Simpleq � Terminalq
u and Simples � Terminals

u.
Quantitatively solving simple stochastic games easily reduces to quantita-

tively solving stochastic parity games, as was noted in the original work on
stochastic parity games [4]. Also, Chatterjee and Henzinger [2] show that strate-
gically solving stochastic parity games reduces to strategically solving stochastic
mean-payoff games.

Thus, to “complete the picture” and establish all equivalences, we only have
to show:

• Means
b � Discounteds

b,

• Discountedq
b � Simpleq,

• Terminals
b �Means

b and Terminalq
u �Meanq

u.

These reductions are provided by the following lemmas.

Lemma 1. Let G be a stochastic discounted-payoff/mean-payoff game with n
positions and all transition probabilities and rewards being fractions with integral
numerators and denominators, all of absolute value at most M . Let β∗ =
1− ((n!)222n+3M2n2

)−1 and let β ∈ [β∗, 1). Then, any optimal pure positional
strategy (for either player) in the discounted-payoff game Gβ is also an optimal
strategy in the mean-payoff game G1.

Proof. The fact that some β∗ with the desired property exists is explicit in the
proof of Theorem 1 of Liggett and Lippman [14]. We assume familiarity with
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that proof in the following. Here, we derive a concrete value for β∗. From
the proof of Liggett and Lippman, we have that for x∗ to be an optimal pure
positional strategy (for Player 1) in G1, it is sufficient to be an optimal pure
positional strategy in Gβ for all values of β sufficiently close to 1, i.e., to satisfy
the inequalities

min
y∈S′

2

uiβ(x∗, y) ≥ max
x∈S′

1

min
y∈S′

2

uiβ(x, y)

for all positions i and for all values of β sufficiently close to 1, where S′1 (S′2)
is the set of pure positional, strategies for Player 1 (2) and uiβ is the expected
payoff when game starts in position i and the discount factor is β. Similarly, for
y∗ to be an optimal pure positional strategy (for Player 2) in G1, it is sufficient
to be an optimal pure positional strategy in Gβ for all values of β sufficiently
close to 1, i.e., to satisfy the inequalities

max
x∈S′

1

uiβ(x, y∗) ≤ min
y∈S′

2

max
x∈S′

1

uiβ(x, y).

So, we can prove the lemma by showing that for all positions i and all pure
positional strategies x, y, x′, y′, the sign of uiβ(x, y)−uiβ(x′, y′) is the same for all
β ≥ β∗. For fixed strategies x, y we have that vi = uiβ(x, y) is the expected total
reward in a discounted Markov process and is therefore given by the formula
(see [13])

v = (I − βQ)−1r, (3)

where v is the vector of uβ(x, y) values, one for each position, Q is the matrix
of transition probabilities and r is the vector of rewards (note that for fixed
positional strategies x, y, rewards can be assigned to positions in the natural
way). Let γ = 1−β. Then, (3) is a system of linear equations in the unknowns v,
where each coefficient is of the form aijγ+bij where aij , bij are rational numbers
with numerators with absolute value bounded by 2M and with denominators
with absolute value bounded by M . By multiplying the equations with all
denominators, we can in fact assume that aij , bij are integers of absolute value
less than 2Mn. Solving the equations using Cramer’s rule, we may write an
entry of v as a quotient between determinants of n × n matrices containing
terms of the form aijγ + bij . The determinant of such a matrix is a polynomial
in γ of degree n with the coefficient of each term being of absolute value at
most n!(2Mn)n = n!2nMn2

. We denote these two polynomials p1, p2. Arguing
similarly about uβ(x′, y′) and deriving corresponding polynomials p3, p4, we
have that uiβ(x, y)−uiβ(x′, y′) ≥ 0 is equivalent to p1(γ)/p2(γ)−p3(γ)/p4(γ) ≥ 0,
i.e., p1(γ)p4(γ) − p3(γ)p2(γ) ≥ 0. Letting q(γ) = p1(γ)p4(γ) − p3(γ)p2(γ), we
have that q is a polynomial in γ, with integer coefficients, all of absolute value
at most R = 2(n!)222nM2n2

. Since 1 − β∗ < 1/(2R), the sign of q(γ) is the
same for all γ ≤ 1− β∗, i.e., for all β ≥ β∗. This completes the proof.

Lemma 2. Means
b � Discounteds

b.

Proof. This follows immediately from Lemma 1 by observing that the binary
representation of the number β∗ = 1− ((n!)222n+3M2n2

)−1 has length polyno-
mial in the size of the representation of the given game.
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Figure 2: Reducing discounted-payoff games to terminal-payoff games

Lemma 3. Discountedq
b � Simpleq.

Proof. Zwick and Paterson [18] considered solving deterministic discounted-
payoff games, i.e., games where the action taken deterministically determines
the transition taken and reduced these to solving simple stochastic games. It
is natural to try to generalize their reduction so that it also works for stochas-
tic discounted-payoff games. We find that such reduction indeed works, even
though the correctness proof of Zwick and Paterson has to be modified slightly
compared to their proof. The details follow.

The redution proceeds in two steps: First we reduce to stochastic terminal-
payoff games with 0/1 payoffs, and then to simple stochastic games.

We are given as input a stochastic discounted-payoff game G with discount
factor β and must first produce a stochastic terminal-payoff game G′ whose
values can be used to construct the values for the stochastic discounted-payoff
game Gβ. First, we affinely scale and translate all rewards of G so that they
are in the interval [0, 1]. This does not influence the optimal strategies, and
all values are transformed accordingly. Vertices of G′ include all positions of G
(belonging to the same player in G′ as in G), and, in addition, a random vertex
wu,A for each possible action A of each position u of G. We also add terminals
0 and 1. We construct the arcs of G′ by adding, for each (position,action) pair
(u,A) the “gadget” indicated in Figure 2. To be precise, if the action has reward
r and leads to positions v1, v2, . . . , vk with probability weights p1, p2, . . . , pk, we
include in G′ an arc from u to wu,A, arcs from wu,A to v1, . . . , vk with probability
weights (1− β)p1, . . . , (1− β)pk, an arc from wu,A to 0 with probability weight
β(1− r) and finally an arc from wu,A to the terminal 1 with probability weight
βr.

There is clearly a one-to-one correspondence between strategies in G and
in G′. To see the correspondance between values, fix a strategy profile for the
two players and consider play starting from some vertex. By construction, if
the expected reward of the play in G is h, the probability that the play in G′

reaches 1 is exactly βh.
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The second step is identical to that of Zwick and Paterson [18]. They
describe how arbitrary rational probability distributions can be implemented
using a polynomial number of coin-toss vertices. Thus, we can transform G′

into an equivalent simple stochastic game.

Lemma 4. Terminals
b �Means

b and Terminalq
u �Meanq

u.

Proof. We are given a simple stochastic game G and must construct a stochastic
mean-payoff game G′. Positions of G′ will coincide with vertices of G, with the
positions of G′ including the terminals. Positions u belonging to a player in G
belongs to the same player in G′. For each outgoing arc of u, we add an action
in G′ with reward 0, and with a deterministic transition to the endpoint of the
arc of G. Random vertices of G can be assigned to either player in G′, but he
will only be given a single “dummy choice”: If the random vertex has arcs to
v1 and v2, we add a single action in G′ with reward 0 and transitions into v1,
v2, both with probability weight 1/2. Each terminal can be assigned to either
player in G′, but again he will be given only a dummy choice: We add a single
action with reward equal to the payoff of the terminal and with a transition
back into the same terminal with probability weight 1.

There is clearly a one-to-one correspondence between pure positional strate-
gies in G and strategies in G′. To see the correspondence between values, fix a
strategy profile for the two players and consider play starting from some vertex.
By construction, if the probability of the play reaching some particular terminal
in G is q, then the probability of the play reaching the corresponding self-loop
in G′ is also q. Thus, the expected reward is the same.

3 Proof of Theorem 2

In this section, we consider a given stochastic terminal-payoff game. Our goal is
an algorithm for computing optimal strategies, given the values of all vertices.
To simplify the presentation, we will focus on strategies for Player 1. Because
of symmetry, there is no loss of generality. In this section, “strategy” means
“pure positional strategy”.

Definition 1. An arc (u, v) is called safe if val(u) = val(v). A safe strategy is
a strategy that only uses safe arcs.

Definition 2. A strategy x for Player 1 is called stopping if for any strategy y
for Player 2 and any vertex v with positive value, there is a non-zero probability
that the play P (x, y, v) reaches a terminal.

It is not hard to see that any optimal strategy for Player 1 must be safe
and stopping, so these two conditions are necessary for optimality. We will now
show that they are also sufficient.

Lemma 5. If a strategy is safe and stopping, then it is also optimal.

Proof. Let x be any safe and stopping strategy for Player 1, let y be an arbitrary
strategy for Player 2, and let v0 be an arbitrary vertex. Consider the play
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P (x, y, v0). Denote by qi(v) the probability that after i steps, the play is at v.
Since x is safe,

∀i : val(v0) ≤
∑
v∈V

val(v)qi(v) ≤
∑

v∈T∪V +

val(v)qi(v), (4)

where T denotes the set of terminal vertices and V + denotes the set of non-
terminal vertices with positive value. Since x is stopping,

∀v ∈ V + : lim
i→∞

qi(v) = 0. (5)

Finally, note that

uv0(x, y) =
∑
t∈T

val(t) lim
i→∞

qi(t)

=
∑

v∈T∪V +

val(v) lim
i→∞

qi(v) (by (5))

= lim
i→∞

∑
v∈T∪V +

val(v)qi(v)

≥ val(v0). (by (4))

Therefore, x is optimal.

Using this characterization of optimality, strategy recovery can be reduced
to strategically solving a simple stochastic game without random vertices.

Theorem 2. Given a stochastic terminal-payoff game and the values of all its
vertices, a pair of optimal pure positional strategies can be computed in linear
time.

Proof. Construct from the given game G a simple stochastic game G′ as follows:

1. Merge all terminals into one.

2. Remove all outgoing non-safe arcs from the vertices of Player 1.

3. Transfer ownership of all random vertices to Player 1.

Compute an optimal strategy x′ for Player 1 in G′ using linear-time retrograde
analysis [1]. Let x be the interpretation of x′ as a strategy in G obtained by
restricting x′ to the vertices of Player 1 in G.

By construction, from any starting vertex v, Player 1 can ensure reaching
the terminal in G′ if and only if x ensures a non-zero probability of reaching a
terminal in G.

Let v be any vertex with positive value in G. Player 1 has a safe strategy
that ensures a non-zero probability of reaching a terminal from v, specifically,
the optimal strategy. This implies that there is a corresponding strategy for
Player 1 in G′ that ensures reaching the terminal from v.

It follows that x is stopping, and it is safe by construction. Therefore, by
Lemma 5, it is optimal.
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4 Conclusions and Open Problems

Informally, we have shown that solving simple stochastic games is “complete”
for a wide natural range of two-player zero-sum perfect-information games on
graphs. However, in the logic and verification literature, even more general
classes of winning conditions on infinite plays in finite graphs have been con-
sidered. Since we now know that simple stochastic games are more expressive
than previously suggested, it would be interesting to fully characterize the class
of such games for which solving simple stochastic game is complete. It is also
interesting to ask whether solving some classes of imperfect information games
reduces to solving simple stochastic games. It seems natural to restrict atten-
tion to cases where it is known that optimal positional strategies exists. This
precludes general stochastic games (but see [5]). An interesting class of games
generalizing stochastic mean-payoff games was considered by Filar [8]. Filar’s
games allow simultaneous moves by the two players. However, for any position,
the probability distribution on the next position can depend on the action of
one player only. Filar shows that his games are guaranteed to have optimal
positional strategies. The optimal strategies are not necessarily pure, but the
probabilities they assign to actions are guaranteed to be rational numbers if
rewards and probabilities are rational numbers. So, we ask: Is solving Filar’s
games polynomial time equivalent to solving simple stochastic games?

Turning to strategy recovery, we mention again that we do not know whether
the task of computing optimal strategies once values are known can be done in
polynomial time for stochastic mean-payoff games. Recent work by Vladimir
Gurvich (personal communication) indicates that the problem of computing
optimal strategies in stochastic mean-payoff games is challenging even in the
ergodic case where all positions have the same value. One may even hypothesise
that strategy recovery for stochastic mean-payoff games is hard, in the (optimal)
sense that it is polynomial time equivalent to strategically solving stochastic
mean-payoff games. Establishing this would be most interesting.

Acknowledgements. We would like to thank Vladmir Gurvich for fruitful
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1 Main Concepts and Results

1.1 Games in Normal Form

1.1.1 Game Forms, Strategies, and Utility Functions

Given a set of players I = {1, . . . , n} and a set of strategies Xi for each i ∈ I,
let X =

∏
i∈I Xi.

A vector x = (xi, i ∈ I) ∈ X is called a strategy profile or situation.
Furthermore, let A be a set of outcomes. A mapping g : X → A is called

a game form. In this paper, we restrict ourselves to finite game forms, that is,
we assume that sets I, A and X are finite.

Then, let u : I × A→ R be a utility function. Standardly, the value u(i, a)
(or ui(a)) is interpreted as the payoff to player i ∈ I in case of the outcome
a ∈ A. In figures, the notation a <i b means ui(a) < ui(b).

Sometimes, it is convenient to exclude ties. Accordingly, u is called a pref-
erence profile if the mapping ui is injective for each i ∈ I; in other words, ui

defines a complete order over A describing the preferences of player i ∈ I.
A pair (g, u) is called a game in normal form.

1.1.2 Improvement Cycles and Acyclicity

In a game (g, u), an improvement cycle (im-cycle) is defined as a sequence
of k strategy profiles {x1, . . . , xk} ⊆ X such that xj and xj+1 coincide in all
coordinates but one i = i(j) and, moreover, ui(xj+1) > ui(xj), that is, player i
makes profit by substituting strategy xj+1

i for xj
i ; this holds for all j = 1, . . . , k

and, standardly, we assume that k + 1 = 1.
A game (g, u) is called im-acyclic if it has no im-cycles. A game form g is

called im-acyclic if for each u the corresponding game (g, u) is im-acyclic.
We call xj+1 an improvement with respect to xj for player i = i(j). We

call it a best reply (BR) improvement if player i can get no strictly better result
provided all other players keep their strategies. Correspondingly, we introduce
the concepts of a BR im-cycle and BR im-acyclicity. Obviously, im-acyclicity
implies BR im-acyclicity but not vice versa.

1.1.3 Nash Equilibria and Acyclicity

Given a game (g, u), a strategy profile x ∈ X is called a Nash equilibrium (NE)
if ui(x) ≥ ui(x′) for each i ∈ I, whenever x′j = xj for all j ∈ I \ {i}. In other
words, x is a NE if no player can get a strictly better result by substituting
a new strategy (x′i for xi) when all other players keep their old strategies.
Conversely, if x is not a NE then there is a player who can improve his strategy.
In particular, he can choose a best reply. Hence, a NE-free game (g, u) has a
BR im-cycle. Let us remark that the last statement holds only for finite games,
while the converse statement is not true at all.

A game (g, u) is called Nash-solvable if it has a NE. A game form g is called
Nash-solvable if for each u the corresponding game (g, u) has a NE.
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1.2 Positional Games with Perfect Information

1.2.1 Games in Positional Form

Let G = (V,E) be a finite directed graph (di-graph) whose vertices v ∈ V and
directed edges e ∈ E are called positions and moves, respectively. An edge
e = (v′, v′′) is a move from position v′ to v′′. Let out(v) and in(v) denote the
sets of moves from and to v, respectively.

A position v ∈ V is called terminal if out(v) = ∅, i.e., there are no moves
from v. Let VT denote the set of all terminals. Let us also fix a starting position
v0 ∈ V \ VT . A directed path from v0 to a terminal position is called a finite
play.

Furthermore, let D : V \VT → I be a decision mapping, with I = {1, . . . , n}
being the set of players. We say that the player i = D(v) ∈ I makes a decision
(move) in a position v ∈ D−1(i) = Vi. Equivalently, D is defined by a partition
D : V = V1 ∪ . . . ∪ Vn ∪ VT . In this paper we do not consider random moves.

A triplet G = (G, D, v0) is called a positional game form.

1.2.2 Cycles, Outcomes, and Utility Functions

Let C denote the set of simple (that is, not self-intersecting) directed cycles
(di-cycles) in G.

The set of outcomes A can be defined in two ways:

(i) A = VT ∪C, that is, each terminal and each di-cycle is a separate outcome.

(ii) A = VT ∪ {C}, that is, each terminal is an outcome and all di-cycles
(infinite plays) constitute one special outcome c = {C}.

Case (i) was considered in [2] for two-person (n = 2) game forms. In this
paper, we analyze case (ii) for n-person games.

Remark 1. Let us mention that as early as in 1912, Zermelo already considered
case (ii) for zero-sum two-person games in his pioneering work [13], where the
game of chess was chosen as a basic example. Obviously, the corresponding
graph contains di-cycles: one appears whenever a position is repeated in a play.
By definition, any infinite play is a draw. In fact, under tournament rules of
chess, any player can claim a draw whenever a position appears for the third
time in a play. Yet, this difference does not matter to us, since we are going to
restrict ourselves to positional (stationary) strategies; see Remark 2 below.

Note that players can rank outcome c arbitrarily in their preferences. In
contrast, in [1] it was assumed that infinite play c ∈ A is the worst outcome for
all players.

1.2.3 Positional Games in Normal Form

A triplet G = (G, D, v0) and quadruple (G, D, v0, u) = (G, u) are called a posi-
tional form and a positional game, respectively. Positional games can also be
represented in normal form, as described below. A mapping x : V \VT → E that
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assigns to every non-terminal position v a move e ∈ out(v) from this position
is called a situation or strategy profile.

A strategy of player i ∈ I is the restriction xi : Vi → E of x to Vi = D−1(i).

Remark 2. A strategy xi of a player i ∈ I is interpreted as a decision plan
for every position v ∈ Vi. Note that, by definition, the decision in v can depend
only on v itself but not on the preceding positions and moves. In other words,
we restrict the players to their pure positional strategies.

Each strategy profile x ∈ X uniquely defines a play p = p(x) that starts
in v0 and then follows the moves prescribed by x. This play either ends in a
terminal of VT ( p is finite) or results in a cycle, a(x) = c ( p is infinite). Thus,
we obtain a game form g(G) : X → A, which is called the normal form of
G. This game form is standardly represented by an n-dimensional table whose
entries are outcomes of A = VT ∪ {c}; see Figures 1, 6 and 8.

The pair (g(G), u) is called the normal form of a positional game (G, u).

1.3 On Nash-Solvability of Positional Game Forms

Nash-solvability of positional game forms with acyclic di-graphs is well-
known. It easily follows from the fact that a Nash equilibrium in such a game
can be computed by backward induction [12, 8].

In [2], Nash-solvability of positional game forms was considered for case
(i): each di-cycle is a separate outcome. An explicit characterization of Nash-
solvability was obtained for the two-person (n = 2) game forms whose di-graphs
are bidirected: (v′, v′′) ∈ E if and only if (v′′, v′) ∈ E.

In [1], Nash-solvability of positional game forms was studied (for a more
general class of payoff functions, so-called additive or integral payoffs), but with
the following additional restriction:

(ii’) The outcome c, an infinite play, is ranked as the worst one by all players.

Under assumption (ii’), Nash-solvability was proven in three cases:

(a) Two-person games (n = |I| = 2);

(b) Games with at most three outcomes (|A| ≤ 3);

(c) Play-once games, in which each player controls only one position (|Vi| =
1 ∀ i ∈ I).

The proof of Nash-solvability in case (c) is indirect and based on the fol-
lowing simple observation. Let us suppose that this claim fails and consider a
minimal counter-example: a play-once game (G, u) without any Nash equilibria
but such that every its proper subgame has one. Then

(iii) every finite play p and every di-cycle c in G intersect.

Indeed, otherwise one could get a smaller counter-example by eliminating
di-cycle c (together with all edges incident to c) from G. We have to show that
the obtained proper subgame (G′, u′) has no Nash equilibrium either.
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Let us suppose that there is a Nash equilibrium, x′ , and let p(x′) be the
corresponding play in G′. Then, let us extend x′ to a strategy profile x in G
assuming that in every position of c the corresponding player makes a (unique)
move along c.

By assumption, x cannot be a Nash equilibrium in the game (G, u), that
is, a player i ∈ I can improve his result by changing his strategy. Since game
(G, u) is play-once, there is only one way to do this: i must choose a new move
(v′, v), where v′ ∈ p(x′) and v ∈ c. Clearly, the obtained play results in the
di-cycle c. Hence, this cannot be an improvement, since c is the worst outcome
for all players. Thus, (iii) holds.

Let us remark that both our assumptions were essential in the above proof:
if game (G, u) is not play-once then it could be possible for a player i to enter
c, then, later, leave c, and make a profit; if c is not the worst outcome for a
player then this player can make a profit by reaching c.

Thus, (iii) must hold for every minimal counter-example. Yet, di-graphs
satisfying (iii) have a very special structure; see Lemmas 1-6 of [1]. Recently,
Edmonds suggested to call them Mercator di-graphs. Although characterizing
Mercator graphs is still an open problem, partial results of [1] imply that every
positional game form with a Mercator di-graph is Nash-solvable. This results
in Nash-solvability for case (c).

It was also conjectured in [1] that Nash-solvability holds in general.

Conjecture 1 ([1]). A positional game is Nash-solvable whenever (ii’) holds.

This Conjecture would be implied by the following statement: every im-
cycle X = {x1, . . . , xk} ⊆ X contains a strategy profile xj such that the corre-
sponding play p(xj) is infinite. Indeed, Conjecture 1 would follow, since out-
come c ∈ A being the worst for all players, belongs to no im-cycle. However,
the example of Section 2.2 will show that such an approach fails. Nevertheless,
Conjecture 1 is not disproved. Moreover, a stronger conjecture was recently sug-
gested by Gimbert and Sørensen, [4]. They assumed that, in case of terminal
payoffs, condition (ii’) is not needed.

Conjecture 2. A positional game is Nash-solvable if all cycles form a single
outcome.

They gave a simple and elegant proof for the two-person case. With their
permission, we reproduce it in Section 5.

1.4 Restricted Improvement Cycles and Acyclicity

1.4.1 Improvement Cycles in Trees

Kukushkin [9, 10] was the first to consider im-cycles in positional games. He
restricted himself to trees and observed that even in this case im-cycles can
exist; see example in Figure 1.

However, it is easy to see that unnecessary changes of strategies take place
in this im-cycle. For example, let us consider transition from x1 = (x1

1, x
2
2) to
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1

2 2

a1 a2 a3 a4

a1 <2 a2

1

2 2

a1 a2 a3 a4

a2 <1 a3

1

2 2

a1 a2 a3 a4

a3 <2 a4

1

2 2

a1 a2 a3 a4

a4 <1 a1

2

1

 a1 a1 → a2 a2

↑ ↓
a3 a4 ← a3 a4

1 : a2 < a3, a4 < a1

2 : a1 < a2, a3 < a4

Figure 1: Im-cycle in a tree. Bold arrows indicate chosen moves, and the black
ones have changed from the previous strategy profile. The induced preference
relations are shown on the left. The matrix on the right shows the normal form
of the game.

x2 = (x1
1, x

3
2). Player 1 keeps his strategy x1

1, while 2 substitutes x3
2 for x2

2 and
gets a profit, since g(x1

1, x
2
2) = a1, g(x1

1, x
3
2) = a2, and u2(a1) < u2(a2).

Yet, player 2 switches simultaneously from a4 to a3. Obviously, this cannot
serve any practical purpose, since the strategy is changed outside the actual
play.

In [9], Kukushkin also introduced the concept of restricted improvements
(ri). In particular, he proved that positional games on trees become ri-acyclic
if players are not allowed to change their decisions outside the actual play. For
completeness, we sketch his simple and elegant proof in Section 3.1, where we
also mention some related results and problems.

Since we consider arbitrary finite di-graphs (not only trees), let us define ac-
curately several types of restrictions for this more general case. This restriction
(introduced by Kukushkin) will be called the inside play restriction.

1.4.2 Inside Play Restriction

Given a positional game form G = (G, D, v0) and strategy profile x0 = (x0
i , i ∈

I) ∈ X, let us consider the corresponding play p0 = p(x0) and outcome a0 =
a(x0) ∈ A. This outcome is either a terminal, a0 ∈ VT , or a di-cycle, a0 = c.

Let us consider the strategy x0
i of a player i ∈ I. He is allowed to change his

decision in any position v1 from p0. This change will result in a new strategy
profile x1, play p1 = p(x1), and outcome a1 = a(x1) ∈ A.

Then, player i may proceed, changing his strategy further. Now, he is only
allowed to change the decision in any position v2 that is located after v1 in p1,
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i

v1

i

v2

i

v3

a0

a1

a2

a3

Figure 2: Inside play restriction.

etc., until a position vm, strategy profile xm, play pm = p(xm), and outcome
am = a(xm) ∈ A appear; see Figure 2, where m = 3.

Equivalently, we can say that all positions v1, . . . , vm belong to one play.
Let us note that, by construction, obtained plays {p0, p1, . . . , pm} are pair-

wise distinct. In contrast, the corresponding outcomes {a0, a1, . . . , am} can
coincide and some of them might be the infinite play outcome c ∈ A.

Whenever the acting player i substitutes the strategy xm
i , defined above, for

the original strategy x0
i , we say that this is an inside play deviation, or in other

words, that this change of decision in x satisfies the inside play restriction.
It is easy, but important, to notice that this restriction, in fact, does not

limit the power of a player. More precisely, if a player i can reach an outcome
am from x by a deviation then i can also reach am by an inside play deviation.

From now on, we will consider only such inside play restricted deviations
and, in particular, only restricted improvements (ri) and talk about ri-cycles
and ri-acyclicity rather than im-cycles and im-acyclicity, respectively.

1.4.3 Types of Improvements

We define the following four types of improvements:

Standard improvement (or just improvement): ui(am) > ui(a0);

Strong improvement: ui(am) > ui(aj) for j = 0, 1, . . . ,m− 1;

Last step improvement: ui(am) > ui(am−1);

Best reply (BR) improvement: am is the best outcome that player i can
reach from x (as we already noticed above, the inside play restriction does
not restrict the set of reachable outcomes).

Obviously, each best reply or strong improvement is a standard improvement,
and a strong improvement is also a last step improvement. Furthermore, it is
easy to verify that no other containments hold between the above four classes.
For example, a last step improvement might not be an improvement and vice
versa. We will consider ri-cycles and ri-acyclicity specifying in each case a type
of improvement from the above list.

Let us note that any type of ri-acyclicity still implies Nash-solvability. In-
deed, if a positional game has no NE then for every strategy profile x ∈ X there
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is a player i ∈ I who can improve x to some other strategy profile x′ ∈ X. In
particular, i can always choose a strong BR restricted improvement. Since we
consider only finite games, such an iterative procedure will result in a strong
BR ri-cycle. Equivalently, if we assume that there is no such cycle then the con-
sidered game is Nash-solvable; in other words, already strong BR ri-acyclicity
implies Nash-solvability.

1.5 Sufficient Conditions for Ri-acyclicity

We start with Kukushkin’s result for trees.

Theorem 1 ([9]). Positional games on trees have no restricted standard im-
provement cycles.

After trees, it seems natural to consider acyclic di-graphs. We asked Kukushkin [11]
whether he had a generalization of Theorem 1 for this case. He had not con-
sidered it yet, but shortly thereafter he obtained a result that can be modified
as follows.

Theorem 2. Positional games on acyclic di-graphs have no restricted last step
improvement cycles.

Let us remark that Theorem 1 does not immediately follow from Theorem
2, since a standard improvement might be not a last step improvement. Finally,
in case of two players the following statement holds.

Theorem 3. Two-person positional games have no restricted strong improve-
ment cycles.

Obviously, Theorem 3 implies Nash-solvability of two-person positional games;
see also Section 5 for an independent proof due to Gimbert and Sørensen.

The proofs of Theorems 1, 2 and 3 are given in Sections 3.1, 3.2 and 3.3,
respectively.

2 Examples of Ri-cycles; Limits of Theorems 1, 2
and 3

In this paper, we emphasize negative results showing that it is unlikely to
strengthen one of the above theorems or obtain other criteria of ri-acyclicity.

2.1 Examples Limiting Theorems 2 and 3

For both Theorems 2 and 3, the specified type of improvement is essential.
Indeed, the example in Figure 3 shows that a two-person game on an acyclic di-
graph can have a ri-cycle. However, it is not difficult to see that in this ri-cycle,
not all improvements are strong and some are not even last step improvements.

Thus, all conditions of Theorems 2 and 3 are essential.
Furthermore, we note that if in Theorem 3 we substitute BR improvement

for strong improvement, the modified statement will not hold, see Figure 4.



Paper 3. On Acyclicity of Games with Cycles 75

1

22

1 a2a1

a3 a4

a1 a2 a3 a4

a2 <2 a3

1

22

1 a2a1

a3 a4

a1 a2 a3 a4

a3 <1 a4

1

22

1 a2a1

a3 a4

a1 a2 a3 a4

a4 <2 a2

1

22

1 a2a1

a3 a4

a1 a2 a3 a4

a2 <1 a3

1

22

1 a2a1

a3 a4

a1 a2 a3 a4

a3 <2 a1

1

22

1 a2a1

a3 a4

a1 a2 a3 a4

a1 <1 a2

1 : a1 < a2 < a3 < a4

2 : a4 < a2 < a3 < a1

Figure 3: 2-person ri-cycle in an acyclic di-graph. Beneath each situation is a
graph of outcomes with edges defined by the previous improvement steps; these
will be of illustrative importance in the proof of Theorem 3.
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By definition, every change of strategy must result in an improvement for
the corresponding player. Hence, each such change implies an ordering of the
two outcomes; in our figures, it appears as a label on the transition arrow
between situations. An entire im-cycle implies a set of inequalities, which must
be satisfiable in order to allow a consistent preference profile. Note that it is
also sufficient to allow ties and have a partial ordering of the outcomes.

Obviously, these sets of preferences must be consistent, that is, acyclic.
Thus, we obtain one more type of cycles and acyclicity: preference cycles and
preference acyclicity. For example, the ri-cycle in Figure 3 implies:

u1(a1) < u1(a2) < u1(a3) < u1(a4) and u2(a4) < u2(a2) < u2(a3) <
u2(a1).

while the one in Figure 4 implies: u1(c) < u1(a1), u2(a1) < u2(c).

2.2 On c-free Ri-cycles

In Section 1.3, we demonstrated that Conjecture 1 on Nash-solvability would
follow from the following statement:

(i) There are no c-free im-cycles.

Of course, (i) fails. As we know, im-cycles exist already in trees; see Figure 1.
However, let us substitute (i) by the similar but much weaker statement:

(ii) Every restricted strong BR ri-cycle contains a strategy profile
whose outcome is an infinite play.

One can derive Conjecture 1 from (ii), as well as from (i). Unfortunately,
(ii) also fails. Indeed, let us consider the ri-cycle in Figure 5. This game is
play-once: each player controls only one position. Moreover, there are only two
possible moves in each position. For this reason, every ri-cycle in this game is
BR and strong.

There are seven players (n = 7) in this example, yet, by teaming up players
in coalitions we can reduce the number of players to four while the improvements
remain BR and strong. Indeed, this can be done by forming three coalitions
{1, 7}, {3, 5}, {4, 6} and merging the preferences of the coalitionists. The re-
quired extra constraints on the preferences of the coalitions are also shown in
Figure 5.

It is easy to see that inconsistent (i.e., cyclic) preferences appear whenever
any three players form a coalition. Hence, the number of coalitions cannot be
reduced below 4, and it is, in fact, not possible to form 4 coalitions in any other
way while keeping improvements BR and strong.

Obviously, for the two-person case, (ii) follows from Theorem 3.

Remark 3. We should confess that our original motivation fails. It is hardly
possible to derive new results on Nash-solvability from ri-acyclicity. Although,
ri-acyclicity is much weaker than im-acyclicity, it is still too much stronger than
Nash-solvability. By Theorems 3 and 2, ri-acyclicity holds for n = 2 and for
acyclic di-graphs. Yet, for these two cases Nash-solvability is known.
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Figure 5: c-free strong BR ri-cycle.
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  a2 → a1

↓
a2 ← c
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0 : a1 < a2

1 : a2 < a1 < c

2 : c < a2 < a1

Figure 6: Ri-acyclic flower game form with 3 players.

It is still possible that (ii) (and, hence, Conjecture 1) holds for n = 3, too.
Strong BR ri-cycles in which the infinite play outcome c occurs do exist for
n = 3, however. Such an example is provided in Section 2.3.4.

However, ri-acyclicity is of independent (of Nash-solvability) interest. In
this paper, we study ri-acyclicity for the case when each terminal is a separate
outcome, while all di-cycles form one special outcome. For the alternative case,
when each terminal and each di-cycle is a separate outcome, Nash-solvability
was considered in [2], while ri-acyclicity was never studied.

2.3 Flower Games: Ri-cycles and Nash-Solvability

2.3.1 Flower Positional Game Forms

A positional game form G = (G, D, v0) will be called a flower if there is a
(chordless) simple di-cycle C in G that contains all positions, except the initial
one, v0, and the terminals, VT ; furthermore, we assume that there are only
moves from v0 to C and from C to VT ; see examples in Figures 6, 7 and 9.

By definition, C is the unique di-cycle in G. Nevertheless, it is enough
to make flower games very different from acyclic games; see [1] (where flower
games are referred to as St. George games). Here we consider several examples
of ri-cycles in flower game forms of 3 and 4 players; see Figures 6, 7 and 9. Let
us note that the game forms of Figures 6 and 7 are play-once: each player is
in control of one position, that is, n = |I| = |V \ VT | = 3 or 4, respectively. In
fact, Figure 9 can also be turned into a six-person play-once flower game.

2.3.2 Flower Three-Person Game Form

Positional and normal forms of a three-person flower game are given in Figure 6.
This game form is ri-acyclic. Indeed, it is not difficult to verify that an im-
cycle in it would result in inconsistent preferences for one of the players. Yet,
there is a sequence of 7 restricted improvement steps, that is, a “Hamiltonian
improvement path” in the normal form.
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Figure 7: Positional form of a ri-cycle in a flower game form with 4 players.

2.3.3 Flower Four-Person Game Form

Positional and normal forms of a four-person flower game are given in Figures 7
and 8, respectively, where a ri-cycle is shown. Obviously, it is a strong and BR
ri-cycle, since there are only two possible moves in every position. However, it
contains c.

The number of players can be reduced by forming either the coalition {1, 2}
or the coalition {1, 3}. However, in the first case the obtained ri-cycle is not
BR, though it is strong, whereas a non-restricted improvement appears in the
second case.

Moreover, no c-free ri-cycle can exist in this four-person flower game form.
To see this, let us consider the graph of its normal form shown in Figure 8.
It is not difficult to verify that, up to isomorphism, there is only one ri-cycle,
shown above. All other ri-cycle candidates imply inconsistent preferences; see
the second graph in Figure 8.

2.3.4 On BR Ri-cycles in Three-Person Flower Games

In Section 2.2 we gave an example of a c-free strong BR ri-cycle in a four-person
game. Yet, the existence of such ri-cycles in three-person games remains open.
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However, a strong BR ri-cycle that contains c can exist already in a three-person
flower game; see Figure 9.

2.3.5 Nash-Solvability of Flower Games

In this section we assume without loss of generality that v0 is controlled by
player 1 and that every position v in C has exactly two moves: one along C
and the other to a terminal a = av ∈ VT . Indeed, if a player has several terminal
moves from one position then, obviously, all but one, which leads to the best
terminal, can be eliminated.

We will call positions in C gates and, given a strategy profile x, we call gate
v ∈ C open (closed) if move (v, av) is chosen (not chosen) by x.

First, let us consider the simple case when player 1 controls only v0 and later
we will reduce Nash-solvability of general flower games to this special case.

Lemma 1. Flower games in which player 1 controls only v0 are Nash-solvable.

Proof. Let us assume that there is a move from v0 to each position of C. In
general, the proof will remain almost the same, except for a few extra cases
with a similar analysis.

Now, either: (i) for each position v ∈ C the corresponding player i = D(v)
prefers c to a = av, or (ii) there is a v′ ∈ C such that i′ = D(v′) prefers a′ = av′

to c. If a player controls several such positions then let a′ be his best outcome.
In case (i), a strategy profile such that all gates are closed is a NE. In case

(ii), the strategy profile where player 1 moves from v0 to v′, the gate v′ is open,
and all other gates are closed, is a NE.

Theorem 4. Flower games are Nash-solvable.

Proof. We will give an indirect proof, deriving a contradiction with Lemma 1.
Let (G, u) be a NE-free flower game. Moreover, let us assume that it is minimal,
that is, a NE appears whenever we delete any move from G. This assumption
implies that for each gate v, there is a strategy profile x1 such that this gate
is closed but it is opened by a BR restricted improvement x2. Since the game
is NE-free, there is an infinite sequence X = {x1, x2, . . .} of such BR restricted
improvements. Then, it follows from Theorem 2 that gate v will be closed again
by a profile xk ∈ X . Indeed, if we delete the closing edge (i.e., v remains open),
the resulting graph is acyclic.

Now, let us assume that gate v is controlled by player 1. Let v′ be the
closest predecessor of v in C such that there is a move from v0 to v′. Opening
v, player 1 can at the same time choose the move (v0, v

′).
Clearly, until v will be closed again no gate between v′ and v in C, including

v′ itself, will be opened. Indeed, otherwise the corresponding gate could not be
closed again by any sequence X of restricted best replies. Since player 1 already
performed a BR, the next one must be performed by another player. However,
these players control only the gates between v′ and v in C. Hence, one of them
will be opened.

Thus, we obtain a contradiction. Indeed, if a NE-free flower game has a
gate of player 1, it will never be required to open. By deleting such gates
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Figure 9: Strong BR ri-cycle in a 3-person flower game.



Paper 3. On Acyclicity of Games with Cycles 83

repeatedly one obtains a NE-free flower game that has no gates of player 1.
This contradicts Lemma 1.

3 Proofs of Theorems 1, 2 and 3

3.1 Ri-acyclicity for Trees: Proof of Theorem 1

As we know, im-cycles can exist even for trees (see Section 1.4.1) but ri-cycles
cannot. Here we sketch the proof from [9].

Given a (directed) tree G = (V,E) and an n-person positional game (G, u) =
(G, D, v0, u), let pi =

∑
v∈Vi

(|out(v)| − 1) for every player i ∈ I = {1, . . . , n}.
It is not difficult to verify that 1 +

∑n
i=1 pi = p = |VT |.

Let us fix a strategy profile x = (x1, . . . , xn). To every move e = (v, v′)
which is not chosen by x let us assign the outcome a = a(e, x) which x would
result in starting from v′. it is easy to see that these outcomes together with
a(x) form a partition of VT .

Given a player i ∈ I, let us assign pi numbers ui(a(e, x)) for all e = (v, v′)
not chosen by xi, where v ∈ Vi. Let us order these numbers in monotone
non-increasing order and denote the obtained pi-dimensional vector yi(x).

Let player i ∈ I substitute a restricted improvement x′i for xi; see Section
1.4.2. The new strategy profile x′ results in an outcome ak ∈ A = VT which
is strictly better for i than the former outcome a0 = a(x). Let us consider
vectors yj(x) and yj(x′) for all j ∈ I. It is not difficult to verify that these
two vectors are equal for each j ∈ I, except j = i, while yi(x) and yi(x′), for
the acting player i, differ by only one number: ui(ak) in yi(x′) substitutes for
ui(a0) in yi(x). The new number is strictly larger than the old one, because, by
assumption of Theorem 1, x′i is an improvement with respect to xi for player
i. Thus, vectors yj for all j 6= i remain unchanged, while yi becomes strictly
larger. Hence, no ri-cycle can appear.

An interesting question: what is the length of the longest sequence of re-
stricted improvements? Given n = |I|, p = |A|, and pi such that

∑n
i=1 pi =

p−1 ≥ n ≥ 1, the above proof of Theorem 1 implies the following upper bound:∑n
i=1 pi(p−pi). It would also be interesting to get an example with a high lower

bound.

3.2 Last Step Ri-acyclicity for Acyclic Di-graphs: Proof of The-
orem 2

Given a positional game (G, u) = (G, D, v0, u) whose di-graph G = (V,E) is
acyclic, let us order positions of V so that v < v′ whenever there is a directed
path from v to v′. To do so, let us assign to each position v ∈ V the length
of a longest path from v0 to v and then order arbitrarily positions with equal
numbers.

Given a strategy profile x, let us, for every i ∈ I, assign to each position
v ∈ Vi the outcome a(v, x) which x would result in starting from v and the
number ui(a(v, x)). These numbers form a |V \ VT |-dimensional vector y(x)
whose coordinates are assigned to positions v ∈ V \ VT . Since these positions
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are ordered, we can introduce the inverse lexicographic order over such vectors
y.

Let a player i ∈ I choose a last step ri-deviation x′i from xi. Then, y(x′) >
y(x), since the last changed coordinate increased: ui(ak) > ui(ak−1). Hence,
no last step ri-cycle can exist.

3.3 Strong Ri-acyclicity of Two-Person Games: Proof of The-
orem 3

Let us consider a two-person positional game G = (G, D, v0, u) and a strategy
profile x such that in the resulting play p = p(x) the terminal move (v, a)
belongs to a player i ∈ I. Then, a strong improvement x′i results in a terminal
a′ = p(x′) such that ui(a′) > ui(a). (This holds for n-person games, as well.)

Given a strong ri-cycle X = {x1, . . . , xk} ∈ X, let us assume, without any
loss of generality, that the game (G, D, v0, u) is minimal with respect to X ,
that is, the ri-cycle X is broken by eliminating any move from G. Furthermore,
let A(X ) denote the set of the corresponding outcomes: A(X ) = {a(xj), j =
1, . . . , k}. Note that several of the outcomes of the strategy profiles may be the
same and that A(X ) may contain c ∈ A (infinite play).

Let us introduce the directed multigraph E = E(X ) whose vertex-set is A(X )
and the directed edges are k pairs (aj , aj+1), where aj = a(xj), j = 1, . . . , k,
and k + 1 = 1. It is easy to see that E is Eulerian, i.e., E is strongly connected
and for each vertex its in-degree and out-degree are equal. An example of this
construction is shown in Figure 3.

Let E1 and E2 be the subgraphs of E induced by the edges corresponding to
deviations of players 1 and 2, respectively. Then, E1 and E2 are acyclic, since a
cycle would imply an inconsistent preference relation. In the example of Figure
3, the edges are partitioned accordingly (above and below the vertices), and the
subgraphs are indeed acyclic.

Hence, there is a vertex a1 whose out-degree in E1 and in-degree in E2 both
equal 0. In fact, an outcome a1 ∈ A(X ) most preferred by player 1 must have
this property. (We do not exclude ties in preferences; if there are several best
outcomes of player 1 then a1 can be any of them.) Similarly, we define a vertex
a2 whose in-degree in E1 and out-degree in E2 both equal 0.

Let us remark that either a1 or a2 might be equal to c, yet, not both. Thus,
without loss of generality, we can assume that a1 is a terminal outcome.

Obviously, a player, 1 or 2, has a move to a1. If 1 has such a move then
it cannot be improved in X , since u1(aj) ≤ u1(a1) for all j = 1, . . . , k and X
is a strong ri-cycle. Let us also recall that a1 has no incoming edges in E2.
Hence, in X , player 2 never makes an improvement that results in a1. In other
words, a player who has a move to a1 will make it either always, player 1, or
never, player 2. In both cases we obtain a contradiction with the minimality of
di-graph G.
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4 Laziness Restriction

In addition to the inside play restriction, let us consider the following closely
related but stronger restriction.

Let player i substitute strategy x′i for xi to get a new outcome a′ = a(x′)
instead of a = a(x). We call such a deviation lazy, or say that it satisfies the
laziness restriction, if it minimizes the number of positions in which player i
changes the decision to reach a′.

Let us note that the corresponding strategy x′i might not be unique.
Obviously, each lazy deviation satisfies the inside play restriction.
Furthermore, if a lazy deviation is an improvement, ui(a) < ui(a′), then

this improvement is strong.

Proposition 1. Given a strategy profile x, a target outcome a′ ∈ A, and a
player i ∈ I, the problem of finding a lazy deviation from xi to x′i such that
a(x′) = a′ (and x′ is obtained from x by substituting x′i for xi) reduces to the
shortest directed path problem.

Proof. Let us assign a length d(e) to each directed edge e ∈ E as follows:
d(e) = 0 if move e is prescribed by x, d(e) = 1 for every other possible move of
the acting player i, and d(e) =∞ for all other edges. Then let us consider two
cases: (i) a′ ∈ VT is a terminal and (ii) a′ = c.

In case (i), a shortest directed path from v0 to a′ defines a desired x′i, and
vice versa. Case (ii), a′ = c, is a little more complicated.

First, for every directed edge e = (v, v′) ∈ E, let us find a shortest directed
cycle Ce that contains e and its length de. This problem is easily reducible to
the shortest directed path problem, too. The following reduction works for an
arbitrary weighted di-graph G = (V,E). Given a directed edge e = (v, v′) ∈ E,
let us find a shortest directed path from v′ to v. In case of non-negative weights,
this can be done by Dijkstra’s algorithm.

Then, it is also easy to find a shortest di-cycle Cv through a given vertex
v ∈ V and its length dv; obviously, dv = minv′∈V (de | e = (v, v′)).

Then, let us apply Dijkstra’s algorithm again to find a shortest path pv from
v0 to every vertex v ∈ V and its length d0

v.
Finally, let us find a vertex v∗ in which minv∈V (d0

v + dv) is reached. It is
clear that the corresponding shortest directed path pv∗ and di-cycle Cv∗ define
the desired new strategy x′i.

5 Nash-Solvability of Two-Person Game Forms

If n = 2 and c ∈ A is the worst outcome for both players, Nash-solvability was
proven in [1]. In fact, the last assumption is not necessary: even if outcome c is
ranked by two players arbitrarily, Nash-solvability still holds. This observation
was recently made by Gimbert and Sørensen [4].

A two-person game form g is called:
Nash-solvable if for every utility function u : {1, 2} × A → R the obtained

game (g, u) has a Nash equilibrium.
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zero-sum-solvable if for each zero-sum utility function (u1(a)+u2(a) = 0 for
all a ∈ A) the obtained zero-sum game (g, u) has a Nash equilibrium, which is
called a saddle point for zero-sum games.
±-solvable if zero-sum solvability holds for each u that takes only values:

+1 and −1.
Necessary and sufficient conditions for zero-sum solvability were obtained

by Edmonds and Fulkerson [3] in 1970; see also [5]. Somewhat surprisingly,
these conditions remain necessary and sufficient for ±-solvability and for Nash-
solvability, as well; in other words, all three above types of solvability are equiv-
alent, in case of two-person game forms [6]; see also [7] and Appendix 1 of [2].

Proposition 2. Each two-person positional game form in which all di-cycles
form one outcome is Nash-solvable.

Proof. Let G = (G, D, v0, u) be a two-person zero-sum positional game, where
u : I × A → {−1, +1} is a zero-sum ±1 utility function. Let Ai ⊆ A denote
the outcomes winning for player i ∈ I = {1, 2}. Without any loss of generality
we can assume that c ∈ A1, that is, u1(c) = 1, while u2(c) = −1. Let V 2 ⊆ V
denote the set of positions in which player 2 can enforce a terminal from A2.
Then, obviously, player 2 wins whenever v0 ∈ V 2. Let us prove that player 1
wins otherwise, when v0 ∈ V 1 = V \ V 2.

Indeed, if v ∈ V 1 ∩ V2 then v′ ∈ V 1 for every move (v, v′) of player 2; if
v ∈ V 1 ∩ V1 then player 1 has a move (v, v′) such that v′ ∈ V1. Let player 1
choose such a move for every position v ∈ V 1 ∩ V1 and an arbitrary move in
each remaining position v ∈ V 2 ∩ V1. This rule defines a strategy x1. Let us
fix an arbitrary strategy x2 of player 2 and consider the profile x = (x1, x2).
Obviously, the play p(x) cannot come to V2 if v0 ∈ V1. Hence, for the outcome
a = a(x) we have: either a ∈ V 1 or a = c. In both cases player 1 wins. Thus,
the game is Nash-solvable.

Let us recall that this result also follows immediately from Theorem 3.
Finally, let us briefly consider a refinement of the Nash equilibrium con-

cept, the so-called subgame perfect equilibrium, where a strategy profile is an
equilibrium regardless of the choice of starting position.

It is not difficult to see that already for two-person games a Nash equilib-
rium can be unique but not subgame perfect. Let us consider the example in
Figure 10. There are only four different strategy profiles and for all of them
there is a choice of starting position for which the profile is not an equilibrium.

6 Conclusions and Open Problems

Nash-solvability of n-person positional games (in which all di-cycles form a
single outcome) holds for n = 2 and remains an open problem for n > 2.

For n = 2, we prove strong ri-acyclicity, which implies Nash-solvability.
Computing Nash equilibria efficiently is another interesting issue for further
investigation.

For n ≥ 4 there are examples of best reply strong c-free ri-cycles. Yet, it
remains open whether such c-free examples exist for n = 3.



Paper 3. On Acyclicity of Games with Cycles 87

1

2

a1

a2

c <2 a2

1

2

a1

a2

a2 <1 a1

1

2

a1

a2

a2 <2 a1

1

2

a1

a2

a1 <1 c

1 : a2 < a1 < c

2 : c < a2 < a1

Figure 10: Two-person game with no subgame perfect positional strategies.
The improvements do not obey any inside play restriction, since there is no
fixed starting position.
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Paper 4

Hiroimono is NP-Complete

Daniel Andersson

Abstract. In a Hiroimono puzzle, one must collect a set of stones from a
square grid, moving along grid lines, picking up stones as one encounters them,
and changing direction only when one picks up a stone. We show that deciding
the solvability of such puzzles is NP-complete.

This is a reformatted version of my paper in Proceedings of the Fourth Inter-
national Conference on Fun with Algorithms (FUN 2007), LNCS 4475.
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(a) (b) (c) (d)

Figure 1: (a) A Hiroimono puzzle. (b) A solution to (a). (c) An unsolvable
puzzle. (d) An exercise.

1 Introduction

Hiroimono ( , “things picked up”) is an ancient Japanese class of tour
puzzles. In a Hiroimono puzzle, we are given a square grid with stones placed
at some grid points, and our task is to move along the grid lines and collect all
the stones, while respecting the following rules:

1. We may start at any stone.

2. When a stone is encountered, we must pick it up.

3. We may change direction only when we pick up a stone.

4. We must not make 180◦ turns.

Figure 1 shows some small example puzzles.

Although it is more than half a millennium old [2], Hiroimono, also known
as Goishi Hiroi ( ), appears in magazines, newspapers, and the World
Puzzle Championship. Many other popular games and puzzles have been stud-
ied from a complexity-theoretic point of view and proved to give rise to hard
computational problems, e.g. Tetris [4], Minesweeper [6], Sokoban [3], and Su-
doku (also known as Number Place) [7]. We shall see that this is also the case
for Hiroimono.

We will show that deciding the solvability of a given Hiroimono puzzle is
NP-complete and that specifying a starting stone (a common variation) and/or
allowing 180◦ turns (surprisingly uncommon) does not change this fact.

Definition 1. HIROIMONO is the problem of deciding for a given nonempty

list of distinct integer points representing a set of stones on the Cartesian grid,

whether the corresponding Hiroimono puzzle is solvable under rules 1–4. The

definition of START-HIROIMONO is the same, except that it replaces rule 1 with

a rule stating that we must start at the first stone in the given list. Finally,

180-HIROIMONO and 180-START-HIROIMONO are derived from HIROIMONO

and START-HIROIMONO, respectively, by lifting rule 4.

Theorem 1. All problems in Definition 1 are NP-complete.

These problems obviously belong to NP. To show their hardness, we will
construct a reduction from 3-SAT [5] to all four of them.
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Figure 2: The puzzle p corresponding to the formula φ. Although formally,
problem instances are ordered lists of integer points, we leave out irrelevant
details like orientation, absolute position, and ordering after the first stone .

2 Reduction

Suppose that we are given as input a CNF formula φ = C1 ∧C2∧ · · · ∧Cm with
variables x1, x2, . . . , xn and with three literals in each clause. We output the
puzzle p defined in Fig. 2–4. Figure 5 shows an example.

3 Correctness

From Definition 1, it follows that

START-HIROIMONO
HIROIMONO

180-HIROIMONO.
180-START-HIROIMONO

⊆

⊆⊆
⊆

Thus, to prove that the map φ 7→ p from the previous section is indeed a correct
reduction from 3-SAT to each of the four problems above, it suffices to show
that φ ∈ 3-SAT ⇒ p ∈ START-HIROIMONO and p ∈ 180-HIROIMONO ⇒ φ ∈

3-SAT.

3.1 Satisfiability Implies Solvability

Suppose that φ has a satisfying truth assignment t∗. We will solve p in two
stages. First, we start at the leftmost stone and go to the upper rightmost
stone along the path R(t∗), where we for any truth assignment t, define R(t) as
shown in Fig. 6–8.
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Figure 3: The definition of choice(i), representing the variable xi. The two
staircase-components represent the possible truth values, and the c-components
below them indicate the occurrence of the corresponding literals in each clause.

staircase :=

2
m

+
1

3m − 3k

3k − 3 3
m

−
1

c(k, 0) :=c(k, 1) :=

Figure 4: The definition of staircase, consisting of m “steps”, and the c-
components. Note that for any fixed k, all c(k, 1)-components in p, which
together represent Ck, are horizontally aligned.
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x1 x1 x2 x2

C1

C2

C3

C4

Figure 5: If φ = (x1∨x2∨x2)∧(x1∨x1∨x1)∧(x1∨x2∨x2)∧(x1∨x2∨x2), this is
p. Labels indicate the encoding of clauses, and dotted boxes indicate choice(1),
choice(2), and staircase-components. The implementation that generated this
example is accessible online [1].
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R(t) :=

Rch1

(t)
Rch2

(t)
Rchn

(t)

Figure 6: The path R(t), which, if t satisfies φ, is the first stage of solving p.

if t(xi) = ⊤

if t(xi) = ⊥

Rchi

(t) :=

Rsc

Rsc

Figure 7: Assigning a truth value by choosing the upper or lower staircase.

Rsc :=

Figure 8: Descending a staircase.
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p

Figure 9: The second stage of solving p.

Definition 2. Two stones on the same grid line are called neighbors.

By the construction of p and R, we have the following:

Lemma 1. For any t and k, after R(t), there is a stone in a c(k, 1)-component

with a neighbor in a staircase-component if and only if t satisfies Ck.

In the second stage, we go back through the choice-components as shown in
Fig. 9 and 10. We climb each remaining staircase by performing Rsc backwards,
but whenever possible, we use the first matching alternative in Fig. 11 to “collect
a clause”. By Lemma 1, we can collect all clauses. See Fig. 12 for an example.

Since this two-stage solution starts from the first stone and does not make
180◦ turns, it witnesses that p ∈ START-HIROIMONO.

3.2 Solvability Implies Satisfiability

Suppose that p ∈ 180-HIROIMONO, and let s be any solution witnessing this
(assuming neither that s starts at the leftmost stone nor that it avoids 180◦

turns). Now consider what happens as we solve p using s. Note that since the
topmost stone and the leftmost one each have only one neighbor, s must start
at one of these and end at the other. We will generalize this type of reasoning
to sets of stones.

Definition 3. A situation is a set of remaining stones and a current position.

A dead end D is a nonempty subset of the remaining stones such that:

• There is at most one remaining stone not in D that has a neighbor in D.

• No stone in D is on the same grid line as the current position.

A hopeless situation is one with two disjoint dead ends.

Since the stones in a dead end must be the very last ones picked up, a
solution can never create a hopeless situation. If we start at the topmost stone,
then we will after collecting at most four stones find ourselves in a hopeless
situation, as is illustrated in Fig. 13. Therefore, s must start at the leftmost
stone and end at the topmost one.
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choice(i)

if t(xi) = ⊤

if t(xi) = ⊥

Figure 10: In the second stage, the remaining staircase-component in choice(i)
is collected.

1 2 3

4 5 6

Figure 11: Six different ways to “collect a clause” when climbing a step in a
staircase-component.
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3

4

5

6

Figure 12: A solution to the example in Fig. 5. The dotted path shows the first
stage R(t∗), with t∗(x1) = ⊤ and t∗(x2) = ⊥. The solid path shows the second
stage, with numbers indicating the alternative in Fig. 11 used to collect each
clause.

Figure 13: Starting at the topmost stone inevitably leads to a hopeless situation.
A denotes the current position, and a denotes a stone in a dead end.
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staircase

choice

Figure 14: Possible deviations from the R-paths and the resulting dead ends.

We claim that there is an assignment t∗ such that s starts with R(t∗). Fig-
ure 14 shows all the ways that one might attempt to deviate from the set of
R-paths and the dead ends that would arise. By Lemma 1, we have that if
this t∗ were to fail to satisfy some clause Ck, then after R(t∗), the stones in
the c(k, 1)-components would together form a dead end. We conclude that the
assignment t∗ satisfies φ.

Acknowledgements. I thank Kristoffer Arnsfelt Hansen, who introduced me
to Hiroimono and suggested the investigation of its complexity, and my advisor,
Peter Bro Miltersen. I also thank the anonymous reviewers for their comments
and suggestions.
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Paper 5

Hashiwokakero is
NP-Complete

Daniel Andersson

Abstract. In a Hashiwokakero puzzle, one must build bridges to connect a set
of islands. We show that deciding the solvability of such puzzles is NP-complete.

This paper is to appear in Information Processing Letters.
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Figure 1: A Hashiwokakero puzzle and its solution.

1 Introduction

Hashiwokakero (“build bridges!”) is a type of puzzle published by Nikoli [3].
Given a set of points in the plane (islands), one must connect them using
vertical and horizontal line segments (bridges). Each island specifies how many
bridges that must be connected to it. A bridge must not cross any other bridge
or island, at most two bridges may run in parallel, and all islands must be
reachable from one another. Fig. 1 shows an example.

Demaine and Hearn [1] survey complexity results on combinatorial games
and puzzles, and they list Hashiwokakero as previously unstudied. We show:

Theorem 1. Deciding the solvability of a Hashiwokakero puzzle is NP-complete.

We construct a reduction from the following NP-hard problem [2]: Given a
finite set P ⊂ Z2, is there a Hamiltonian circuit in the unit distance graph of
P?

Figure 2: An example of the reduction and a pair of corresponding solutions.
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2 Reduction

We assume |P | ≥ 3. For each x ∈ P , output an island at 2x with bridge
requirement 6− |{y ∈ P : |x− y| = 1}| (big island) and an island at x + y with
bridge requirement 1 (small island) for each y ∈ Z2 \ P such that |x− y| = 1.
Fig. 2 shows an example.

Because of the reachability constraint, each small island must be connected
to a big island, and by construction, there is only one choice. After all such
connections have been made, all big islands have a remaining bridge requirement
of 2. Since |P | ≥ 3, the reachability constraint prevents parallel bridges between
big islands, and so the connection possibilities now correspond exactly to edges
in the unit distance graph of P .
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Paper 6

General Path Interdiction
with Local Budgets

Daniel Andersson

Abstract. Khachiyan et al. considered network interdiction where the user
finds a minimum-weight path after the interdictor removes edges subject to
vertex-local budgets. They showed that optimal removals can be efficiently
computed with a modified Dijkstra’s algorithm. We extend their model by
allowing partial interdiction of edges and using a more general definition of
path weight, and we show that efficient algorithms still exist.

We also give an almost-linear time algorithm for the special case of bot-
tleneck shortest path interdiction with vertex-local budgets of edge removals.
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1 Introduction

Network interdiction is a classic type of problem in operations research, origi-
nally motivated by military applications [5], where the objective of Interdictor
is to inhibit the usefulness of a network to User. Models that strive for real-
ism are often solved as mixed-integer programs using advanced heuristics [3].
By contrast, in this paper, we focus on simple models and worst-case efficient
algorithms.

Khachiyan et al. [4] considered a shortest path interdiction problem—a two-
stage model on a weighted directed graph where Interdictor first removes some
edges and User then finds a minimum-weight s-t path. Interdictor is constrained
by some budget. When this budget is global—Interdictor may remove any k
edges—finding the optimal choice is NP-hard [6]. Instead, Khachiyan et al. con-
sidered vertex-local budgets, where Interdictor may remove k(v) outgoing edges
from each vertex v, and showed this version to be solvable in polynomial time.

Khachiyan et al. also extended their results to a more general type of bud-
gets, where each vertex v has a family B(v) of “affordable” subsets of out(v)
(the outgoing edges from v). Naturally, B(v) is assumed to be downward closed
with respect to set inclusion (also known as an independence system).

In this paper, we further generalize the model of [4] by adding the capability
of partial interdiction—instead of just removing edges, Interdictor increases
their weights. We also generalize how User computes the weight of a path.
Last, we consider the special case of bottleneck interdiction, where User finds a
path minimizing the maximum weight. We show that for vertex-wise budgets
of edge removals, this case can be solved in almost-linear time.

2 General Path Interdiction

2.1 Definitions

We are given a simple directed graph G = (V,E) with a source s and a sink t
reachable from any vertex. Interdictor will first assign a non-negative weight
to each edge, and User will then find a minimum-weight s-t path.

At each vertex u, Interdictor selects a function wu : out(u) → R+ from
a given budget Wu ⊆ [out(u) → R+]. We require that the budget, when
viewed as a subset of R|out(u)|

+ , is non-empty, closed in the topological sense,
and downward closed with respect to the weak component-wise order.

Let w :=
⋃

u∈V wu. Extend w to paths by defining w(ε) := 0 and w(eπ) :=
p(w(e), w(π)) for any edge e and path π, where ε denotes the empty path and
p : R2

+ → R+ is a given operator that is continuous and non-decreasing in each
argument and such that p(0, x) ≥ x for all x ∈ R+. User finds an s-t path π∗

minimizing w.
General path interdiction with local budgets is the computational problem,

given G, s, t, p and budgets Wu for each vertex u, to find the supremum x∗ of
all x ∈ R+ such that Interdictor can ensure that w(π∗) ≥ x. Note that x∗ may
be ∞. We call x∗ the value of the instance, and we define the value of a vertex
u as the value of the modified instance where s := u.
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Figure 1: An example showing the task of L. Here, p is addition. An optimal
choice of w within the budget Wu (middle) ensures that both w(x) + 4 and
w(y) + 1 are at least 7 (right).

We can reduce the model of Khachiyan et al. to ours as follows: Let p be
the addition operator. Given a global weight function w : E → R+ and for
each vertex u a family B(u) of affordable subsets of out(u), define our budget
for each u as Wu := ∪X∈B(u){z : out(u)→ R+|∀e ∈ out(u) \X : z(e) ≤ w(e)}.

2.2 Algorithm

Below, we give an algorithm for solving general path interdiction with local
budgets. We denote by Ev the set of vertices with edges to v, and symmetrically
for vE. We assume that the operator p and the budgetsWu are given in the form
of an oracle L that can solve the following “local” optimization problem: Given
u, a subset S ⊆ uE, and a mapping d : S → R+ ∪ {∞}, find the supremum of
all z ∈ R+ such that there is w ∈ Wu with p(w(u, v), d(v)) ≥ z for all v ∈ S.
(We extend p(x,∞) :=∞ for all x.) See Figure 1 for an illustration. As another
example, for polyhedral budgets and linear p, the oracle L can be implemented
using linear programming.

Algorithm GPI
1. d[V ]←∞
2. d[t]← 0
3. Q← V
4. while Q 6= ∅
5. do v ← arg minu∈Q d[u]
6. Q← Q \ {v}
7. for u ∈ Ev ∩Q
8. do d[u]← L(u, uE \Q, d)
9. return d[s]

The mapping d contains an upper bound on the value of each vertex, and
when a vertex u is removed from Q, then d[u] is exactly the value of u. The full
correctness proof is analogous to that of [4, Section 2.3], hence omitted. Using
a Fibonacci heap to store the elements of Q ordered by their values in d, the
running time is O(|E|+ |V | log |V |) with O(|E|) calls to the oracle L.
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3 Bottleneck Shortest Path Interdiction

3.1 Algorithm

We now consider the special case where p is the maximum operator (i.e., User
finds the bottleneck1 shortest path), there is a global weight function w : E →
R+ and each vertex u has a budget of k(u) edge removals. The following
algorithm is similar to the “modified algorithm” in [4, Section 2.4].

Algorithm BSPI
1. for u ∈ V do b[u]← k(u)
2. for e ∈ E do c[e]← w(e)
3. T ← {t} (∗ finished vertices ∗)
4. P ← in(t) (∗ edges across the cut (V \ T, T ) ∗)
5. while P 6= ∅
6. do (u, v)← arg mine∈P c[e]
7. P ← P \ {(u, v)}
8. if b[u] > 0 (∗ greedily remove (u, v) if possible ∗)
9. then E ← E \ {(u, v)}
10. b[u]← b[u]− 1
11. else T ← T ∪ {u}
12. if u = s then return c[u, v]
13. for e ∈ in(u) \ T (∗ propagate the value of u ∗)
14. do c[e]← max{c[e], c[u, v]}
15. P ← P ∪ {e}
16. return ∞

Using a binary heap priority queue for the elements of P gives an O(|E| log |V |)
running time. However, we can obtain an almost-linear running time by using
the following technique that Gabow and Tarjan [2] successfully applied to other
bottleneck graph problems.

First, note that the universe of keys in the priority queue is w(E). Thus, we
may first sort all weights and replace them by integers 1, . . . , |E|. Then, since
extractions are monotone, all our priority queue operations can be implemented
in amortized constant time by keeping an array of |E| buckets. Thus, when
weights are already sorted, BSPI runs in O(|E|) time.

The remaining challenge is to avoid completely sorting the weights. For
example, if weights are first partitioned into “light” and “heavy”, and BSPI
is then run on this “coarse” problem (having only two edge weights), it is not
hard to see that it will correctly classify the value of the instance as either light
or heavy. If the value is light, then all heavy weights can be combined into
one, and vice versa. In any case, the number of weights is (roughly) halved. A
more sophisticated coarsening scheme (see [1, 2]) yields a total running time of
O(|E| log∗ |V |). This matches the best known bound without interdiction—we
get interdiction “for free”.

1The term “bottleneck” is more apt if weights are viewed as inverted capacities.
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3.2 Remarks

There is a linear-time reduction from solving Washburn’s deterministic graph-
ical games [1] to our bottleneck interdiction problem. The basic idea, in the
terminology of [1], is to let k(v) := 0 for vertices belonging to player Min and
k(v) := |out(v)| − 1 for vertices belonging to player Max. Thus, a linear-time
algorithm for bottleneck interdiction would settle the remaining open problem
of [1].

Finally, we note that the global budget version of bottleneck interdiction
(remove any k edges) is solvable in polynomial time, by performing a binary
search for the maximum weight x such that removing all edges with weight at
least x yields a network with s-t edge connectivity at most k.

Acknowledgements. The author thanks Anastasios Viglas for inspiring dis-
cussions and acknowledges partial support from the Center for Algorithmic
Game Theory funded by the Carlsberg Foundation.
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