
Cryptographic Protocols:
Theory and Implementation

Martin Geisler

PhD Dissertation

Department of Computer Science
Aarhus University

Denmark

Cryptographic Protocols:
Theory and Implementation

A Dissertation
Presented to the Faculty of Science

of Aarhus University
in Partial Fulfilment of the Requirements for the

PhD Degree

by
Martin Geisler

February 26, 2010

Abstract

The art of keeping messages secret is ancient. It must have been invented
only shortly after the invention of the messages themselves. Merchants and
generals have always had a need to exchange critical messages while keeping
them secret from the prying eyes of competitors or the enemy. Classical
cryptography was thus concerned with message confidentiality and integrity.
Modern cryptography cover a much wider range of subjects including the
area of secure multiparty computation, which will be the main topic of this
dissertation.

Our first contribution is a new protocol for secure comparison, presented
in Chapter 2. Comparisons play a key role in many systems such as online
auctions and benchmarks — it is not unreasonable to say that when parties
come together for a multiparty computation, it is because they want to
make decisions that depend on private information. Decisions depend on
comparisons. We have implemented the comparison protocol in Java and
benchmarks show that is it highly competitive and practical.

The biggest contribution of this dissertation is a general framework for
secure multiparty computation. Instead of making new ad hoc implementa-
tions for each protocol, we want a single and extensible framework. We call
this framework VIFF, short for Virtual Ideal Functionality Framework.

VIFF implements a UC functionality for general multiparty computation
on asynchronous networks. We give a formal definition of the functionality
in Chapter 3. There we also describe how we implemented the functionality
with a variant of the classic BGW protocol. The protocol is secure against a
semi-honest adversary.

In Chapter 4 we describe a new protocol for VIFF that is secure against
malicious adversaries. The protocol guarantees termination if the adversary
allows a preprocessing phase to terminate, in which no information is
released. The communication complexity of this protocol is the same as that
of a passively secure solution up to a constant factor. It is secure against an
adaptive and active adversary corrupting less than n/3 players.

Following the presentation of VIFF, we turn to a more theoretical subject.
Chapter 5 investigates the notion of a covert adversary — an adversary type
that intuitively lies in between semi-honest and malicious adversaries. The
main idea is that we accept that a cheating adversary may succeed with a
given probability, which need not be negligible. The reasoning is that in
many real-world cases, a large probability of being caught is sufficient to

v

vi Abstract

prevent the adversary from trying to cheat. We show how to compile a
passively secure protocol for honest majority into a protocol that is secure
against covert attacks, again for honest majority. The transformed protocol
catches cheating with probability 1

4 . Though we present no implementation
of this compiler, we believe it will be very efficient and practical to implement
using, say, VIFF. The cost of the modified protocol is essentially twice that
of the original plus an overhead that only depends on the number of inputs.

We round off this dissertation with Chapter 6. There we return to the
practical side of things and consider how users of online collaboration tools
and network storage services place considerable trust in their providers. We
presents a novel approach for protecting data integrity in revision control
systems hosted by an untrusted provider. It guarantees atomic read and
write operations on the shared data when the service is correct and pre-
serves fork-linearizability when the service is faulty. A prototype has been
implemented on top of the Subversion revision control system; benchmarks
show that the approach is practical.

Acknowledgments

I would like to thank Ivan Damgård for being my advisor during these four
years. Thank you for the support and encouragement and for letting me try
out my own ideas.

I am very grateful to all my colleagues at DAIMI: Rikke Bendlin, Dan
Lund Christensen, Matthias Fitzi, Jakob Funder, Thomas Jakobsen, Marcel
Keller, Mikkel Krøigård, Jonas Kölker, Carolin Lunemann, Sigurd Meldgaard,
Gert Læssøe Mikkelsen, Thomas Mølhave, Janus Dam Nielsen, Jesper Buus
Nielsen, Claudio Orlandi, Jakob Pagter, Michael Pedersen, Tord Reistad, Louis
Salvail, Christian Schaffner, Michael I. Schwartzbach, Miroslava Sotakova,
Asgeir Steine, Rune Thorbek, Tomas Toft, Nikos Triandopoulos, and Sarah
Zakarias. I will miss you guys a lot! Special thanks to the MADALGO research
group for always having a cold bottle of Coca Cola in their fridge.

Christian Cachin was an excellent host for my stay abroad at the IBM
Zurich Research Laboratory. Thanks also to the rest of the security group at
IBM, who made sure I had a very pleasant stay.

I am thankful to Lars Geisler, Marcel Keller, Mikkel Krøigård, Gert Læssøe
Mikkelsen, Thomas Mølhave, Rune Thorbek and Tomas Toft for their many
good comments during proof reading and to Henrik Stuart for sharing his
expert knowledge about LATEX.

Finally and most importantly, I want to thank my wife, Stephanie, for all
her love and encouragement over the years. I also want to thank my parents,
Marianne and Lars, and my brother, Kristoffer, for their help and support.

Martin Geisler,
Sabro, February 26, 2010.

vii

Contents

Abstract v

Acknowledgments vii

1 Introduction 1
1.1 Outline . 2
1.2 Notation . 3
1.3 The Universally Composable Security Framework 4

1.3.1 Security Definition . 4
1.3.2 Simulation . 6
1.3.3 Composability . 6

2 Homomorphic Encryption and Secure Comparison 7
2.1 Introduction . 7

2.1.1 Our Contribution . 9
2.1.2 Related Work . 10

2.2 Homomorphic Encryption . 12
2.2.1 Key Generation . 12
2.2.2 Encryption and Decryption 12
2.2.3 Security Evaluation . 12
2.2.4 Subgroup Indistinguishability Conjecture 13

2.3 Comparison Protocol . 14
2.4 Security . 16

2.4.1 Correctness . 16
2.4.2 Privacy . 17

2.5 Extensions . 18
2.5.1 Both Inputs are Private . 18
2.5.2 Both Inputs are Shared, Secret Output 18
2.5.3 Active Security . 19
2.5.4 Using the Cryptosystem for Multiparty Computation . 20

2.6 Complexity and Performance . 22
2.6.1 Setup and Parameters . 22
2.6.2 Implementation . 24
2.6.3 Benchmark Results . 25

2.7 Conclusion . 25

ix

x Contents

3 Virtual Ideal Functionality Framework 27
3.1 Introduction . 27

3.1.1 History . 27
3.1.2 Feature Overview . 29

3.2 Related Work . 30
3.2.1 Fairplay . 30
3.2.2 Sharemind . 32

3.3 Security Model . 34
3.3.1 Adversary Types . 34
3.3.2 Network Types . 36

3.4 VIFF Ideal Functionality . 37
3.4.1 Real World Protocol . 38
3.4.2 Simulator . 41

3.5 VIFF Implementation . 42
3.5.1 Twisted Network Library 42
3.5.2 Deferreds in VIFF . 44
3.5.3 Automatic Parallelism . 45
3.5.4 Tracking Asynchronous Operations 46

3.6 Mapping the Protocol to VIFF Methods 50
3.6.1 Standard Commands . 50
3.6.2 Additional Commands . 52
3.6.3 Commands from Mixin Classes 53

3.7 Multiplication in VIFF . 54
3.8 VIFF Applications . 55

3.8.1 Nordic Sugar . 55
3.8.2 Distributed RSA . 56
3.8.3 Distributed AES . 56
3.8.4 Secure Voting . 56

3.9 Conclusion . 57

4 Active Adversaries in VIFF 59
4.1 Introduction . 59
4.2 Overview and Security Model . 62

4.2.1 Overview of the Protocol 62
4.2.2 Security Model . 65

4.3 Protocol for Preprocessing . 66
4.3.1 Preprocessing based on Hyperinvertible Matrices . . . 67
4.3.2 Preprocessing based on Pseudorandom Secret-Sharing 69

4.4 Integration into VIFF . 71
4.5 Benchmark Results . 72

4.5.1 Test Setup . 72
4.5.2 Multiplications . 73
4.5.3 Multiplication Triples . 76
4.5.4 Comparisons . 77
4.5.5 Bandwidth . 78

4.6 Conclusion . 78

Contents xi

5 From Passive to Covert Security at Low Cost 79
5.1 Introduction . 79

5.1.1 Our Contribution . 80
5.1.2 Related Work and Discussion 82

5.2 Preliminaries . 83
5.3 Auxiliary Functionalities . 85
5.4 Protocol . 87

5.4.1 Chinese Whispers . 92
5.5 Implementation of Sub-Protocols 93
5.6 Conclusion . 97

6 Integrity Protection for Revision Control 99
6.1 Introduction . 99

6.1.1 Related Work . 100
6.1.2 Overview . 101

6.2 Design . 101
6.2.1 Model . 102
6.2.2 Consistent Storage Service 103
6.2.3 Revision Control . 104
6.2.4 Consistent Revision Control 106

6.3 Implementation . 108
6.3.1 Consistent Storage Service 109
6.3.2 Consistent Revision Control with Subversion 109

6.4 Evaluation . 112
6.4.1 Application Benchmark 113
6.4.2 Synthetic Benchmark . 113
6.4.3 Results . 116

6.5 Conclusion . 117

7 Conclusion and Future Work 119
7.1 Lessons Learned . 119

7.1.1 Large-Scale Testing Matters 119
7.1.2 Choice of Language . 120
7.1.3 Memory Management . 123

7.2 Future Work . 123
7.2.1 VIFF as a Platform . 124
7.2.2 Recovering from Fail-Stop Crashes 124
7.2.3 Protection Against Active Adversaries 127
7.2.4 Black-Box Secret Sharing 129

7.3 Conclusion . 130

Bibliography 131

Chapter 1

Introduction

The topic of this dissertation is cryptographic protocols, in particular pro-
tocols for secure multiparty computation (MPC). The field of multiparty
computation was introduced by the following little story:

Two millionaires wish to know who is richer; however, they do not
want to find out inadvertently any additional information about
each other’s wealth. How can they carry out such a conversation?

This question was put forth by Yao [100] in 1982. He continued to describe
a cryptographic protocol that would allow the two millionaires to settle
the question. At the end of the decade, secure multiparty computation
was an established branch of cryptography and the first completeness
papers [10, 24] had shown how any computable function could be computed
using secure multiparty computation.

The realization that all functions can be computed without leaking pri-
vate information is astounding. When the concept of public-key cryptogra-
phy was introduced in 1976 by Diffie and Hellman [41], they wrote:

We stand today on the brink of a revolution in cryptography.

Although the well-known RSA cryptosystem [88] was introduced two years
later, we needed much more infrastructure to make the revolution a reality.
It should take some twenty years before the use of public-key cryptography
became truly common with the rise of the Internet. Today, many people
order books, travels, movie tickets and countless other things in online
shops. As part of the transaction, their computers engage in a little protocol
based on public-key cryptography to establish a secure key with the online
retailer. The use of public-key cryptography is mostly invisible to the
common user, which is why it has been able to become so successful.

Establishing a secure key for private communication is an example of a
very specific cryptographic protocol. Secure multiparty computation is a
much wider research area. It has an even greater potential for changing the
way our computers share information when they work together. Multiparty
computation is also considerably harder and will take even longer than
public-key cryptography to gain a widespread impact. However, compared to

1

2 Chapter 1. Introduction

1976, we now do have the necessary infrastructure to run secure multiparty
computation for real. This has been demonstrated recently in an online
auction [16], which used software written for this dissertation. With the
great advances made on both the theoretical and technological side, we
believe that we will witness a new cryptographic evolution in the future.

This PhD dissertation documents some of the most recent advances in
the design and implementation of these protocols. Its main contribution is
the combination of new protocols with implementations of these protocols.
As is normal practice in computer science, the first years of secure multiparty
computation can best be described as a mathematical exercise. The first
completeness papers [10, 24] show how any function computable by a
Turing machine can be computed using secure multiparty computation.
However, they did not back this with an actual implementation. The software
presented in this dissertation tries to turn some of the theory into practice.

We will begin by describing the structure of this dissertation and followed
by a review of the basic notions used in secure multiparty computation.
We will assume the reader has a basic knowledge about cryptography and
cryptographic protocols. We will nevertheless give a basic introduction of
the security model used below.

1.1 Outline

The exploration of secure multiparty computation begin with the design
and implementation of a new protocol for secure comparison of integers.
This work is presented in Chapter 2. The chapter is based on the following
papers:

[33] I. Damgård, M. Geisler, and M. Krøigaard. Efficient and secure compar-
ison for on-line auctions. In J. Pieprzyk, H. Ghodosi, and E. Dawson,
editors, ACISP, volume 4586 of Lecture Notes in Computer Science,
pages 416–430. Springer, 2007

[34] I. Damgård, M. Geisler, and M. Krøigaard. Homomorphic encryption and
secure comparison. International Journal of Applied Cryptography, 1
(1):22–31, 2008

[36] I. Damgård, M. Geisler, and M. Krøigaard. A correction to ‘Efficient and
Secure Comparison for On-Line Auctions’. IJACT, 1(4):323–324, 2009

Following that, we introduce the secure multiparty computation frame-
work called VIFF. This is Chapter 3. The material in that chapter is partly
new and party from these sources:

[47] M. Geisler. VIFF: Virtual ideal functionality framework, 2007. Home-
page: http://viff.dk/

[48] M. Geisler. Implementing Asynchronous Multi-Party Computation. PhD
progress report, University of Aarhus, Denmark, Jan. 2008

1.2. Notation 3

[50] M. Geisler, I. Damgård, and B. Pinkas. MPC virtual machine specifi-
cation. Technical Report D4.3, CACE: Computer Aided Cryptography
Engineering, 2009

Using VIFF, we were able to implement and benchmark a new protocol
for asynchronous multiparty computation. This the content of Chapter 4,
which was also presented as the paper:

[37] I. Damgård, M. Geisler, M. Krøigaard, and J. B. Nielsen. Asynchronous
multiparty computation: Theory and implementation. In S. Jarecki and
G. Tsudik, editors, Public Key Cryptography, volume 5443 of Lecture
Notes in Computer Science, pages 160–179. Springer, 2009

Chapter 5 investigates how one can obtain highly efficient and practical
protocols, if one is willing to settle for security against covert adversaries.
The chapter was published as:

[39] I. Damgård, M. Geisler, and J. B. Nielsen. From passive to covert security
at low cost. In D. Micciancio, editor, TCC, volume 5978 of Lecture Notes
in Computer Science, pages 128–145. Springer, 2010

Returning to the issue about implementing cryptographic protocols,
Chapter 6 describes an implementation of a revision control system with
extra integrity guarantees. This was previously published as:

[19] C. Cachin and M. Geisler. Integrity protection for revision control. In
M. Abdalla, D. Pointcheval, P.-A. Fouque, and D. Vergnaud, editors,
ACNS, volume 5536 of Lecture Notes in Computer Science, pages 382–
399, 2009

Finally, Chapter 7 summarizes the findings of this dissertation. In ad-
dition to the papers mentioned above, the author of this dissertation has
made a minor contribution to the paper:

[49] M. Geisler and N. P. Smart. Distributing the key distribution centre in
Sakai-Kasahara based systems. In M. G. Parker, editor, IMA Interna-
tional Conference, volume 5921 of Lecture Notes in Computer Science,
pages 252–262. Springer, 2009

The paper describes how MPC can be used to de-centralize a key distribution
center. Using VIFF, we were able to quickly benchmark the core operation
performed by the key distribution center. The benchmark results confirmed
the practicality of the suggested protocol.

Before diving into protocol design in the next chapter, we will introduce
the notation used in this dissertation and the security framework we will
work with in the majority of the chapters.

1.2 Notation

We will denote the participants in our protocols by P1, . . . , Pn for a total
of n parties. We let t denote the corruption threshold up to which the

4 Chapter 1. Introduction

protocol remains secure. The adversary, who tries to violate the privacy or
correctness of the protocol, is denoted byA.

The protocol inputs are elements from some field F. Shamir secret
sharing [92] of x ∈ F with threshold/degree t results in a set of shares
denoted by [x]t or simply [x] when the threshold is clear from the context.
We use the notation [x]+ a[y] where a is a public constant to denote the
set of shares obtained by locally adding the share of x to the share of y
times a. Since Shamir sharing is linear, we have [x]+ a[y] = [x + ay].

1.3 The Universally Composable Security
Framework

Proving that a cryptographic protocol is secure is a hard problem. First we
must define rigorously what “secure” means, and then we must prove that
the protocol lives up to the definition. The Universally Composable (UC)
security framework by Canetti [23] helps solve these problems. We will now
give a brief overview of the UC framework we will be using repeatedly in the
rest of this dissertation.

1.3.1 Security Definition

We begin with an informal statement of what it means to be secure:

Definition 1.1 A protocol is secure if an outside observer cannot distinguish
between an execution of the real protocol and a known-secure replacement
protocol. 	

Even though this definition is very short and slightly recursive, it turns
out to be useful. It gives a testable condition of when a protocol is secure:
you take a protocol which is known to be secure and prove that the new
protocol is indistinguishable from the secure protocol. At the hearth of this
definition lies an assumption that security is transitive — if a protocol π
looks very much like a protocol ρ, and if ρ is (somehow) known to be secure,
then π is taken to be secure as well.

To bootstrap this process we use a trick and compare our protocol with
a protocol which we define to be secure. This ideal protocol uses an ideal
functionality to do the computation. This is an interactive Turing machine,
F , which cannot be corrupted and always calculates the correct result. The
ideal protocol is simple: everybody starts by handing their inputs over to
F , which spends some time calculating and finally gives everybody their
correct result. Clearly no information is leaked and it makes good sense to
define this as “secure”. Since the parties do nothing in the ideal protocol
we will call them dummy parties. To provide maximum generality, we will
allow the observer to specify the inputs to the dummy parties. We will call
the observer the environment and denote it by Z from now on to match the
standard UC terminology.

The real protocol is not so simple and contains actual parties which
follow some protocol π without having an ideal functionality to help them.

1.3. The Universally Composable Security Framework 5

An additional entity is the adversary, A. By default the adversary listens
to all communication between the parties and observes the internal state
of corrupted players (a passive or semi-honest adversary) but may also be
allowed to take full control over a party and change messages arbitrarily (an
active or malicious adversary). The adversary can talk with the environment
both to provide details of what it sees in the protocol, but also to receive
instructions on what to do next. Figure 1.1a shows this situation with
no corruptions. Note that the parties cannot communicate directly with
each other — all communication between parties must pass through the
adversary. Unless encryption is used,A can thus read all messages.

In a synchronous network, the adversary is forbidden from interfering
with the network traffic. This means that A must deliver all messages re-
ceived in round i at the beginning of round i+1. To model an asynchronous
network, A is allowed to delay and reorder the delivery of the messages
sent between the parties in the protocol arbitrarily, even when semi-honest.
We only require that messages are eventually delivered and that they are
delivered unmodified. This models a typical asynchronous network with a
reliable transport layer.

The goal of Z is to distinguish the situation in Figure 1.1a from the ideal
protocol execution. Since Z expects to talk to the adversary, we include an
extra party called a simulator, S, in the ideal protocol experiment shown
in Figure 1.1b. The job of the simulator is to pretend to be the adversary
towards Z. To do this the simulator gets help from F — the precise amount
of help allowed is part of the description of F . Since the behavior of F is our
definition of security, we do not want the help to leak private information.
This means that F will typically send messages of the form (x := ?) which
only tells S that x now has a value, but does not tell it which value.

A P1 P2 · · · Pn

Z

(a) Real world.

S P1 P2 · · · Pn

Z

F
(b) Ideal world.

Figure 1.1: The two central protocol experiments in the UC framework. Note how
the two figures looks exactly the same from the perspective of Z who, in both cases,
interacts with n+ 1 parties over a network.

Having described the two protocol experiments and their participants,
we now define a random variable execF ,S,Z to be the output of Z in the
ideal world execution with the ideal functionality F and simulator S. Define
execπ,A,Z to be the output of Z in the real world execution of π under attack
by A. Let k be the security parameter. We can then refine Definition 1.1
slightly as follows:

Definition 1.2 (UC Security) A protocol π is secure with regard to an ideal

6 Chapter 1. Introduction

functionality F if for any adversary A there exists a simulator S such
that for any environment Z the statistical difference between execF ,S,Z and
execπ,A,Z is negligible in k. 	

We say that π UC-realizes F .
A more formal definition can be found in the full UC paper [23], but this

definition should capture the gist of what it means to be UC-secure. Let
us just here remark that if the environment has unbounded computational
power, one talks about perfect security when the two distributions are equal,
and statistical security otherwise. If Z is limited to polynomial computations
one obtains computational security.

1.3.2 Simulation

To prove that a protocol is secure, we must describe how the simulator fools
the environment. It must produce output distributed in the same way asA
would in the real world, otherwise Z would notice and the protocol would
not be secure. Figure 1.2 shows how the simulator will typically run a copy
ofA inside and feed it input as it gets messages from F . Based on howA
reacts to the inputs, the simulator can decide what to send to Z and F .

SA P1 P2 · · · Pn

Z

F

Figure 1.2: The ideal world with the adversary run by the simulator. Giving A
inputs distributed as in the real world ensures that the output of A is correctly
distributed in the ideal world.

1.3.3 Composability

An important benefit of the UC framework is composability: UC-secure
protocols can be composed in arbitrary ways to build larger protocols,
which remain UC-secure.

Protocols are composed via the definition of a hybrid world. This pro-
tocol experiment is like the real world, but the protocol participants can
additionally make calls to an ideal functionality. Let ρ be a protocol that
UC-realizes a functionality F and let π be a hybrid protocol that makes
calls to F . We say that π is a F -hybrid protocol. Let πρ denote the real
world protocol where we have replaced each invocation of F in π with an
execution of ρ. The composition theorem in [23] says that πρ realizes G in
the real world when π realizes G in the hybrid world.

UC functionalities have been defined for standard tasks such as secure
message transmission, public-key cryptography, secret sharing, etc.

Chapter 2

Homomorphic Encryption and
Secure Comparison

We begin our treatment of cryptographic protocols by looking at a simple
problem in where two parties wish to conduct an online auction. Auctions
requires comparison of bids to determine the winner — we propose an effi-
cient and practical protocol for comparison of private integers. This chapter
also introduces a homomorphic cryptosystem needed by the protocol. The
system is designed to be more efficient than previous solutions and can also
be used as the basis of efficient and general secure multiparty computation.

The underlying theme of this thesis is the investigating of protocol
design and protocol implementations. We have therefore implemented
the comparison protocol in Java, in order to demonstrate its practicality.
For comparison of 16-bit numbers with security based on 1,024-bit RSA
(executed by two parties), our implementation takes 0.28 seconds including
all computation and communication. Using precomputation, we estimate
that one can save a factor of roughly 10.

The content of this chapter was first published in a preliminary form at
the ACISP 2007 conference [33]. A full version appeared in IJACT [34] the
following year. Unfortunately, the cryptosystem was flawed. The correc-
tion [36] is included in the following.

2.1 Introduction

Consider the following setting: Two or more players are given integers
nA and nB , where one or both are private, i.e., not known to all players.
We then want to decide whether nA ≥ nB , while making sure that the
comparison result is the only new information that becomes known. Many
variants of this problem exist, depending on whether nA, nB are known to
particular players, or unknown to everyone. It may even be the case that the
comparison result is not supposed to be public, but is to be produced in
encrypted form, for instance.

7

8 Chapter 2. Homomorphic Encryption and Secure Comparison

Secure comparison is a special case of general secure computation where
all players hold private inputs and want to compute some agreed function
of these inputs. Comparison protocols are very important ingredients
in many potential applications of secure computation. Examples of this
include auctions, benchmarking, and secure extraction of statistical data
from databases.

As a concrete example to illustrate the application of the results from
this chapter, we take a closer look at online auctions: many online auction
systems offer as a service to their customers that one can submit a maximum
bid to the system. It is then not necessary to be online permanently. The
system will instead automatically bid for you, until you win the auction or
your specified maximum is exceeded. We assume in the following what
we believe is a realistic scenario, namely that the auction system needs
to handle bidders that bid online manually, as well as others that use the
option of submitting a maximum bid.

Clearly, such a maximum bid is confidential information. Both the
auction company and other participants in the auction have an interest in
knowing such maximum bids in advance, and could exploit such knowledge
to their advantage. The auction company could force higher prices (what is
known as “shill bidding”) and thereby increase its income and other bidders
might learn how valuable a given item is to others and change their strategy
accordingly.

In a situation where anyone can place a bid by just connecting to a
web site, the security one can obtain by storing the maximum bids with a
single trusted party is questionable, in particular if that trusted party is
the auction company. Indeed, there are cases known from real auctions
where an auction company has been accused of misusing its knowledge of
maximum bids [89].

An obvious solution is to share the responsibility of storing the critical
data among several parties, and do the required operations via secure
computation. One can then make sure that, unless all parties are corrupted,
every time the bid goes up, it will become known whether a given player
is still in the game because his maximum is larger then the current price,
but the actual value of the maximum will remain secret. To keep the
communication pattern simple and to minimize problems with maintenance
and other logistical problems, it seems better to keep the number of involved
players small. We therefore consider the following model:

An input client C supplies an `-bit integer m as private input to the
computation, which is done by players A and B. Because of our motivating
scenario, we require that the input is supplied by sending one message to
A, respectively to B, and no further interaction with C is necessary. One
may, for instance, think of A as the auction house and B as an accounting
company. We will also refer to these as the server and assisting server.

An integer x (which we think of as the currently highest bid) is public
input. As public output, we want to compute one bit that is 1 ifm > x and 0
otherwise, i.e., the output tells us if C is still in the game and wants to raise
the bid, say by some fixed amount agreed in advance. Of course, we want to
do the computation securely so that neither A nor B learns any information

2.1. Introduction 9

on m other than the comparison result.
We will assume that players are honest but curious. We believe this is

quite a reasonable assumption in our scenario: C may submit incorrectly
formed input, but since the protocol handles even malformed input deter-
ministically, he cannot gain anything from this: any malformed bid will
determine a number x0 such that when the current price reaches x0, the
protocol output will cause C to leave the game. So this is equivalent to
submitting x0 in correct format. Moreover, the actions of A and B can be
checked after the auction is over — if C notices that incorrect decisions
were taken, he can prove that his bid was not correctly handled. Such “pub-
lic disgrace” is likely to be enough to discourage cheating in our scenario.
Nevertheless, we sketch later in the chapter how to obtain active security at
moderate extra cost.

2.1.1 Our Contribution

We first propose a new homomorphic cryptosystem that is well suited for
our application, this is the topic of Section 2.2. The cryptosystem is much
more efficient than, e.g., the encryption scheme by Paillier [81] in terms of
en- and decryption time. The efficiency is obtained partly by using a variant
of Groth’s idea of exploiting subgroups of Z∗n for an RSA modulus n [57],
and partly by aiming for a rather small plaintext space, of size θ(`).

Later in the chapter, we show how the size of the plaintext space can
be extended to allow for more general applications, how to do threshold
decryption, and how to apply these observations to do secure multiparty
computation.

In Section 2.3 we propose a comparison protocol in our model described
above, based on additive secret sharing and homomorphic encryption. The
protocol is a new variant of an idea originating in a paper by Blake and
Kolesnikov [11]. Their original idea was also based on homomorphic encryp-
tion but required a plaintext space of size exponential in `. Here, we present
a new technique allowing us to make do with a smaller plaintext space. This
means that the exponentiations we do will be with smaller exponents and
this improves efficiency. Also, we save computing time by using additive
secret sharing as much as possible instead of homomorphic encryption.

As mentioned, our encryption is based on a k-bit RSA modulus. In
addition there is an “information theoretic” security parameter t involved
which is approximately the logarithm of the size of the subgroup of Z∗n we
use. Here, t needs to be large enough so that exhaustive search for the
order of the subgroup and other generic attacks are not feasible. Section 2.4
contains more information about the security of the protocol.

In the protocol, C sends a single message to A and another to B, both of
size O(` log`+ k) bits. To do the comparison, there is one message from A
to B and one from B to A. The size of each of these messages is O(`k) bits.
As for computational complexity, both A and B need to do O(`(t + log`))
multiplications mod n. Realistic values of the parameters might be k =
1024, t = 160, and ` = 16. In this case, counting the actual number of
multiplications works out to roughly 7 full scale exponentiations mod n,

10 Chapter 2. Homomorphic Encryption and Secure Comparison

and takes 0.28 seconds in our implementation, including all computation
and communication time. Moreover, most of the work can be done as
preprocessing. Using this possibility in the concrete case above, the online
work for B is about 0.6 exponentiations for A and 0.06 for B, so that we can
expect to save a factor of at least 10 compared to the basic version. It is
clear that the online performance of such a protocol is extremely important:
auctions often run up a certain deadline, and bidders in practice sometimes
play a strategy where they suddenly submit a much larger bid just before
the deadline in the hope of taking other bidders by surprise. In such a
scenario, one cannot wait a long time for a comparison protocol to finish.

We emphasize that, while it may seem easier to do secure comparison
when one of the input numbers is public, we do this variant only because it
comes up naturally in our example scenario. In fact, it is straightforward
to modify our protocol to fit related scenarios. For instance, the case
where A has a private integer a, B has a private integer b and we want
to compare a and b, can be handled with essentially the same cost as in
our model. Moreover, at the expense of a factor about 2 in the round,
communication and computational complexities, our protocol generalizes
to handle comparison of two integers that are shared between A and B, i.e.,
are unknown to both of them. It is also possible to keep the comparison
result secret, i.e., produce it in encrypted form. More details on this are
given in Section 2.5.

Finally, in Section 2.6 we describe our implementation and the results of
a benchmark between our proposed protocol and the one from [44].

2.1.2 Related Work

There is a very large amount of work on secure auctions, which we do
not attempt to survey here, as our main concern is secure protocols for
comparison, and the online auction is mainly a motivating scenario. One
may of course do secure comparison of integers using generic multiparty
computation techniques. For the two-party case, the most efficient generic
solution is based on Yao-garbled circuits, which were proposed for use in
auctions by Naor et al. [78]. Such methods are typically less efficient than
ad hoc methods for comparison — although the difference is not very large
when considering passive security. For instance, the Yao garbled circuit
method requires — in addition to garbling the circuit — that we do an
oblivious transfer of a secret key for every bit position of the numbers to
compare. This last part is already comparable to the cost of the best known
ad hoc methods.

There are several existing ad hoc techniques for comparison. We already
mentioned the one from [11] above, a later variant appeared in [12], allowing
comparison of two numbers that are unknown to the parties. A completely
different technique was proposed earlier by Fischlin [44].

It should be noted that previous protocols typically are for the model
where A has a private number a, B has a number b, and we want to compare
a and b. Our model is a bit different, as we have one public number that
is to be compared to a number that should be known to neither party, and

2.1. Introduction 11

so has to be shared between them. However, the distinction is not very
important: previous protocols can quite easily be transformed to our model,
and as mentioned above, our protocol can also handle the other models at
marginal extra cost. Therefore the comparison of our solution to previous
work can safely ignore the choice of model.

Fischlin’s protocol is based on the well-known idea of encrypting bits as
quadratic residues and non-residues modulo an RSA modulus, and essen-
tially simulates a Boolean formula that computes the result of the compari-
son. Compared to [11, 12], this saves computing time, since creating such an
encryption is much faster than creating a Paillier encryption. However, in
order to handle the nonlinear operations required in the formula, Fischlin
extends the encryption of each bit into a sequence of λ numbers, where
λ is a parameter controlling the probability that the protocol returns an
incorrect answer. Since these encryptions have to be communicated, we get
a communication complexity of Ω(λ`k) bits. The parameter λ should be
chosen such that 5` · 2−λ is an acceptable (small enough) error probability,
so this makes the communication complexity significantly larger than the
O(`k) bits one gets in our protocol and the one from [12].

The computational complexity for Fischlin’s protocol is O(`λ) modular
multiplications, which for typical parameter values is much smaller than that
of [11, 12], namely O(`k) multiplications.1 Fischlin’s result is not directly
comparable to ours, since our parameter t is of a different nature than
Fischlin’s λ: t controls the probability that the best known generic attack
breaks our encryption scheme, while λ controls the probability that the
protocol gives incorrect results. However, if we assume that parameters
are chosen to make the two probabilities be roughly equal, then the two
computational complexities are asymptotically the same.

Thus, in a nutshell, [11, 12] has small communication and large compu-
tational complexity while [44] is the other way around. In comparison, our
contribution allows us to get “the best of both worlds”. In Section 2.6.3
we give results of a comparison between implementations of our own and
Fischlin’s protocols. Finally, note that our protocol always computes the
correct result, whereas Fischlin’s has a small error probability.

In concurrent independent work, Garay et al. [46] propose protocols for
comparison based on homomorphic encryption that are somewhat related
to ours, although they focus on the model where the comparison result
is to remain secret. They present a logarithmic round protocol based on
emulating a new Boolean circuit for comparison, and they also have a
constant round solution. In comparison, we do not consider the possibility
of saving computation and communication in return for a larger number of
rounds. On the other hand, their constant round solution is based directly
on Blake and Kolesnikov’s method, i.e., they do not have our optimization
that allows us to make do with a smaller plaintext space for the encryption
scheme, which means that our constant round protocol is more efficient.

1In [11, 12] the emphasis is on using the comparison to transfer a piece of data, conditioned
on the result of the comparison. For this application, their solution has advantages over
Fischlin’s, even though the comparison itself is slower.

12 Chapter 2. Homomorphic Encryption and Secure Comparison

2.2 Homomorphic Encryption

For our protocol we need a semantically secure and additively homomorphic
cryptosystem which we will now describe.

2.2.1 Key Generation

To generate keys, we take as input parameters k, t, and `, where k > t >
`. We first generate a k-bit RSA modulus n = pq for primes p,q. This
should be done in such a way that there exists three primes u, vp, and vq,
where vp | (p − 1) and vq | (q − 1). We will later be doing additions of
small numbers in Zu where we want to avoid reductions modulo u, but for
efficiency we want u to be as small as possible. For these reasons we choose
u as the minimal prime greater than `+ 2. The only condition on vp and vq
is that they are random t-bit primes. We set v = vpvq in the following.

Finally, we choose random elements g,h ∈ Z∗n such that the multiplica-
tive order of h is v modulo p and q, and g has order uv . The public key is
now pk = (n,g,h,u) and the secret key is sk = (p, q, vp, vq). The plaintext
space is Zu, while the ciphertext space is Z∗n.

2.2.2 Encryption and Decryption

To encrypt m ∈ Zu, we choose r as a random 2t-bit integer, and let the
ciphertext be

Epk(m, r) = gmhr mod n.

For decryption of a ciphertext c, it turns out that for our main protocol,
we will only need to decide whether c encrypts 0 or not. This is easy, since
cv mod n = 1 if and only if c encrypts 0. This follows from the fact that v
is the order of h, uv is the order of g, and m < u. If the party doing the
decryption has also stored the factors of n, one can optimize this by instead
checking whether cv mod p = 1, which will save a factor of 3–4 in practice.

It is also possible to do a “real” decryption by noting that

Epk(m, r)v = (gmhr)v = (gv)m mod n.

Clearly, gv has order u, so there is a 1–1 correspondence between values
of m from Zu and values of (gv)m mod n. Since u is very small, one can
simply build a table containing values of (gv)m mod n and corresponding
values of m.

2.2.3 Security Evaluation

To evaluate the security, there are various attacks to consider. Factoring n
will be sufficient to break the scheme, so we must assume factoring is hard.
Also note that it does not seem easy to compute elements with orders such
as g,h unless you know the factors of n, so we implicitly assume here that
knowledge of g,h does not help to factor. Note that it is very important

2.2. Homomorphic Encryption 13

that g,h both have the same order modulo both p and q. If g had order uv
modulo p but was 1 modulo q, then g would have the correct order modulo
n, but gcd(g − 1, n) would immediately give a factor of n.

One may also search for the secret key v , and so t needs to be large
enough so that exhaustive search for v is not feasible. A more efficient
generic attack (which is the best we know of) is to compute hR mod n for
many large and random values of R. By the “birthday paradox”, we are
likely to find values R,R′ where hR = hR′ mod n after about 2t/2 attempts.
In this case v divides R − R′, so generating a few of these differences and
computing the greatest common divisor will produce v . Thus, we need to
choose t such that 2t/2 exponentiations is infeasible.

To prove the cryptosystem semantically secure, we must ensure that
hr is indistinguishable from a uniformly random element in the group
generated by h. Recall that h has order v . In the original version of the
cryptosystem [33, 34], v was a t-bit prime and the randomizer r was chosen
as a 2t-bit integer. Consequently, hr were statistically indistinguishable
from a uniformly random element in the group generated by h. Following
the correction in [36], v is now a 2t-bit composite. The natural choice for r
would therefore be an integer larger than v , say a 3t-bit integer. However,
as mentioned above, we will make the assumption that raising h to a 2t-bit
integer is sufficient to make hr indistinguishable from a uniformly random
element.

To justify this assumption, we can look at a recent result by Goldreich
and Rosen [53], who recently investigated indistinguishability in a setting
similar to ours. Let n be a random k-bit RSA modulus, and let h be a
random element of Z∗n. They showed that hr mod n is computationally
indistinguishable from hR mod n, where R ∈R {0, . . . ,ordn(h) − 1}, and
r ∈R {0, . . . ,2dk/2e − 1}. In other words, R is a random exponent of “full
length” and r is a random exponent of “half length”. We cannot apply their
result directly to our case since our h is not random. However, their result
suggests that using a 2t-bit randomizer can be enough to hide hr .

2.2.4 Subgroup Indistinguishability Conjecture

To say something more precise about the required assumption, let G = 〈g〉
be the group generated by g, and H = 〈h〉 the group generated by h. We
have H ≤ G and that a random encryption is simply a uniformly random
element in G. The assumption underlying security is now

Conjecture 2.1 For any constant ` and for appropriate choice of t as a func-
tion of the security parameter k, the tuple (n,g,h,u,x) is computationally
indistinguishable from (n,g,h,u,y), where n,g,h,u are generated by the
key generation algorithm sketched above, x is uniform in G and y is uni-
form in H. ♦

Proposition 2.2 Under the above conjecture, the cryptosystem is semanti-
cally secure. �

Proof: Consider any polynomial time adversary who sees the public key,
chooses a message m and gets an encryption of m, which is of the form

14 Chapter 2. Homomorphic Encryption and Secure Comparison

gmhr mod n, where g has order uv and h has order v modulo p and q. The
conjecture now states that even given the public key, the adversary cannot
distinguish between a uniformly random element from H and one from G.
But hr was already indistinguishable from a random element in H, and so it
must also be computationally indistinguishable from a random element in G.
But this means that the adversary cannot distinguish the entire encryption
from a random element of G, and this is equivalent to semantic security —
recall that one of the equivalent definitions of semantic security requires
that encryptions of m be computationally indistinguishable from random
encryptions. �

The only reason we set t to be a function of k is that the standard
definition of semantic security talks about what happens asymptotically
when a single security parameter goes to infinity. From the known attacks
sketched above, we can choose t to be much smaller than k. Realistic values
might be k = 1024, t = 160.

Having seen the security proof, we can now explain why the cryptosystem
had to be changed. As mentioned above, the original system used a single
t-bit prime v in place of the two t-bit primes, vp, vq. The prime v was
chosen to divide both p − 1 and q − 1 and used in place of vpvq. However,
such a v also divides the (public) n−1. Now compute a = (n−1)/uj where
uj is the maximal power of u that divides n − 1 and consider x ∈ G. If
ord(x) = v , then x ∈ H and xa = 1 since a must contain a v factor. If the
order of x is u or uv , then x ∈ G \H and xa ≠ 1 since a contains no u
factors. The conjecture no longer holds.

Note that while it may seem natural to “solve” the problem by having v
divide only p − 1, say, this would not be secure either: if h still has to have
order v , this would force h to be 1 modulo q, and so one could factor n just
by computing gcd(n,h− 1).

Using two primes, vp, vq ensures that there no longer is an easy connec-
tion between n− 1 and the secret key, rendering the above attack useless.

A central property of the encryption scheme is that it is homomorphic
over u, i.e.,

Epk(m, r) · Epk(m′, r ′)mod n = Epk(m+m′ mod u, r + r ′).

The cryptosystem is related to that of [57], in fact ciphertexts in his system
also have the form gmhr mod n. The difference lies in the way n,g and
h are chosen. In particular, our idea of letting h,g have the same order
modulo p and q allows us to improve efficiency by using subgroups of Z∗n
that are even smaller than those from [57].

2.3 Comparison Protocol

For the protocol, we assume that A has generated a key pair sk = (p, q, v)
and pk = (n,u,g,h) for the homomorphic cryptosystem we described
previously. The protocol proceeds in two phases: an input sharing phase
in which the client must be online, and a computation phase where the

2.3. Comparison Protocol 15

server and assisting server determine the result while the client is offline.
See Figure 2.1 on the following page for an overview.

In the input sharing phase C secret shares his input m between A and B:

• Let the binary representation ofm bem` · · ·m1, wherem1 is the least
significant bit. C chooses, for i = 1, . . . , `, random pairs ai, bi ∈ Zu
subject to mi = ai + bi mod u.

• C sends privately a1, . . . , a` to A and b1, . . . , b`. This can be done using
any secure public-key cryptosystem with security parameter k, and
requires communicating O(` log` + k) bits.2 In practice, a standard
SSL connection would probably be used.

In the second phase we wish to determine the result m > x where x is
the current public price (with binary representation x` · · ·x1).

Assuming a value y ∈ Zu has been shared additively between A and B,
as C did it in the first phase, we write [y] for the pairs of shares involved,
so [y] stands for “a sharing of” y . Since the secret sharing scheme is linear
over Zu, A and B can compute from [y], [w] and a publically known value
α a sharing [y + αw mod u]. Note that this does not require interaction
but merely local computation. The protocol proceeds as follows:

• A and B compute, for i = 1, . . . , ` sharings [wi] where

wi =mi + xi − 2ximi =mi ⊕ xi.

• A and B now compute, for i = 1, . . . , ` sharings [ci] where

ci = xi −mi + 1+
∑̀
j=i+1

wj .

Note that if m > x, then there is exactly one position i where ci = 0,
otherwise no such position exists. Note also, that by the choice of u,
it can be seen that no reductions modulo u take place in the above
computations.

• Let αi and βi be the shares of ci that A and B have now locally com-
puted. A computes encryptions Epk(αi, ri) and sends them all to B.

• B chooses at random si ∈ Z∗u and s′i as a 2t-bit integer and computes a
random encryption of the form

γi =
(
Epk(αi, ri) · gβi

)si · hs′i mod n.

Note that, if ci = 0, this will be an essentially random encryption of 0,
otherwise it is an essentially random encryption of a random nonzero
value.

B sends these encryptions to A in randomly permuted order.

2We need to send ` log` bits, and public-key systems typically have θ(k)-bit plaintexts
and ciphertexts.

16 Chapter 2. Homomorphic Encryption and Secure Comparison

A B

C

a
1 , . . . , a

` b 1
, .
. .
, b̀

Epk(α1, r1), . . . , Epk(α`, r`)

π(γ1, . . . , γ`)

m > x

Figure 2.1: Our proposed protocol with both phases illustrated. In the first phase C
sends shares to A and B. The second phase consists of a message from A to B and
a reply, which A can decrypt to learn the result of the computation.

• A uses his secret key to decide, as described in the previous section,
whether any of the received encryptions contain 0. If this is the case,
he outputs “m > x”, otherwise he outputs “m ≤ x”.

A note on preprocessing: One can observe that the protocol frequently in-
structs players to compute a number of form hr mod n where r is randomly
chosen in some range, typically {0, . . . ,22t − 1}. Since these numbers do not
depend on the input, they can be precomputed and stored. As mentioned in
the Introduction, this has a major effect on performance because all other
exponentiations are done with very small exponents.

2.4 Security

In this section the protocol is proven secure against an honest but curious
adversary corrupting a single player at the start of the protocol.

The client C has as input its maximum bid m and all players have as
input the public bid x. The output given to A is the evaluation of m > x,
and B and C get no output.

In the following we argue correctness and we argue privacy using a
simulation argument. This immediately implies that our protocol is secure
in Canetti’s model for secure function evaluation [22] against a static and
passive adversary.

2.4.1 Correctness

The protocol must terminate with the correct result: m > x ⇐⇒ ∃i : ci = 0.
This follows easily by noting that both xi −mi + 1 and wi is nonnegative so

ci = 0 ⇐⇒ xi −mi + 1+
∑̀
j=i+1

wj = 0

⇐⇒ xi −mi + 1 = 0∧
∑̀
j=i+1

wj = 0.

2.4. Security 17

We can now conclude correctness of the protocol since xi −mi + 1 = 0 ⇐⇒
mi > xi and

∑`
j=i+1wj = 0 ⇐⇒ ∀j > i : mj = xj , which together imply

m > x. Note that since the sum of the wj is positive after the first position
in which xi ≠mi, there can be at most one zero among the ci.

2.4.2 Privacy

Privacy in our setting means that A learns only the result of the comparison,
and B learns nothing new. We can ignore the client as it has the only secret
input and already knows the result based on its input.

First assume that A is corrupt, i.e, that A tries to deduce information
about the maximum bid based on the messages it sees. From the client, A
sees both his own shares a1, . . . , a`, and the ones for B encrypted under
some semantically secure cryptosystem, e.g., SSL. From B, A sees the
message: (

Epk(αi, ri) · gβi
)si · hs′i mod n.

By the homomorphic properties of our cryptosystem this can be rewritten:

Epk(si ·αi, si · ri) · Epk(si · βi, s′i) = Epk
(
si(αi + βi), si · ri + s′i

)
.

In order to prove that A learns no additional information, we can show
that A could — given knowledge of the result, the publically known number
and nothing else — simulate the messages it would receive in a real run of
the protocol.

The message received and seen from the client can trivially be simulated
as it consists simply of ` random numbers modulo u and ` encrypted
shares. The cryptosystem used for these messages is semantically secure,
so the encrypted shares for B can be simulated with encryptions of random
numbers.

To simulate the messages received from B, we use our knowledge of
the result of the comparison. If the result is “m > x”, we can construct
the second message as ` − 1 encryptions of a nonzero element of Z∗u and
one encryption of zero in a random place in the sequence. If the result is
“m ≤ x”, we instead construct ` encryptions of nonzero elements in Z∗u.

If we look at the encryptions that B would send in a real run of the
protocol, we see that the plaintexts are of form (αi + βi)si mod u. Since
si is uniformly chosen, these values are random in Zu if αi + βi ≠ 0 and
0 otherwise. Thus the plaintexts are distributed identically to what was
simulated above. Furthermore, the ciphertexts are formed by multiplying
g(αi+βi)si by

hsiri+s
′
i = hsirihs′i .

Here h has order v which is 2t bits long, and as in Section 2.2.3, we will
assume that taking h to the power of the random 2t-bit number s′i will
produce something which is computationally indistinguishable from the
uniform distribution on the subgroup generated by h. Since hsiri ∈ 〈h〉, the
product will be indistinguishable from the uniform distribution on 〈h〉. So

18 Chapter 2. Homomorphic Encryption and Secure Comparison

the s′i effectively mask out siri and makes the distribution of the encryption
computationally indistinguishable from a random encryption of (αi + βi)si.
Therefore, the simulation is computationally indistinguishable from the real
protocol messages.

The analysis for the case where B is corrupt is similar. Again we will prove
that we can simulate the messages of the protocol. The shares received from
the client and the encryptions seen are again simply ` random numbers
modulo u and ` random encryptions and are therefore easy to simulate.
Also, B receives the following from A:

Epk(αi, ri).

But since the cryptosystem is semantically secure, we can make our own
random encryptions instead and their distribution will be computation-
ally indistinguishable from the one we would get by running the protocol
normally.

2.5 Extensions

Although the protocol and underlying cryptosystem presented in this chap-
ter are specialized to one kind of comparison, both may be extended. In this
section we will first consider how the protocol can be modified to handle
more general comparisons where one input is not publically known, and
we will also sketch how active security can be achieved. We also consider
application of the cryptosystem to general multiparty computation.

2.5.1 Both Inputs are Private

Our protocol extends in a straightforward way to the case where A and B
have private inputs a,b and we want to compare them. In this case, A can
send to B encryptions of the individual bits of a, using his own public key.
Since the cryptosystem is homomorphic over u, B can now do the linear
operations on the bits of a and b that in the original protocol were done on
the additive shares of the bits. Note that B has his own input in cleartext,
so the encryptions of the exclusive-or of bits in a and b can be computed
without interaction, using the formula x ⊕y = x +y − 2xy which is linear
if one of x,y is a known constant. B can therefore produce, just as before,
a set of encryptions of either random values or a set that contains a single
0. These are sent to A for decryption. The only extra cost of this protocol
compared to the basic variant above is that B must do O(l) extra modular
multiplications, and this is negligible compared to the rest of the protocol.

2.5.2 Both Inputs are Shared, Secret Output

The case where both numbers a,b to compare are unknown to A and B
can also be handled. Assume both numbers are shared between A and B
using additive shares. The only difficulty compared to the original case
is the computation of shares in the exclusive-or of bits in a and b. When

2.5. Extensions 19

all bits are unknown to both players, this is no longer a linear operation.
But from the formula x ⊕ y = x + y − 2xy , it follows that it is sufficient
to compute the product of two shared bits securely. Let x,y be bits that
are shared so x = xa + xb mod u and y = ya +yb mod u, where A knows
xa, ya and B knows xb, yb. Now, xy = xaya + xbyb + xbya + xayb. The
two first summands can be computed locally, and for, e.g., xayb, A can send
to B an encryption Epk(xa). B chooses r ∈ Zu at random and computes an
encryption Epk(xayb − r mod u) using the homomorphic property. This is
sent to A, and after decryption (xayb−r mod u, r) forms a random sharing
of xayb. This allows us to compute a sharing of xy , and hence of x ⊕ y .
Putting this method for computing exclusive-ors together with the original
protocol, we can do the comparison at cost roughly twice that of the original
protocol.

It follows from an observation in [95] that a protocol comparing shared
inputs that gives a public result can always be easily transformed to one
that gives the result in shared form so it is unknown to both parties. The
basic idea is to first generate a shared random bit [B] where B is unknown
to both parties. Then from (bit-wise) shared numbers a, b, we compute two
new bit-wise shared numbers c = a+ (b − a)B and d = b + (a− b)B. This
just requires a linear number of multiplications. Note that (c, d) = (a, b)
if B = 0 and (c, d) = (b,a) otherwise. Finally, we compare c,d and get a
public result B′. The actual result can then be computed in shared form as
[B ⊕ B′].

2.5.3 Active Security

Finally, we sketch how one could make the protocol secure against malicious
cheating. For this, we equip both A and B with private/public key pairs
(skA,pkA) and (skB ,pkB) for our cryptosystem. It is important that both
key pairs are constructed with the same value for u. The client C will
now share its input as before, but will in addition send to both players
encryptions of all of A’s shares under pkA and all of B’s shares under pkB .
Both players are now committed to their shares, and can therefore prove
in zero-knowledge during the protocol that they perform correctly. Since
the cryptosystem is homomorphic and the secret is stored in the exponent,
one can use standard protocols for proving relations among discrete logs,
see for instance [18, 45, 91]. Note that since the two public keys use the
same value of u, it is possible to prove relations involving both public keys,
for instance, given EpkA(x) and EpkB(y), that x = y . In the final stage, B
must show that a set of values encrypted under pkA is a permutation of a
set of committed values. This is known as the shuffle problem and many
efficient solutions for this are known — see, e.g., [56]. Overall, the cost of
adding active security will therefore be quite moderate, but the computing
the exact cost requires further work: The type of protocol we would use
to check players’ behavior typically have error probability 1 divided by the
smallest prime factor in the order of the group used. This would be 1/u in
our case, and the protocols will have to be repeated if 1/u is not sufficiently
small. This results in a trade-off: we want a small u to make the original

20 Chapter 2. Homomorphic Encryption and Secure Comparison

passively secure protocol more efficient, but a larger value of u makes the
protocols we use for checking players’ behavior more efficient.

2.5.4 Using the Cryptosystem for Multiparty Computation

In [28] it is described how any homomorphic cryptosystem with certain
properties may be used for general multiparty computation (MPC), where
several parties want to compute an arbitrary function of their inputs. The
cryptosystem described in this chapter was already shown to be homomor-
phic, but in order for us to use the results from [28], we need to establish
some other properties of the cryptosystem.

The basic ideas in the construction from [28] are as follows: A public key
pk is assumed to be set up initially, where the secret key sk has been secret
shared among the players. We assume an adversary that can corrupt (only)
certain sets of players and sk is shared such that no corruptible set has
information on it, whereas the set of players following the protocol could
reconstruct it from their shares. What is needed is now a protocol for so
called threshold decryption, where the players (using their shares of sk as
private input) can decrypt a ciphertext securely, i.e., compute the plaintext
while revealing no side information.

The cryptosystem is assumed to be additively homomorphic over some
ring R, in our case R = Zu. If we want to compute the value f(x1, . . . , xn)
where the xi’s are private inputs and f is a given function, we think of the
inputs and outputs as elements in R, and we assume that f is given as
an arithmetic circuit over R, i.e., computing f can be done by additions
and multiplications in R. This is without loss of generality as any Boolean
circuit can be simulated with these operations. But if we can have R = Zu
for sufficiently large u, we may be able to compute f by a circuit over Zu
that is much smaller than a Boolean circuit. In particular, we can simulate
integer addition and multiplication by single operations in Zu if u is large
enough compared to the inputs.

To compute f securely, players submit their inputs encrypted under pk
and we then simulate the circuit computing f gate by gate. If we have en-
cryptions Epk(a), Epk(b) of the inputs to an addition gate, the homomorphic
property immediately implies that we get an encryption of the output a+ b
as Epk(a) · Epk(b) = Epk(a + b). For multiplication, a simple protocol is
given in [28] for computing securely an encryption Epk(ab) from Epk(a) and
Epk(b). It requires a single threshold decryption and that each player sends
a ciphertext to all other players. At end of the day, we have encryptions of
the output values, which we then decrypt using threshold decryption.

To make this work against a passive adversary, all you need is the
homomorphic property and secure threshold decryption. For active security,
one needs in addition protocols by which players can show that they follow
the rules during the multiplication operations.

We now look at how our encryption scheme can be made to fit this model.
In our comparison protocol, we have assumed that the input was given as
sharings or encryptions of single bits of the inputs. But as explained above,
for general-purpose MPC, it is desirable to be able to supply an entire input

2.5. Extensions 21

number by sending a single ciphertext. We therefore need to consider the
size of the our plaintext space. In the cryptosystem as described above,
the plaintext space must be small in order to decrypt efficiently. Therefore,
to have a larger plaintext space without loosing efficiency, we propose the
following modification to the cryptosystem.

Instead of u being a prime, we make u a power of 2. After raising a
ciphertext gmhr mod n to the power of v , we get the number (gv)m mod n,
where gv mod n is of order 2c for some integer c. This means that to getm,
we need to solve the discrete log problem where the base is 2-smooth. We
can apply the Pohlig-Hellman algorithm [84] and solve the problem using
O(c) modular multiplications.

It is now possible to use this cryptosystem for MPC with protection
against semi-honest adversaries. It follows from the above that all we need
is to show that secure threshold decryption is possible. So instead of having
a single private key, we will instead secret-share it between the N parties.
One way to do this is additive integer secret sharing, that is, the private
share of player i, for i = 1, . . . ,N, is a random 3t-bit number vi, and we
give to all players v0 = v −

∑N
i=1 vi. Note that even if all shares except one,

say vi, are known, the only information related to v that can be computed
is v − vi, which is statistically indistinguishable from a random (negative)
3t-bit number.

Now the parties can work together to decrypt a ciphertext c = gmhr mod
n. Each player simply broadcasts cvi mod n, and then everyone can compute

N∏
i=0
cvi mod n = (gv)m mod n.

If we include gv mod n in the public key, m can now be found as in the
single user case above. Note that we now need to make a stronger assump-
tion, namely that the cryptosystem remains semantically secure, even when
gv mod n is given.

It is straightforward to show:

Lemma 2.3 The above threshold decryption protocol is secure against a pas-
sive and static adversary, corrupting up to N − 1 players. �

Proof: To prove the security of the decryption protocol, we will show that
given the public information, i.e., public key as well as the ciphertext and
plaintext, we can efficiently simulate everything else the adversary sees,
namely the shares of corrupted players and the messages received from the
honest players in the protocol.

Assume without loss of generality that player N is the only uncorrupted
player. Now, generate shares v0, . . . , vN as described above using secret
value 0, and give v0, . . . , vN−1 to the adversary, to play the role of shares
of corrupted players. As argued above, since the adversary doesn’t see vN ,
this has distribution statistically close to what would be the case if the real
v-value had been used. We simulate the message sent by player N when

22 Chapter 2. Homomorphic Encryption and Secure Comparison

decrypting c as

x = cv
(N−1∏
i=0
cvi
)−1
.

In the real world, the vi are chosen at random such that
∑N
i=0 vi = v . It

follows that x has the same distribution as player N’s contribution in the
real world. Note that cv needs to be computed as well, but since we are
given gv along with the public key, we may compute cv as (gv)m = cv .

The above argument shows that the decryption protocol can be simulated
without knowledge of the key shares for the honest player, and therefore
that the adversary gains no information about v by participating in the
protocol. �

It follows from the above that we may use our cryptosystem, with the
modification for the plaintext space, to achieve general MPC that is secure
against a passive and static adversary corrupting all but one of the players.

It is possible to have security against malicious adversaries as well.
According to [28] this only requires the existence of honest verifier zero-
knowledge proofs (Σ-protocols) for proving certain statements on cipher-
texts. It follows from [45] that such Σ-protocols can be constructed using
standard methods (even though the orders of g and h are hidden). Unfortu-
nately, soundness of the most efficient versions of the protocols from [45]
require that the order of g,h have only large prime factors. This is not true
in our case. The problem can be solved at some cost in efficiency by using
the basic protocols with 1-bit challenges and running several instances in
parallel.

2.6 Complexity and Performance

In this section we measure the performance of our solution through practical
tests. The protocol by Fischlin [44] provides a general solution to comparing
two secret integers using fewer multiplications than the other known general
solutions. We show that in the special case where one integer is publically
known and the other is additively shared between two parties, our solution
provides for faster comparisons than our adaptation of [44].

2.6.1 Setup and Parameters

As described above, our special case consists of a server, an assisting server
and a client. The client must be able to send his value and go offline,
whereafter the other two parties should be able to do the computations
together. In our protocol the client simply sends additive shares to each of
the servers and goes offline. However, the protocol by Fischlin needs to be
adapted to this scenario before we can make any reasonable comparisons. A
very simple way to mimic the additive sharing is for the client to simply send
his secret key used for the encoding of his value to the server while sending

2.6. Complexity and Performance 23

A B

C

sk

E p
k
(x
1
),
. .
. ,
E p

k
(x̀
)

Epk(x > m)

x > m

Figure 2.2: The modified Fischlin protocol. The client C can go off-line after having
sent the key to A and the encryptions to B. From that point the protocol proceeds
as in [44].

the actual encoding to the assisting server. Clearly the computations can
now be done by the server and assisting server alone, where the server plays
the role of the client. The modified protocol is shown in Figure 2.2.

Together, the key and encoding determine the client’s secret value, but
the key or the encoding alone do not. The key of course reveals no infor-
mation about the value. Because of semantic security, the encryption alone
does not reveal the secret to a computationally bounded adversary.

Another issue is to how to compare the two protocols in a fair way.
Naturally, we want to choose the parameters such that the two protocols
offer the same security level, but it is not clear what this should mean as
some of the parameters in the protocols control events of very different
nature. Below, we describe the choices we have made and the consequences
of making different choices.

Both protocols use an RSA modulus for their encryption schemes, and it
is certainly reasonable to use the same bit length of the modulus in both
cases, say 1,024 bits. Our encryption scheme also needs a parameter t which
we propose to choose as t = 160. This is because the best known attack
tries to have random results of exponentiations collide in the subgroup with
about 2160 elements. Assuming the adversary cannot do much more than
240 exponentiations, the collision probability is roughly 22·40/2160 = 2−80.

We do not have this kind of attack against Fischlin, but we do have an
error probability of 5` · 2−λ per comparison. If we choose the rationale
that the probability of “something going wrong” should be the same in both
protocols, we should choose λ such that Fischlin’s protocol has an error
probability of 2−80. An easy computation shows that for ` = 16, λ = 86
gives us the desired error probability, and it follows that λ = 87 works for
` = 32.

We have chosen the parameter values as described above for our im-
plementation, but it is also possible to argue for different choices. One
could argue, for instance, that breaking our scheme should be as hard as

24 Chapter 2. Homomorphic Encryption and Secure Comparison

factoring the 1,024-bit modulus using the best known algorithm, even when
the generic attack is used. Based on this, t should probably be around 200.
One could also argue that having one comparison fail is not as devastating
as having the cryptosystem broken, so that one could perhaps live with a
smaller value of λ than what we chose. Fischlin mentions an error proba-
bility of 2−40 as being acceptable. These questions are very subjective, but
fortunately, the complexities of the protocols are linear in t and λ, so it
is easy to predict how modified values would affect the performance data
we give below. Since we find that our protocol is about 10 times faster, it
remains competitive even with t = 200, λ = 40.

2.6.2 Implementation

To evaluate the performance of our proposed protocol we implemented it
along with the modified version of the protocol by Fischlin [44] described
above. The implementation was done in Java 1.5 using the standard BigInte-
ger class for the algebraic calculations and Socket and ServerSocket classes
for TCP communication. The result is two sets of programs, each containing
a server, an assisting server, and a client. Both implementations weigh in
at about 1,300 lines of code. We have naturally tried our best to give equal
attention to optimizations in the two implementations.

We tested the implementations using keys of different sizes (k in the
range of 512–2,048 bits) and different parameters for the plaintext space
(` = 16 and ` = 32). We fixed the security parameters to t = 160 and λ = 86
which, as noted above, should give a comparable level of security.

The tests were conducted on six otherwise idle machines, each equipped
with two 3 GHz Intel Xeon CPUs and 1 GiB of RAM. The machines were
connected by a high-speed LAN. In a real application the parties would not be
located on the same LAN: for credibility the server and assisting server would
have to be placed in different locations and under the control of different
organizations (e.g., the auction house and the accountant), and the client
would connect via a typical Internet connection with a limited upstream
bandwidth. Since the client is only involved in the initial sharing of his
input, this should not pose a big problem — the majority of network traffic
and computations are done between the server and assisting server, who,
presumably, have better Internet connections and considerable computing
power.

The time complexity is linear in `, so using 16-bit numbers instead of
32-bit numbers cuts the times in half. In many scenarios one will find 16
bits to be enough, considering that most auctions have a minimum required
increment for each bid, meaning that the entire range is never used. As an
example, eBay require a minimum increment which grows with the size of
the maximum bid meaning that there can only be about 450 different bids
on items selling for less than $5,000 [42]. The eBay system solves ties by
extra small increments, but even when one accounts for them one sees that
the 65,536 different prices offered by a 16-bit integer would be enough for
the vast majority of cases.

2.7. Conclusion 25

Table 2.1: Benchmark results. The first column denotes the key size k, the fol-
lowing columns have the average time to a comparison. The average was taken
over 500 rounds, after an initial warm-up phase of 10 rounds. The abbreviation
“DGK” refers to our protocol and “F” refers to the modified Fischlin protocol. The
subscripts refer to the ` parameter used in the timings.

k DGK16 F16 DGK32 F32

512 82 ms 844 ms 193 ms 1,743 ms
768 168 ms 1,563 ms 331 ms 3,113 ms

1,024 280 ms 2,535 ms 544 ms 5,032 ms
1,536 564 ms 4,978 ms 1,134 ms 10,135 ms
2,048 969 ms 8,238 ms 1,977 ms 16,500 ms

2.6.3 Benchmark Results

The results of the benchmarks can be found in Table 2.1 with a graph in
Figure 2.3 on the following page. From the table and the graph it is clear to
see that our protocol has performed significantly faster in the tests than
the modified Fischlin protocol. The results also substantiate our claim that
the time taken by an operation is proportional to the size of ` and that we
do indeed roughly halve the time taken by reducing the size of ` from 32
to 16 bits.

We should note that these results are from a fairly straight-forward
implementation of both protocols. Further optimizations can likely be
found, in both protocols.

2.7 Conclusion

This chapter has demonstrated a new protocol for comparing a public
and a secret integer using only two parties, which among other things
has applications in online auctions. Our benchmarks suggest that our
new protocol is highly competitive and reaches an acceptably low time per
comparison for real-world application.

We have also shown how to extend the protocol to the more general case
where we have two secret integers and to the active security case. However,
further work is needed to evaluate the competitiveness of the extended
protocols.

Acknowledgments. We thank Claudio Orlandi for helping us realize the
problem with the original scheme. The authors would also like to thank
Tomas Toft, Rune Thorbek, and Thomas Mølhave for their comments and
suggestions.

26 Chapter 2. Homomorphic Encryption and Secure Comparison

Key size k (bits)

A
ve

ra
g
e

ti
m

e
p

er
co

m
p

ar
is

o
n

(s
ec

o
n

d
s)

512 768 1,024 1,536 2,048

1

2

3

4

5
6

7
8

9
10

11

12

13

14

15
16

17
18

DGK16

F16

DGK32

F32

Figure 2.3: Graph of the data from Table 2.1 on the preceding page.

Chapter 3

Virtual Ideal Functionality
Framework

The benchmark results in Chapter 2 where obtained using an ad hoc imple-
mentation made especially for those benchmarks. Re-inventing everything
from scratch for each new protocol is a waste of useful resources, so in this
chapter we present a general framework for doing secure multiparty compu-
tation. This is the Virtual Ideal Functionality Framework, or VIFF for short.
Simply put, VIFF aims at providing an efficient and high-level basis on which
practical applications using MPC can be built. It is also our hope that the
framework offered by VIFF will facilitate rapid prototyping of new protocols
by researchers and so lead to more protocols with practical applications.
The source code and documentation is therefore freely available from the
VIFF homepage [47].

The material presented in this chapter is partly from the VIFF home-
page [47], partly from the author’s progress report [48], and partly from a
report on VIFF for the CACE project [50]. Much of it is also new: Section 3.2
on related work, Section 3.5 on the implementation of VIFF, and Section 3.8
which describes applications that use VIFF.

We will start by describing the setting in which VIFF came to be. We then
describe the overall goals of VIFF and elaborate on how we believe to have
reached some of these goals.

3.1 Introduction

This section serves to give a quick summary of the historical background
for the VIFF system and an overview of its features.

3.1.1 History

VIFF was started by the author of this dissertation in March 2007 as a spin-
off project from the Secure Information Management And Processing (SIMAP)
project, which in turn is a successor to the Secure Computing Economy and

27

28 Chapter 3. Virtual Ideal Functionality Framework

Trust (SCET) project, both at the University of Aarhus. The SCET project
set out to implement a platform for multiparty computations with a focus
on economic applications such as auctions and benchmarking. The project
implemented a prototype of a secure double auction [15]. SIMAP had a
more general aim and designed a dedicated programming language in which
high-level protocol descriptions can be specified [79]. In January 2008 the
SIMAP project ran the first ever large-scale MPC application in which Danish
farmers traded sugar beet contracts using a secure double auction [16].

The overall goal for the SCET and SIMAP projects is the development
of efficient and practical tools for building MPC applications to solve real-
world problems. In SIMAP, this is achieved with a combination of efficient
cryptographic protocols coupled with a domain-specific language. This
dissertation will focus on the underlying protocols used by the domain-
specific language. That is not to say that the language is not important — it
is in fact quite important in order to enable “normal” programmers to use
the cryptographic protocols in an easy and secure manner without being
security experts themselves.

The sugar beet auction mentioned above [16] was built on a system
written in Java. The implementation had some 130 classes and interfaces
and about 8,500 lines of code. While implementing the comparison protocol
it had become clear that there were a number of problems with its design.
This lead the author of this dissertation to begin experimenting with a new
design in Python.

We knew from the beginning that it was important to execute operations
in batches to use the bandwidth in the most efficient way. This is necessary
since networks have significant round trip times. Figure 3.1 illustrates this
difference. So the SIMAP system had a concept of “batch jobs”. These were
used to group parallel operations together. The system would then execute
either one normal operation at a time or a single batch job consisting of
multiple operations. An example of a batch job could be the many secure
multiplications needed to compute the inner product of two vectors with
secret shared components.

However, the batch job architecture implemented in the SIMAP project
turned out to be difficult to work with. The primary problem was that special
code is needed for dealing with combinations of different batch jobs. So
when implementing a new operation, such as a comparison protocol, one
had to define how a batch job would look like for the new operation and
how the batch job would be combined with all other types of batch jobs.
This severely limited the modularity since every new piece of code needed
to know about every old piece. The second problem with using batch jobs is
that they require the programmer to determine the optimal grouping. This
might be possible in small programs or for particular functions such as our
inner product example from before, but requiring such a “bird’s eye view”
of the system will again limit the modularity.

A second problem with the SIMAP system was that although the high
level interface manipulated secret shared values as first class objects, the
lower level runtime system did not. This meant that the runtime system
could not be extended in terms of itself, akin to how the earliest compilers

3.1. Introduction 29

A B

(a) Normal execution.

A B

(b) Batched execution.

Figure 3.1: Normal and batched execution. In a normal execution each operation
triggers its own little message, resulting in a significant waste due to the round
trip time. The waste can be reduced dramatically by grouping data for several
operations into a single batch.

had to be written in assembler instead of a higher level language. The low
level kept secret values in a HashMap and referenced them using integers.
Apart from being awkward to program with, this design meant that we
had to do our own memory management by keeping track of when values
could be deleted from the HashMap and when they should be retained. In a
language like C, this might have been acceptable. However, given that Java
already has a garbage collector, it is a shame not to utilize it. We will have
more to say about memory management in Section 7.1.3.

3.1.2 Feature Overview

VIFF provides the following notable features:

Asynchronous execution: As described in further detail in Section 3.3.2,
modern networks are all asynchronous by nature. VIFF is designed to
be used on such networks.

Automatic parallel scheduling: Network latencies will typically dominate
the execution time. This makes it important to execute many opera-
tions in parallel in order to lower the average waiting time. Also, the
automatic parallelism can potentially yield a faster execution since it
will adapt better to changing network conditions: With a static sched-
ule based on rounds, the execution stalls if a round takes longer than
expected. VIFF would begin executing the next available operation
immediately.

Easy composability: VIFF was designed with a simple core on which more
complex protocols can be built. Combining smaller protocols into
larger protocols is an essential feature. Protocols written for VIFF can

30 Chapter 3. Virtual Ideal Functionality Framework

automatically be run in parallel with other protocols. This applies to
both new primitive operations and complex protocols.

3.2 Related Work

Though the field of secure multiparty computation is almost three decades
old, the number of practical implementations is small. We have already
briefly described the SCET and SIMAP projects from the University of Aarhus.
In this section we will describe the other two frameworks known to the
author: Fairplay and Sharemind.

3.2.1 Fairplay

The first general-purpose system for secure two-party function evaluation
was the Fairplay project. It was started at the Hebrew University of Jerusalem,
and presented by Malkhi et al. [69] in 2004. Fairplay version 1.0 implements
the original two-party computation protocol by Yao [100] with security
against an active adversary.

Programs for Fairplay are written in a dedicated language called SFDL
(Secure Function Definition Language). Yao’s original millionaires problem
is implemented by the program in Figure 3.2.

program Millionaires {
type int = Int<20>; // 20−bit integer
type AliceInput = int;
type BobInput = int;
type AliceOutput = Boolean;
type BobOutput = Boolean;
type Output = struct {

AliceOutput alice,
BobOutput bob

};
type Input = struct {

AliceInput alice,
BobInput bob

};

function Output output(Input input) {
output.alice = (input.alice > input.bob);
output.bob = (input.bob > input.alice);

}
}

Figure 3.2: Yao’s millionaires problem.

The high-level SFDL program is compiled into a low-level Boolean circuit.
In doing so, the compiler will inline functions (direct or indirect recursion is

3.2. Related Work 31

forbidden), unroll loops (the number of loop iterations must be a compile-
time constant), and turn all operations into a series of primitive “hardware”
operations that operate on single bits only. Finally, the circuit is run through
a peephole optimizer followed by duplicate and dead code removal. The
optimization step is quite important in order to cut down on the number of
gates in the final circuit — it is reported in [69] that this often reduces the
size of the circuit by an order of magnitude.

The two players — Alice and Bob — must now evaluate the optimized
circuit on their private inputs. To do this, the circuit is turned into a Yao-
garbled circuit by Bob which is transferred to Alice. The garbled circuit
consists of permuted and encrypted truth tables and we will now sketch
how they are constructed.

First, Bob assigns two random keys for each wire in the circuit. The first
key is used when the wire carries a 0, the second when it carries a 1. To
illustrate this, consider a truth table for computing z = x ∧y , i.e., a table
for AND. Bob assigns random keys x0 and x1 to the first input wire and
random keys y0, y1 to the second input wire. The output wire is assigned a
random z0 for a result of 0 and a random z1 for a result of 1. He then uses
the keys xi and yj to encrypt zi∧j , please see Figure 3.3. The final truth
table consists of the permuted encryptions only, in order to completely hide
the nature of the gate [67].

x y x ∧y
0 0 0
0 1 0
1 0 0
1 1 1

(a) Normal.

x y x ∧y
x0 y0 Ex0‖y0(z0)
x0 y1 Ex0‖y1(z0)
x1 y0 Ex0‖y0(z0)
x1 y1 Ex1‖y1(z1)

(b) Garbled.

—

Ex1‖y1(z1)
Ex0‖y1(z0)
Ex1‖y0(z0)
Ex0‖y0(z0)

(c) Permuted.

Figure 3.3: The main steps in the transformation of a Boolean circuit into a Yao-
garbled circuit. The normal truth table is garbled (encrypted) using random keys
assigned to each wire. Finally, the keys identifying the wires are thrown away, the
encryptions are permuted randomly, and the table header is removed.

Having received the garbled circuit, Alice needs the keys for the input
wires. Bob can simply send the keys corresponding to his own input bits
since the keys be themselves reveal nothing. Alice cannot just ask for the
keys corresponding to her input bits — she must instead obtain them by
oblivious transfer (OT). They engage in an OT for each input wire. Bob holds
input keys i0 and i1 and Alice retrieves iσ corresponding to her input bit σ .

Alice can now decrypt the first layer of gates to reveal the next set of
keys. Continuing like this, she will eventually decrypt the final layer. The
keys for the output wires can be chosen as 0 and 1 so that Alice obtains the
result directly. If some of the bits should be revealed to Bob only, then Bob
can encrypt the bits as usual by assigning random keys to that output wire.1

1It is unavoidable that one of the parties learn the output before the other.

32 Chapter 3. Virtual Ideal Functionality Framework

This description leaves out some details from [69], such as the precise
construction of the truth tables and how Alice tries to catch a malicious Bob
by verifying m− 1 out of m garbled circuits.

FairplayMP is an updated version with support for more than two par-
ties [9]. It combines a protocol by Beaver et al. [6] with the classic BGW [10]
protocol to obtain an constant-round protocol (their implementation use
eight rounds). Whereas Fairplay is secure against an active adversary, Fair-
playMP is secure against a passive adversary only.

The secure function definition language has also been updated to ver-
sion 2.0 [43]. The new language is similar to SFDL 1.0, but has the necessary
syntactic support for describing multiparty protocols. More information is
available at the Fairplay homepage: http://fairplayproject.net/.

3.2.2 Sharemind

The Sharemind project by Bogdanov et al. [14] provides a system for general
multiparty computation on large data sets. They focus on speed and massive
scalability in a setting with three players and a passive adversary.

The focus on speed is evident in the choice of C++ as the implementation
language. Fairplay is implemented in Java because of its good support for
cross-platform usage [9] and VIFF is implemented in Python because of its
flexibility and the availability of the Twisted network library. Both Java and
Python operate on a much higher level than C++.

They have also chosen a somewhat unusual domain for their input
numbers. Whereas almost all cryptographic protocols focus on (prime)
fields such as Zp, Sharemind works with integers from the ring Z232 . This
gives them a substantial speed advantage since they — as the only system
out of the three under consideration — can use plain machine words as their
basic type for arithmetic operations. Put differently, the CPU will do useful
work in all its clock cycles, instead of doing modulo reductions much of the
time. The choice of Z232 as the basic input domain did force the Sharemind
developers to design their own protocol for multiplication [14]. The problem
is the lack of multiplicative inverses, which renders Shamir secret sharing
impossible.

The Sharemind architecture consist of miners who hold the data and
clients who manipulate the data. Whereas a system like Fairplay expects
the protocol participants to change dynamically, the miners are meant
to be running for an extended period of time. A typical example would
be privacy preserving data mining where the three miners share a large
database among them. The three miners stay online, and clients can connect
to them at different times to query the database. Please see Figure 3.4 on
the next page.

The operations supported are secure addition, multiplication, compar-
ison, and bit extraction of 32-bit integers. Unlike VIFF and Fairplay, but
similar to SIMAP, Sharemind has vectorized versions of all its operations.
In SIMAP, multiple operations can be bundled together in a batch job as
described in Section 3.1.1. In Sharemind, all the basic operations such
as addition, multiplication, and comparison work with vectors by default.

http://fairplayproject.net/

3.2. Related Work 33

Client

Miner

Miner

Miner

Data
donor

Data
donor

Figure 3.4: The Sharemind architecture. Three miner nodes store an additive
secret sharing of the data, which is provided by several data donors. One or more
clients connect to the miner nodes and instruct them to do privacy preserving
computations on the data.

public count (private int needle, private int[] haystack) {
public int n; n = getRowCount(haystack);

// An indicator vector of ones and zeroes
private bool[n] indicator;
indicator = (haystack == needle);

private int sum; sum = vecSum(indicator);
public int count; count = declassify(sum);
return count;

}

Figure 3.5: Finding the proverbial needle in a haystack [63].

This is very important for scalability when performing data mining on large
data sets. It is reported in [14] that the use of vectorized operations give a
factor 27 increase in throughput with vectors containing 100,000 elements.

Like Fairplay, Sharemind offers a high-level language in which program-
mers can implement the privacy preserving algorithms. The language is
called SecreC (pronounced “secrecy”) and is currently under development.
The language has a C-like syntax and allows the programmer to declare
variables as public or private. Private variables are kept in their additively
secret shared form throughout the computation. A simple SecreC example
is given in Figure 3.5.

Instead of looping through the vector one element at a time, the code
does a single vectorized comparison. As described above, using as many
vectorized functions as possible greatly improves the performance.

Programs written in SecreC will be compiled down to an assembly lan-
guage developed for Sharemind. As an example of Sharemind assembly,

34 Chapter 3. Virtual Ideal Functionality Framework

consider the program in Figure 3.6 on the facing page.2

The program finds the minimum element on the stack using a logarithmic
number of rounds. Lines 5–9 push data on the stack — here the values are
public, but the language has instructions for pushing database columns onto
the stack too. Such a column can contain private data, i.e., data secret shared
among the miners. The program then enters a loop in which it repeatedly
halves the number of elements on the stack by a vectorized comparison.
The pushlte command on line 22 treats the stack as [. . . ,x,y] where x and y
contain div elements. The vectors are compared pair-wise and the smallest
element is retained from each pair, see Figure 3.7.

Using the assembly language, the set of miner nodes can be seen as
a virtual machine. The assembly language is the instruction set for this
machine. This is similar to how we see VIFF as an arithmetic black-box
defined by the functionality FVIFF.

Sharemind can be downloaded from http://sharemind.cs.ut.ee/.

3.3 Security Model

VIFF is designed to accommodate different security models — it was im-
portant for us to make a decoupled design in which the core of VIFF is
completely oblivious to the specific security model in use.

3.3.1 Adversary Types

We have focused on the most classic and simple setting first and imple-
mented protocols with security against threshold adversary structures. A
threshold adversary is allowed to corrupt any t out of the n players. The
standard BGW protocol [10, 51] is secure as long as an honest but curious
adversary corrupt no more than n/2 of the parties. The protocol proposed
in Chapter 4 can tolerate n/3 maliciously corrupted parties.

The parties are assumed to be connected by pair-wise secure and authen-
ticated channels. With ideal secure channels, our protocols would be secure
against an adaptive adversary who corrupts players during the protocol exe-
cution itself. We live in the real world, where ideal secure channels are hard
to come by, so in practice we are protecting the channels using standard
cryptographic tools, e.g., SSL. Relying on cryptographic tools means that
we can only prove the protocols secure against a static adversary. However,
it also allows us to delegate the job of building an efficient secure channel
to someone else by using standard libraries. Furthermore, it is possible
that the parties already posses the required SSL certificates, issued by a
trusted certificate authority. As an example, the Danish nation-wide public
key infrastructure [62] could provide the necessary digital signatures.

The adversary will have full control over the scheduling of the network.
This means that he can delay and reorder packets in arbitrary ways. We
assume secure and reliable channels, so he cannot inspect or change the
content of the packets, and he can also not remove packets.

2The example is from the file bin/assembly/MinimumLog.txt in Sharemind 1.91.

http://sharemind.cs.ut.ee/

3.3. Security Model 35

1 public int size
public int mod

3 public int div

5 push 3
push 1

7 push 10
push 7

9 push 8

11 loop:
stacksize size

13 cmp size == 1 // Single element on the stack => we are done.
jt :end

15

mov mod, size % 2
17 cmp mod == 0 // Adjust for odd number of elements.

jf :pad
19

compare: // Perform vectorized comparison.
21 mov div, size / 2

pushlte div
23 jmp :loop

25 pad:
dec size

27 jmp :compare
end:

29

public int result
31 pop result // Declassify top element on stack.

println result

Figure 3.6: Sharemind assembly for finding the minimum stack element.

8

7

10

1

3

8

1

3

1

3 1

Figure 3.7: Vectorized comparisons.

36 Chapter 3. Virtual Ideal Functionality Framework

3.3.2 Network Types

The demands we put on synchronicity of the network play a key role in the
protocol design. There is a clear trade-off between using a simple model
and using a more complex model, as we will see next.

Synchronous Networks

The classic results on secure multiparty computation [24, 54] assumed a
synchronous setting. This is a quite strong assumption, but it makes the
model much simpler. In a synchronous network, everything follows the
ticks made by a global clock. Each tick indicates the start of a new network
round. A round begins with the delivery of all messages sent in the previous
round. Each party is then asked to specify a number of new messages which
will be delivered at the beginning of the next round.

In practice, synchronous networks are only found in the optical fiber net-
works used by the telecommunications industry. These backbone networks
use specialized equipment operating at fixed bandwidths. The synchronous
model does not match the consumer-grade communication networks or
computers used for normal Internet traffic. Modern networks are better
thought of as being asynchronous.

Asynchronous Networks

Every time a packet is sent over the Internet, the appropriately named Inter-
net Protocol (IP) [85] is used. IP has the responsibility of getting the packets
to the correct destination. But IP gives very few guarantees: intermediate
routers might drop packets at any time (due to problems like congestion
and transmission errors) and packets may be reordered or duplicated. In
particular, the IP gives no guarantees about the delivery time (if the packet
reaches the destination at all). IP packets have a checksum field in their
header and this is used for verifying data integrity. In other words, IP will
only ensure that if a packet is delivered, then it will arrive unchanged and at
the correct destination.

The Transmission Control Protocol (TCP) [86] is used to create a virtual
connection on top of the connection-less IP network. Because packets can
be lost on the IP level, TCP must be prepared to ask for retransmission
of data. This means that the delivery can be delayed further. Two parties
communicating over TCP are reading and writing a stream of bytes — there
are no messages at the TCP level. This is again a contrast to the classical
way networks are modeled. As bytes are written to the stream, TCP will take
care of buffering and will send out IP packets as they are filled or when it
has been too long since the last packet was sent. Such buffering introduces
further unpredictable delays in the protocol.

With regard to the security, then it should be noted that asynchronous
networks makes it impossible for a protocol to determine if a party is just
being slow, or if the party is behaving maliciously. Protocols that want to
tolerate a malicious adversary will therefore have to be designed in such a
way that they can always continue, even if up to t of the parties have not

3.4. VIFF Ideal Functionality 37

been heard from. In the worst case, this can lead to input deprivation where
some honest parties do not get to provide input to the computation. We will
how giving up on guaranteed termination can help prevent this in Chapter 4.

No Global Clocks

Another difference lies in the assumptions about timekeeping. The nodes in
a synchronous network must be carefully synchronized, preferably to atomic
clocks which act as a global clock. Normal computers do not have access
to a globally correct clock. Computers are typically built with an on-board
oscillator used to keep track of the time. Even if initially synchronized,
clocks will drift away from each other since frequencies of oscillators vary
with temperature. The Network Time Protocol (NTP) is widely used to keep
computers synchronized to a standard time [76]. Roughly speaking, this is
done by exchanging packets containing timestamps, from which the network
delay can be estimated and the local clock adjusted accordingly. But the
NTP server is a trusted third party and we will not allow our protocols to
rely on such a service.

3.4 VIFF Ideal Functionality

When using VIFF, the developer is making library calls to the VIFF API. We
will now formalize this interface as an ideal functionality within the UC
framework as described in Section 1.3. We call the functionality FVIFF and
this functionality covers the core of VIFF. There are several implementations
of this ideal functionality, each with a different security guarantee. For
security against a semi-honest adversary, we have an implementation for
two players based on the Paillier [81] cryptosystem and a much faster
implementation for more players based on the BGW [10] protocol. We also
have an implementation secure against a malicious adversary, this is the
focus of Chapter 4. We call each such implementation a runtime. The
runtimes implement the basic functionality, but will normally also provide
extra functions. We will discuss these extra functions in Section 3.6.2 on
page 52.

The VIFF ideal functionality will of course be designed in such as way
that it can be implemented efficiently on modern communication networks
as described in Section 3.3.2. We begin by defining a number of primitive
operations which are necessary and sufficient to do efficient MPC.

We want the functionality to allow several primitive operations to be
started at once due to the inherit delays of network traffic, which makes
it possible to send out several packets before getting a reply to the first.
The programming language defined by the available commands resemble
a simple imperative programming language of the same flavor as Pascal
and C. The language is straight-line, meaning that there are no looping or
branching constructs. The meta-program run by the environment can still
include branching and looping. By this we mean that the environment is
free to decide on the next command based on output from the functionality.

38 Chapter 3. Virtual Ideal Functionality Framework

The ideal functionality reacts on input from the environment Z (sent
through the dummy parties) and processes one command at a time — if Z
sends commands too fast they are buffered. Commands are discarded if they
are not valid, meaning that they must consist of a recognized instruction as
well as a program counter. A program counter is an opaque tag that must be
unique for a given protocol run. The program counters are used by FVIFF to
associate each result with a specific command — this is necessary because
multiple concurrent commands may be executing at the same time.

Each valid command may have some conditions attached to it. If the
conditions are not fulfilled, FVIFF buffers the command. If more than one
command is eligible for execution, FVIFF will choose the next command to
execute at random. The functionality has a memory M , in which it stores
a mapping between variables names and values. The values are elements
from some field F, picked to be suitably large for the computation at hand.

The functionality leaks information to the adversary about all commands
it receives from the dummy parties, including the sending party. Private
inputs in the commands are blanked (replaced by ?). This models that the
values used in the computation are secret but the computation trace itself
is public and known to the adversary. As each command is executed, Z
will expect to see acknowledgments with the correct program counters. We
let the adversaryA send those through FVIFF, who will simply pass on any
input it get fromA.

The protocol execution terminates when Z outputs a bit. It is up to Z
to decide (depending on the output it receives from the parties and the
adversaryA) when it terminates the execution. Please see Figure 3.8 for the
definition of FVIFF.

3.4.1 Real World Protocol

We will now describe the protocols which will realize the ideal world protocol
just described byFVIFF in Figure 3.8. The protocol presented here is the basic
protocol that is secure against a passive adversary only. It closely resembles
the protocol by Ben-Or et al. [10] (with the simplified multiplication protocol
of Gennaro et al. [51]) but it has been adapted to work in a fully asynchronous
setting. Please see Chapter 4 for a protocol secure against active adversaries.

Each of the n parties P1, . . . , Pn has a memory Mi that maps variable
names to values. We assume that the parties communicate over secure
and authenticated pair-wise channels using a semantically secure public-key
cryptosystem and that the public keys have been distributed securely in
advance. In practice, each party could obtain a SSL certificate from a known
certificate authority (CA) and announce this certificate to the others before
the computation starts. When keys have been distributed the different
commands are implemented as follows:

Input: When Z sends

(x := v,pc),

to Pi, Pi secret shares the value v into shares v1, . . . , vn using a Shamir
secret sharing [92] with threshold t. The shares are sent securely to

3.4. VIFF Ideal Functionality 39

The ideal functionality FVIFF accepts the following commands:

Input: The parties provide input to the computation by assigning values
to variables. Variables spring into life upon their first assignment
and remain defined for the rest of the protocol execution. A variable
is defined when FVIFF receives a valid command of the form

(x := v,pc)

from some party Pi. The functionality reacts by storing x , v in its
memory M . The adversary is simply told that Pi sent (x := ?,pc).

Output: Variables can be output to reveal their value to a particular party.
If x is a previously defined variable and FVIFF receives

(output, x, Pi,pc)

from at least t + 1 parties, then FVIFF waits for S to send (ok,pc)
before it sends (ok,M(x),pc) to Pi.

Linear combination: To store a linear combination of previously defined
variables x1, . . . , xj with publicly known constants c1, . . . , cj in x, all
Pi send

(x := c1 · x1 + c2 · x2 + · · · + cj · xj ,pc)

to FVIFF. This makes FVIFF store the assignment x ,
∑j
i=1 ci ·M(xi)

in its memory. Please note that this command covers simple addition
when all ci = 1.

Multiplication: When FVIFF has received

(x := y · z,pc)

from all Pi where y and z are already defined, FVIFF stores the
assignment x , M(y) ·M(z) in its memory.

Synchronization: By sending

(synchronize,pc)

to all Pi, the environment ask the parties to synchronize. Synchro-
nization is a tool for Z to structure its meta-program, and FVIFF needs
to do nothing here — it is handled entirely byA, as we will see later.

Figure 3.8: Core VIFF ideal functionality called FVIFF.

40 Chapter 3. Virtual Ideal Functionality Framework

the other parties, i.e., Pi sends (Epkj(vj),pc) to each Pj where j ≠ i.
When all shares has been sent, Pi stores x , vi in Mi and outputs
(ok,pc) to Z.

The other parties Pj store x , vj in Mj and output (ok,pc) to Z when
they have received the share from Pi.

Output: To open x to Pi the environment sends

(output, x, Pi,pc),

to at least t+1 parties. Party Pj sends its share of x securely to Pi and
output (ok,pc) to Z. When receiving t + 1 shares, Pi will reconstruct
the value v stored in x and output (ok, v,pc) to Z.

Linear combination: Receiving

(x := c1 · x1 + c2 · x2 + · · · + cj · xj ,pc)

where all xk are defined will make Pi store x ,
∑j
k=1 ck ·Mi(xk) in its

memory and output (ok,pc) to Z.

Multiplication: The environment sends

(x := y · z,pc),

to all parties. When receiving the command and when both shares are
defined, each party runs the multiplication protocol by Gennaro et al.
[51]. In this protocol, each party starts by locally multiplying the two
shares yi and zi to get a temporary share x′. The share x′ correspond
to a Shamir sharing of y · z with threshold 2t.

This share is reshared by having each Pi run the same commands as
if it had received the command (xi := x′,pci) where pci is a fresh
program counter derived from pc and i. Each party Pi recombines its
shares x1, . . . , xn into its share of x using a threshold of 2t. When a
party has reconstructed its share of x, it outputs (ok,pc) to Z.

Synchronization: When receiving

(synchronize,pc),

Pi will send (ready,pc) to all other parties. When Pi has received such
ready messages from all parties, it outputs (ok,pc) to Z.

This should be seen as “half” a Byzantine agreement. When Pi outputs
(ok,pc), it knows that everybody else is ready too. But Pi cannot be
certain that the other parties have received the (ready,pc) sent by
itself — the mutual agreement is missing. However, for our purposes
this will suffice.

3.4. VIFF Ideal Functionality 41

3.4.2 Simulator

Having described how we realize FVIFF, we must now show how we can
simulate the protocol. This done on a case by case basis by describe how
the simulator reacts to messages from the ideal functionality in order to
pose as the adversary towards the environment. In each case S will simulate
the messages seen byA in the real world execution, and simply pass on the
output fromA (if any) to Z.

Input: When S receives (x := ?,pc) from Pi it picks random values r1, . . . , rn
and encrypts each value cj = Epkj(rj). The simulator gives these
ciphertexts to A with Pi as the sender and Pj as the receiver. If A
produces an output, this is sent to Z. The simulator sends (ok,pc)
back to Pi (through FVIFF).

WhenA delivers cj to Pj , S sends (ok,pc) to Pj (again through FVIFF).

Assuming a semantically secure cryptosystem, the output produced by
A in the ideal world will match the output produced in the real world
and Z is thus unable to distinguish between the two cases.

Output: We will start by considering the case where x is opened to an
honest party Pi. The simulator is told by FVIFF when each Pj receives
the (output, x, Pi,pc) message. The simulator invents a share rj at
random and encrypts it to get cj = Epki(rj). The simulator gives cj to
A on behalf of Pj for delivery to Pi. Any output byA is sent to Z.

The encryptions received byA in the real world contain Shamir shares,
which (when looking at up to t shares) are uniformly random num-
bers. The simulator can therefore simulate this perfectly towards the
adversary by encrypting random numbers. When S sees that A has
delivered all shares to Pi, it sends (ok,pc) to FVIFF in order to release
the pending (ok, v,pc) message to Pi.

If the party Pi is corrupt, S must work a little harder. It starts by
sending (ok,pc) to FVIFF in order to obtain v from FVIFF (S receives
messages from FVIFF sent to the corrupt Pi). The adversary knows
(by previous simulation) the share vi belonging to Pi. This share
was chosen at random by S without knowing v . But because A can
only corrupt up to t players, there will be at least one share which is
unknown toA but needed for reconstructing v .

With the knowledge of v and the shares possessed by A, S chooses
consistent shares for the honest parties and sends them securely to
A. By sending the shares in the same order as the (output, x, Pi,pc)
messages arrive, the simulator ensures thatA sees the same arrival
order as in the real world and which makes the view of the adversary
indistinguishable from the real world view.

Linear combination: In the real world no communication is done, and the
adversary sees no messages from the parties. The simulator should
therefore do nothing in the ideal world.

42 Chapter 3. Virtual Ideal Functionality Framework

Multiplication: In the real world A sees the communication produced by
the resharing. Those messages are produced by the result of the
parties executing the same steps as if they had received (xi := x′,pci)
and it can be simulated in the same way as a normal assignment.

Synchronization: When synchronizing, the only communication produced
is the (ready,pc) messages sent by each party to the other parties and
the final (ok,pc) message sent to Z when a party hears that all other
parties are ready.

To simulate the messages sent in response to a (synchronize,pc), the
simulator sends a (ready,pc) message to A from Pi when it learns
that Pi has received (synchronize,pc) from Z.

When A has delivered (ready,pc) message from all other parties to
Pi, then S sends (ok,pc) to Pi. This is a perfect simulation of the real
world.

The correctness of this simulation was argued above and it is also clear
that the simulator is efficient. The simulator usesA as a black-box and thus
works for anyA. It produces a view for Z that is identical in the two worlds,
except for the possibility that the semantically secure cryptosystem breaks.
We conclude that the real world protocol is secure with regard to FVIFF.

Having a mathematical model for a secure cryptographic protocol that
can be used for multiparty computations is only the first step towards
making useful computations. Implementing the model is the next step and
will be described in the following.

3.5 VIFF Implementation

VIFF is implemented in the Python programming language developed by van
Rossum et al. [96] in the early 1990s. Python is multi-paradigm language
with an equal focus on procedural and object-oriented programming. Sup-
port for anonymous and higher-order functions make some functional
programming possible too.

The choice of Python was largely driven by the desire to have a flexible
language for rapid prototyping and by the need for a good library for
asynchronous network communication. Like many languages, Python comes
with a standard library that gives access to sockets for doing network
communication. Twisted [65] is a Python framework that abstracts the
low-level socket communication away and allows the programmer to easily
build efficient network applications with asynchronous communication.

3.5.1 Twisted Network Library

It turns out that the features provided by Twisted for asynchronous network
communication fit exceedingly well for our purposes. We will now explain
exactly what we mean by “asynchronous” since this will be a central theme
in the coming.

3.5. VIFF Implementation 43

When program read and write from files and network sockets (or perform
any other kind of I/O), they can do so in can do so in one of two modes:
blocking (synchronous) or non-blocking (asynchronous). This refers to the
behavior of the system calls, which can either block the execution of the
program until all data has been read or written; or they can avoid blocking
and let the program continue. Write calls are often non-blocking because
the program can continue after passing the data onto the operating system.
The OS will buffer the data and make sure that it is eventually written to
disk or sent it over the network.

When reading data, most programs block while the operating system
copies the available data into a memory buffer allocated by the program.
This is the natural way to structure things for the vast majority of programs,
which operate in a sequential fashion: read some files, processing the data,
write it to a database, read some more, etc. When a program, e.g., a webserver
needs to read from multiple network sockets concurrently it can do so by
spawning a thread for each socket. Threads carry a non-trivial overhead and
accesses to shared state require careful synchronization. Synchronization
introduce additional overheads. An alternative is to use non-blocking reads
and this is the approach taken by Twisted.

In a world of blocking I/O, one could imagine a function called getPage,
which retrieves a webpage and returns the HTML code of the page. We can
use it like this:

html = getPage("http://example.net/")

The program blocks until getPage returns and html is now a string with the
HTML code retrieved. Fetching multiple pages by calling getPage multiple
times becomes a sequential operation. In Twisted — in the world of non-
blocking I/O — getPage does not block the rest of the program. Instead it
returns a deferred result immediately.

Deferred values are a key concept in the Twisted framework. The concept
is also known as promises or a futures in other asynchronous libraries. A
deferred is a placeholder for a future value, it is a promise of something
that has yet to happen. The only way to use a deferred is to say: “when you
are ready, please call this function.” Functions attached to deferreds in this
way are known as callbacks. In practice you use a deferred like this:

def print_contents(contents):
print "The Deferred has called us with:"
print contents

yahoo = getPage("http://yahoo.com/")
google = getPage("http://google.com/")

yahoo.addCallback(print_contents)
google.addCallback(print_contents)

The getPage function returns a Deferred which will eventually hold the HTML
of the fetched page. As mentioned above, we are working with non-blocking

44 Chapter 3. Virtual Ideal Functionality Framework

I/O, so getPage returns immediately and gives us a Deferred. When the
HTML arrives, the Deferred will invoke its callbacks in sequence. Here we
retrieve the front pages of two well-known search engines and attach a
callback to each Deferred. Depending on which page arrives first, the HTML
code from either Yahoo! or Google will be printed first.

As can be seen, callbacks are simply function pointers. If several call-
backs are added to the same Deferred, then they will be invoked one by one
when the Deferred receives its value. The callbacks function as a pipeline
where the return value from one callback becomes the first argument of the
next. If the concept of deferreds still seem foreign, then note that the same
programming style is well-known from graphical user interfaces where the
programmer also attaches callbacks to certain events (button click, mouse
over, etc.) in the user interface. Interactive websites that make use of AJAX
(Asynchronous JavaScript And XML) are also using callbacks extensively.

3.5.2 Deferreds in VIFF

VIFF aims to be usable by parties connected by real world networks, the kinds
we described in Section 3.3.2. Such networks are all asynchronous by nature,
which means that no upper bound can be given on the message delivery time.
A well-known example is the Internet where the communication from A to
B must go through many hops, each of which introduces an unpredictable
delay. Targeting networks with this kind of worst-case behavior from the
beginning means that VIFF works well in all environments, including local
area networks which typically behave in a much more synchronous manner.

To cope with the asynchronous setting the VIFF runtime system tries
to avoid waiting unless it is explicitly asked to do so. In a synchronous
setting all parties wait for each other at the end of each round, but VIFF
has no notion of “rounds”. What determines the order of execution is
solely the inherent dependencies in a given program. If two parts of a
program have no mutual dependencies, then their relative ordering in the
execution is unpredictable. This assumes that the calculations remain
secure when executed out-of-order. Protocols written for asynchronous
networks naturally enjoy this property since the adversary can delay packets
arbitrarily, which makes the reordering done by VIFF a special case.

The Twisted framework and the Deferred class in particular allow VIFF
to handle the asynchronous setting nicely. The Deferred class is used
extensively via a subclass called Share. Using suitable operator overloading
we are able to allow the programmer to do arithmetic with Share objects
and so treat them like normal numbers. Key to the implementation of VIFF
is a function gather_shares which takes a list of Share objects as input and
returns a new Share. This Share will call its callbacks when all Share objects
in the list have called their callbacks. We use this to make Share objects that
wait on other Share objects.

As an example, consider the simple program in Figure 3.9a for three
players. It starts by defining the field Z1031 where the toy-calculation will
take place and a list with the IDs of all players. The user is then prompted
for input (an integer). All three players then take part in a Shamir sharing of

3.5. VIFF Implementation 45

(Standard setup not shown.)
Zp = GF(1031)

input = int(raw_input("Your input: "))
a, b, c = rt.input([1, 2, 3], Zp, input)
d = rt.prss_share_random(Zp)

x = a * b
y = c * d
z = x + y

(a) VIFF program.

z

+

x

*

a b

y

*

c d

input prss_share_random

(b) Expression tree.

Figure 3.9: A small toy-example written for VIFF and the corresponding expression
tree. Each of the three player provides a private input and a forth number is shared
with PRSS. They continue by multiplying and adding the secret shared numbers.

their respective inputs, this results in three Share objects being defined. A
fourth Share object is generated using pseudorandom secret sharing [29].

Here all variables represent secret-shared values. The execution of the
above calculation is best understood as the evaluation of a tree, please see
Figure 3.9b. Arrows denote dependencies between the expressions that
result in the calculation of the variable z.

The two variables x and y are mutually independent, and so one cannot
reliably say which will be calculated first. But more importantly: we may
compute x and y in parallel. It is in fact very important for efficiency
reasons that we calculate x and y in parallel. The execution time of a
multiparty computation is limited by the speed of the CPUs engaged in the
local computations and by the delays in the network. Network latencies can
easily reach a hundred milliseconds or more, and will typically dominate
the running time.

When we say parallel we mean that when the calculation of x is blocked
and waits on network communication from other parties, then it is important
that the calculation of y gets a chance to begin its network communication.
This puts maximum load on both the CPU and the network.

3.5.3 Automatic Parallelism

The big advantage of this system is that it automatically runs the operations
in parallel: The calculations implicitly create the tree shown in Figure 3.9b,
and this tree is destroyed as fast as possible when operands become ready.
There is no predefined execution order in the tree — it is deconstructed
from the leaves inwards at the same speed as the needed operands arrive.

Please note that this simple system for parallel scheduling automatically
extends to all levels in the program, i.e., from primitives like addition and
multiplication up to compound protocols like comparisons or even entire

46 Chapter 3. Virtual Ideal Functionality Framework

auctions. This is a very important consequence since it allows us to build
a larger protocol π by combining smaller protocols and still be sure that
several instances of π can be executed in parallel. It is the uniform interface
enforced by always working on deferred values which enables this kind
of modularity. At runtime, a new protocol π will simply correspond to a
subtree in Figure 3.9b and its leaf nodes will be executed in parallel with all
other leaf nodes in the tree.

This mode of executing changes the semantics of a program using VIFF
from that of a normal Python program. Each statement is no longer exe-
cuted when it is encountered, it is merely scheduled for execution and then
executed later when the operands are available. The semantics of a program
using VIFF is thus more like that of a declarative programming language
where you declare your intentions but where the compiler takes care of
scheduling the calculations in the optimal order.

3.5.4 Tracking Asynchronous Operations

The above description of the abstract mathematical protocols has not con-
cerned itself with how the program counters are selected. It merely stipu-
lated that program counters should be unique for a given protocol run. This
is in fact the typical level of detail devoted to such “implementation details”
in most protocol descriptions.

However, selecting unique and consistent program counters is crucial
for the correct operation of the protocols and we had to design a general
system for doing so when implementing VIFF. We will now describe the
technique used to pick program counters in VIFF. We believe this technique
can be used in other concurrent settings as well.

Since VIFF programs are also normal Python programs, we seek a solution
that will integrate seamlessly with Python and in particular work with
the dynamic nature of Python programs. Had we used a dedicated (and
suitably restricted) programming language for writing our programs, we
could probably have used static analysis to assign program counters to each
statement. The Python programs that use VIFF as a library are, however,
completely general and do not lend themselves very well to static analysis.
Our solution is therefore based on decisions made at runtime.

The basic assumption is that the parties are executing the same pro-
gram. Any disagreement on the protocol to execute must be resolved via
an external mechanism. The program makes calls to send and receive data
from the network, and it is those calls that we must pair up. The calls are
asynchronous, meaning that we do not wait to receive an answer before we
proceed with the program.

The Problem

Consider the following program fragment, where we assume that the shares
a, b, c, and d have already been correctly defined:

x = a * b
y = c * d

3.5. VIFF Implementation 47

The overloaded multiplication operator leads to a call to the mul method of
the Runtime instance used. The mul method is roughly defined as follows:3

def mul(self, share_a, share_b):
result = gather_shares([share_a, share_b])
result.addCallback(lambda (a, b): a * b)
result.addCallback(share_recombine)
return result

The share_recombine function takes care of re-sharing the product and
recombining the shares received from the other parties. We must therefore
ensure that the two calls to share_recombine match up: when P1 executes
share_recombine in response to the arrival of a and b, then it should use
the same program counter as P2 and P3 does when they receive a and b.

A simple solution is to keep a single counter per party. The parties
increment it per multiplication:

def mul(self, share_a, share_b):
self.program_counter += 1
result = gather_shares([share_a, share_b])
result.addCallback(lambda (a, b): a * b)
result.addCallback(share_recombine, self.program_counter)
return result

Here we increment the program counter at the beginning of the method,
and pass the updated value as an extra argument to the share_recombine
function. It would not have worked to simply let share_recombine access
self.program_counter since we cannot predict when share_recombine will
be called — the program counter will almost certainly have been updated
when share_recombine is finally called.

Though this technique solves the problem for this particular case, it is
not very general. The big problem is that it is impossible to maintain a
system using this solution:

• Updating the program counter manually is tedious and error prone.
The programmer ends up weaving the program counter state into all
functions, which smells of bad design.

• What happens if share_recombine needs more than one program
counter? The mul method would presumably have to reserve them up
front.

• What happens if we change the implementation of a primitive protocol?
All callers would presumably have to recompute how many program
counters they need to reserve.

3We have removed the code that handles local multiplication by constants and the code
for share_recombine is not shown.

48 Chapter 3. Virtual Ideal Functionality Framework

The Solution

We can solve the first program by changing how addCallback works, or rather,
by providing a substitute function which will take care of incrementing the
program counter:

def schedule_callback(self, deferred, func, *args, **kwargs):
self.program_counter += 1
saved_pc = self.program_counter

def callback_wrapper(*args, **kwargs):
try:

current_pc = self.program_counter
self.program_counter = saved_pc
return func(*args, **kwargs)

finally:
self.program_counter = current_pc

deferred.addCallback(callback_wrapper, *args, **kwargs)

This is a method on Runtime. The schedule_callback method takes a Deferred
and a callback function as arguments. It increments the current program
counter and stores it away in its local saved_pc variable. It then defines
a local function. The function wraps the call to func in code that will
temporarily set the program counter to saved_pc. It is this inner function
which is added as a callback to deferred.

The schedule_callback method relieves the rest of the code from having
to update the program counter and to pass it as an explicit argument to
callback functions. We can use it like this:

def cb(ignored):
print "callback:", rt.program_counter

d1 = Deferred()
d2 = Deferred()

print "main:", rt.program_counter
rt.schedule_callback(d1, cb)
print "main:", rt.program_counter
rt.schedule_callback(d2, cb)
print "main:", rt.program_counter

d1.callback(None)
d2.callback(None)

When executed, the code will give the following output:

main: 0
main: 1
main: 2

3.5. VIFF Implementation 49

callback: 1
callback: 2

Notice how the callback functions now simply use the global program
counter on the Runtime object instead of managing it explicitly. The exact
details of how the program counter is updated have also been hidden — the
program counter is now simply an opaque object to the callback function.

This is only half a solution, however, since each callback only receives a
single program counter. We will solve this problem next by extending the
above code slightly.

We want to give each callback function its own isolated space of program
counters. We do this by using a list of numbers. A program counter is now
a vector of numbers, such as [1, 0, 2]. The list defines a simple hierarchy:
we can derive a sub-program counter by appending a digit to get [1, 0, 2, 0],
which we can pass it to another function. This function must now keep the
first three digits fixed, but will otherwise have control over the “name space”
offered by the [1, 0, 2] prefix. Changing the implementation of a function
will no longer affect the callers of the function. They just need to pass the
function a freshly derived sub-program counter.

The code for schedule_callback changes only slightly:

def schedule_callback(self, deferred, func, *args, **kwargs):
self.program_counter[−1] += 1
saved_pc = self.program_counter[:]

def callback_wrapper(*args, **kwargs):
try:

current_pc = self.program_counter[:]
self.program_counter[:] = saved_pc
self.program_counter.append(0)
return func(*args, **kwargs)

finally:
self.program_counter[:] = current_pc

return deferred.addCallback(callback_wrapper, *args, **kwargs)

Incrementing the program counter has been turned into an increment of the
last digit in the program counter and the func is now executed with its own
sub-program counter, allocated by appending a zero to the saved program
counter. The strange program_counter[:] syntax indicates list copying and
in-place assignment.

The program counter starts with the value [0] and our example code
from before now outputs:

main: [0]
main: [1]
main: [2]
callback: [0, 0]
callback: [1, 0]

50 Chapter 3. Virtual Ideal Functionality Framework

[1, 2, 3]

[1, 2, 4]

(a) Simple increment.

[1, 2, 3]

[1, 2, 4] [1, 2, 3, 0]

(b) Spawning a sub-program counter.

Figure 3.10: Updating the program counter. The final digit is always available for
update and we can get a fresh program counter by incrementing it. Creating a
sub-program counter both increments the original program counter (to ensure that
allocating multiple sub-program counters yield unique program counters) and adds
an extra digit to the program counter (to give the callback its own name space).

The first callback function is free to allocate new program counters beneath
the [0] name space and the second can allocate new counters below [1].

A final detail: Some functions (such as those related to PRSS) depend
on a unique program counter on each invocation, even though they are run
synchronously (not via a callback). These functions simply increase the last
digit in the current program counter:

rt.program_counter[−1] += 1

Figure 3.10 illustrates the two different ways of incrementing the program
counter.

Malicious Adversaries

The above description could make it sound as if we are dependent on
an honest but curious adversary, who will follow the protocol and pick
program counters faithfully. This is not the case. If a malicious adversary
picks incorrect program counters, the honest parties will simply store the
incoming data. This can lead to excessive memory usage, but is otherwise
harmless. We have some suggestions for dealing with this in Section 7.2.3.

3.6 Mapping the Protocol to VIFF Methods

VIFF offers a set of commands closely resembling the MPC commands
described in Section 3.4.1. For the description of the VIFF commands, let
rt be an instance of the Runtime class and that x, y, and z are instances
of the Share class. We will describe the commands with three parties for
concreteness, but this is not a limit of the VIFF runtime.

3.6.1 Standard Commands

We begin by describing the commands that map directly to commands from
Section 3.4.1.

3.6. Mapping the Protocol to VIFF Methods 51

Input: The Runtime.input method is used for providing private input to
the computation. In the PassiveRuntime and ActiveRuntime classes
it is implemented by Shamir sharing values over Zp. The two player
PaillierRuntime uses additive secret sharing instead.

The method command is often used in a symmetric way where all
parties wish to supply their input to the computation. For this reason,
the method takes a parameter that indicates the list of parties who
give input and return a tuple containing a share for each input given.

As an example, consider three parties P1, P2, and P3 who all wish to
give input. They must all execute:

x, y, z = rt.input([1, 2, 3], Zp, vi)

Each party uses its own private input value in place of vi. The result is
a triple, which we can assign directly to three different variables.

This corresponds directly to the environment sending

(x := v1,pc1), (y := v2,pc2), (z := v3,pc3)

to P1, P2, and P3, respectively.

All players must call the method, even if they do not provide any input.
This is because they still need the shares sent by the players who do
provide input. If only P1 gives an input, the code looks like this:

if rt.id == 1:
x = rt.input([1], Zp, v1)

else:
x = rt.input([1], Zp)

Output: Executing the command

open_x = rt.output(x)

will open x to all parties. This corresponds to the Z sending

(output, x, Pi,pci)

to all parties P1, . . . , Pn and for all i — all parties broadcast their share
to all other parties.

As for input, output can be sent to a subset of the parties. This is
done by specifying an optional third argument. If only P2 and P3 is to
receive the output, then all parties execute:

open_x = rt.output(x, [2, 3])

For P1, open_x will have the value None.

Linear combination: Forming a linear combination of shares x, y, and z
using coefficients a, b, and c can be done by executing

52 Chapter 3. Virtual Ideal Functionality Framework

w = a * x + b * y + c * z

and this maps directly to Z sending the command

(w := a · x + b ·y + c · z,pc)

to all parties. This involves no communication between the parties.

Multiplication: Shares can be multiplied by executing

z = x * y

and this maps directly to Z sending the command

(z := x ·y,pc)

to all parties. As in the real world model, this involves a resharing.

Synchronization: Executing a function f after synchronizing is done by

sync = rt.synchronize()
sync.addCallback(f)

This corresponds to the environment sending

(synchronize,pc)

to all parties and then executing f when all parties are ready.

3.6.2 Additional Commands

In addition to these primitive commands, VIFF provides a number of higher-
level commands. They use the primitives described above and are thus
secure since the primitives themselves are secure. The commands are:

Exclusive-or: If x and y are bit values, the exclusive-or can be calculated by

z = x ^ y

This simply calculates z = x+y−2·x·y when x and y are shares from
a field Zp. When the shares represent values from GF(28), in which
exclusive-or is simply addition, the call is made with no communication
at all.

Exponentiation: A share x can be raised to an integer y with a simple

z = x ** y

The power y must be a public integer and the exponentiation is done
using square-and-multiply.

3.6. Mapping the Protocol to VIFF Methods 53

Pseudorandom secret sharing: The runtime can create a secret sharing of
a uniformly pseudorandom number using no communication by the
technique of pseudorandom secret sharing described by Cramer et al.
[29]. The parties simply execute

rand = rt.prss_share_random(field)

The field variable indicates the field, either Zp or GF(28). The parties
can share a particular value by doing

x, y, z = rt.prss_share(vi)

each with their own value for vi. The sharing costs a broadcast which
needs not be encrypted. Pseudorandom secret sharing has no corre-
sponding command in the real world model.

3.6.3 Commands from Mixin Classes

Wait, there is even more! We provide a number of mixin classes, which can
be used to extend the basic VIFF runtime classes.

A mixin class provides only a few methods of its own and cannot be
used in isolation. To use it, one defines a new class that combines the
mixin functionality with basic functionality via multiple inheritance. We
could have made the mixin classes “full” classes by letting them inherit
directly from, say, PassiveRuntime. However, we would also like to see the
functionality used with the BasicActiveRuntime class. This suggests that
the final inheritance hierarchy should be determined by the application
programmer, not by us. A design with Mixin classes give this flexibility.

Equality: The ProbabilisticEqualityMixin class can be mixed with a runtime
to endow it with an equal method:

bit = rt.equal(x, y)

This makes bit a secret shared Boolean. The protocol used is by Nishide
and Ohta [80] and was implemented by Sigurd Meldgaard.

Comparison: Secure comparison is provides via operator overloading:

bit = x > y

This makes bit a secret shared Boolean. VIFF provides two comparison
protocols, one by Toft [94] which returns a secret shared GF(28) ele-
ment, and another which returns a bit secret shared in Zp (unpublished
work by Tomas Toft).

The programmer selects the right comparison protocol by mixing his
runtime with either ComparisonToft05Mixin for the older protocol
returning a GF(28) element or with ComparisonToft07Mixin for the
newer protocol returning a Zp element.

54 Chapter 3. Virtual Ideal Functionality Framework

3.7 Multiplication in VIFF

As an example of real VIFF code, we have included the implementation of the
standard BGW multiplication protocol [10] with the optimization by Gennaro
et al. [51]. The protocol is secure is secure against a semi-honest adversary
corrupting up to t = n/2 of the parties. Please see Figure 3.11.

1 def mul(self, share_a, share_b):
assert isinstance(share_a, Share) or isinstance(share_b, Share), \

3 "Either share_a or share_b must be a Share."

5 if not isinstance(share_a, Share):
Then share_b must be a Share => local multiplication.

7 # We clone first to avoid changing share_b.
result = share_b.clone()

9 result.addCallback(lambda b: share_a * b)
return result

11 if not isinstance(share_b, Share):
Likewise when share_b is a constant.

13 result = share_a.clone()
result.addCallback(lambda a: a * share_b)

15 return result

17 # At this point both share_a and share_b must be Share objects.
We wait on them, multiply, reshare, and recombine.

19 result = gather_shares([share_a, share_b])
result.addCallback(lambda (a, b): a * b)

21 self.schedule_callback(result, self._shamir_share)
self.schedule_callback(result, self._recombine, 2*self.threshold)

23 return result

Figure 3.11: The standard multiplication protocol for passive adversaries.

The code handles both local multiplication and multiplication involving
network traffic. First, if either share_a or share_b is a not a Share object, i.e.,
one of them is a constant integer or a FieldElement, then we do a quick local
multiplication. Assume that share_a is the constant and share_b is the Share
(lines 5–10). We cannot simply multiply share_a and share_b since share_b is
a Deferred and might not have a value yet. The solution is to clone share_b
and add a callback to it. This callback is simply a lambda expression (an
anonymous function) that takes care of the correct multiplication when
share_b eventually gets a value (line 9). The opposite case is handled in the
same way (lines 11–15). If it is established that both share_a and share_b are
Share objects we create a new Share which waits on both of them (line 19).
We then add several callbacks: first we multiply, then we reshare, and
finally we recombine. These three operations will be executed in sequence
when both share_a and share_b have received their values due to incoming
network traffic. The last two callbacks involve network traffic, and must

3.8. VIFF Applications 55

be added using a more expensive mechanism to ensure agreement on the
labels put on the data as it is sent over the network.

In all three cases the mul method returns result to the caller (lines 10,
15, or 23). Note that result probably does not have a value at this point, but
result is a Share that we have prepared in such a way that it will receive
the correct value at some point in the future. All VIFF methods follow this
pattern.

3.8 VIFF Applications

VIFF has been used for several small and some larger applications. The
largest applications are listed below.

3.8.1 Nordic Sugar

In Denmark, the production of sugar beet is managed by sugar beet contracts
issued between farmers and Danisco, the only sugar beet processor on the
Danish market. A sugar beet contract determines the quantity of sugar beet
that a farmer is allowed to produce. Traditionally, sugar beet contracts have
been traded between individual pairs of farmers. This has been done in
spite of the fact that trading in a central market was known to increase
the overall profit. A central market has, however, not been possible due to
conflicting interests and lack of trust between the parties.

In January 2008 the first large scale secure multiparty computation was
carried out, effectively solving this problem. This was done by the SIMAP
research project [16]. In the summer of 2009 the same computation was
successfully repeated, this time using VIFF.

The computation was a double auction in which the production rights
for several thousand tons of sugar beets were traded. During the first weeks
of the auction, several hundred Danish sugar beet farmers submitted their
encrypted bids to a central database. Then the actual computation took
place between three players:

• Nordic Sugar, the Danish sugar beet processor

• DKS, the consolidation of Danish sugar beet farmers

• Partisia, a Danish company specialized in secure multiparty solutions

The computation took about 15 minutes using three laptops connected by
a LAN. Most of the computation time was spent converting the encrypted
bids back into secret shares. The actual multiparty computation took only a
couple of minutes. As a result, the sugar beet contracts could be traded at
an optimal price without any sensitive information being disclosed.

Using secure multiparty computation, trading sugar beets using this kind
of auction was possible without finding and paying a trusted third party to
manage the auction. Such a trusted party would — if it could be found at all
— probably have been quite expensive.

56 Chapter 3. Virtual Ideal Functionality Framework

3.8.2 Distributed RSA

VIFF was also used by Mauland [71] to implemented a protocol for distributed
RSA key generation [17]. The private key from an RSA key pair must be kept
in a highly secure location (to prevent unauthorized persons from stealing
it) but because we want to use the key, we cannot just write it on a piece of
paper and store that in a safe.

This tension between high availability and high security makes a dis-
tributed solution attractive. The protocol by Boneh and Franklin [17] gener-
ates an RSA keys in a distributed fashion and ensures that the private key is
never available in the clear to any given party. An attacker must break into
all machines to learn the private key. Meanwhile, the parties can use their
shares of the private key to securely decrypt messages encrypted under the
public key.

Mauland [71] report that generating a 1,024-bit RSA key took about
30 minutes on average (the time varied between 7 seconds and 2.5 hours).
We believe that these results can be improved by using the GMPY [70] library
more aggressively.

3.8.3 Distributed AES

The Advanced Encryption Standard (Rijndael) block cipher turns out to have
nice arithmetic properties which makes its computation by arithmetic cir-
cuits relatively fast. Damgård and Keller [30] have implemented a multiparty
version of AES for VIFF.

The code is distributed with VIFF and lets users securely compute a secret
shared AES encrypted ciphertext of a (possibly) secret shared plaintext with
a (possibly) secret shared key. Encrypting a 128-bit block using a 128-bit
secret shared AES key takes about 2 seconds using three machines equipped
with 2.4 GHz Dual-Core AMD Opteron™ processors.

3.8.4 Secure Voting

Typical Internet voting systems store all votes in a single location. Vegge [97]
used VIFF to implement a distributed voting system. The system removes
the single point of failure by storing the votes in secret shared form among
three servers. The voters will do the secret sharing on their own machine,
encrypt the shares, and send the encrypted shares to a database. Each share
is encrypted under the public key belonging to the computation server that
will do the actual multiparty computation.

This project shows how VIFF can be integrated seamlessly with many
other technologies. The user creates a poll on a website programmed in PHP
and the votes are cast using a Java applet. The applet has the responsibility
of encrypting the votes for the computation servers. When all voters have
cast their vote, an XML-RPC message is sent to the Python program running
on the servers. That program decrypts the shares and uses VIFF to compute
the result of the poll.

3.9. Conclusion 57

3.9 Conclusion

We have presented a general, practical framework for secure multiparty
computation. In this chapter, we focused on the core runtime, especially its
formulation as a UC functionality and we described how this functionality is
implemented as a Python library. We presented the asynchronous network
library called Twisted, and explained how it plays a key role in making VIFF
able to automatically run operations in parallel. The novel concept of using
a vector to keep track of the parallel operations was also explained.

The VIFF architecture is flexible yet efficient and we will present bench-
mark results to support this in Chapter 4. We will also present a protocol
secure against malicious adversaries in that chapter.

VIFF can be freely downloaded from http://viff.dk/ and we hope
others will expand it with more other protocols.

http://viff.dk/

Chapter 4

Active Adversaries in VIFF

The previous chapter presented VIFF, the new framework for specifying
secure multiparty computation. The focus was on passive adversaries. We
will now present a protocol which offers security against active adversaries.
The protocol was implemented and benchmarked using VIFF.

The protocol and implementation described here was presented at the
PKC 2009 conference [37]. Section 4.4 is new and Section 4.5 has been
updated significantly with newly made benchmark results.

4.1 Introduction

A general multiparty computation protocol is an extremely powerful tool
that allows n parties to compute any agreed function f(x1, . . . , xn), where
each input xi is privately held by the i’th player Pi, and where only the
intended result becomes known to the players. The function is often rep-
resented by an arithmetic circuit C over some suitable finite field F. It is
required that privacy of the inputs and correctness of the result is ensured
even in the presence of an adversary who may corrupt some number t of
the players.

From the basic feasibility results of the late 80-ties [10, 24], it follows
that any efficiently computable function may be computed securely in the
model where players have secure point-to-point channels, if and only if
t < n/3. In case the adversary is semi-honest, i.e., corrupted players follow
the protocol, the bound is t < n/2. Under computational assumptions,
t < n/2 corruptions can be tolerated even if the adversary is malicious,
i.e., corrupt players behave arbitrarily [54].

The solution from [10] with passive security can lead to quite practical
solutions, when combined with later techniques for optimizing the efficiency
of particular primitives, such as integer comparison — even to the point
where large-scale practical applications can be handled [16].

On the other hand, this type of solution is not satisfactory in all cases. It
is of course desirable to provide security against active cheating. However,
this usually incurs a large cost in terms of efficiency. Techniques have been

59

60 Chapter 4. Active Adversaries in VIFF

proposed to reduce this cost [60], but they — like most previous protocols
— are designed for synchronous communication. Common ways to commu-
nicate, such as the Internet, are arguably better modeled as asynchronous
networks, where there is no guarantee that a message is delivered before a
certain time. Note that the way we model the network can have dramatic con-
sequences for the practical efficiency of a protocol. If we run a synchronous
protocol on top of any real network, we are forced to make every round last
enough time so that we can be sure that all messages from honest players
have been delivered. Otherwise, we may conclude that an honest player
is corrupt because he did not send the message he was supposed to, and
take action accordingly. Now, of course, the protocol is no longer secure. It
follows that, for instance, on a network that usually delivers messages fast,
but occasionally takes much longer time, a synchronous protocol may be
much slower in practice than an asynchronous one, where every player may
continue as soon as he has enough information to do so.

Our goal was therefore to develop and implement a practical general MPC
protocol, with security against malicious adversaries on an asynchronous
network. Compared to the usual model for asynchronous MPC, we make
two modifications, both of which we believe are well motivated:

• We allow our protocol to have one synchronization point. More pre-
cisely, the assumption is that we can set a certain time-out, and all
messages sent by honest players before the deadline will also be deliv-
ered before the deadline.

• We do not guarantee that the protocol always terminates and gives
output to all honest players. Instead we require the following: The
preprocessing phase of the protocol, up to the synchronization point,
never releases any new information to the adversary. The adversary
may cause the preprocessing to fail, but if it terminates successfully,
the entire protocol is guaranteed to terminate with output to all honest
parties.

A discussion of this model: Without the first assumption, i.e., if the
protocol is fully asynchronous, one cannot guarantee that all honest players
will be able to contribute input since the protocol cannot distinguish between
t corrupt players that have not sent anything, and t honest players whose
messages have been delayed. We believe that in most practical applications,
this is not acceptable, and this is why we introduce the synchronization
point, it is a minimal assumption allowing all honest players to provide
input. We stress that the protocol is asynchronous both before and after the
synchronization point. In other words, a protocol in this model is free to
harvest the efficiency gain that follows from players being able to proceed
as soon as possible. The only constraint we put is that honest players
must reach the deadline on time, so we can have agreement on whether the
preprocessing succeeded.

On the second point, although we do give the adversary extra power to
stop the protocol, this is arguably of no use in practice: if the corrupted
players can only stop the protocol at a point where they have learned nothing

4.1. Introduction 61

new, they have very little incentive to do so.
In this model, assuming secure point-to-point channels and that Byzan-

tine agreement is available, we present a protocol that is perfectly secure
against an adaptive and active adversary corrupting less than n/3 of the
players. The communication and computational complexities (total com-
munication and work done) are O(n2|C|k) where |C| is the size of the
arithmetic circuit being computed and k is the bit length of elements in
the field used. It is noteworthy that a straightforward implementation with
only passive security would have the same asymptotic complexity, all other
things being equal.

As for any protocol in the point-to-point model, the exact security prop-
erties of an actual implementation of our protocol depend on how the
point-to-point channels and — in our case — the Byzantine agreement are
implemented. The choice of implementation does not, however, affect the
complexities since the Byzantine agreement is only used once. In a typical
implementation where one goes for efficiency — such as the one we present
below — one would use standard encryption tools to implement the chan-
nels and do the Byzantine agreement based on public-key signatures. This
gives a protocol with computational security against a static adversary (also,
such an implementation is not known to be insecure against an adaptive
adversary).

In recent concurrent work, Hirt et al. [61] construct an asynchronous
protocol of similar asymptotic complexity as ours. This protocol is fully
asynchronous, so it does not guarantee that all honest parties can provide
inputs, and it is computationally secure against a static adversary. In another
recent work Beerliová-Trubíniová et al. [8] present a protocol with a single
synchronization point like we have. This protocol guarantees termination,
has a better security threshold (n/2), but is only computationally secure
against a static adversary, and has larger asymptotic complexity than our
protocol.

Regarding efficiency in practice, we stress that although our implementa-
tion is only computationally secure, it is an advantage, also from a practical
point of view, that the basic protocol is information theoretic, because the
tools used (secret sharing etc.) are much more efficient than computation-
ally secure alternatives, such as homomorphic public-key encryption. Such
techniques are used in both [8] and [61], making them much less efficient in
practice than our construction.

Thus, our result is incomparable to previous work, and we believe it
provides a new trade-off between security properties that is attractive in
practice. We later give more exact numeric evidence of the efficiency.

Our protocol is based on Beaver’s well known circuit randomization
techniques, where one creates in a preprocessing phase shared random
values a,b, c with ab = c. We show two techniques for generating these
triples efficiently. One is a variant of the protocol from [7], the other is
based on pseudorandom secret sharing [29], it is much faster for a small
number of players, but only gives computational security. Both protocols are
actually synchronous, but we handle this via a new technique that may be of
independent interest, namely a general method by which — if one accepts

62 Chapter 4. Active Adversaries in VIFF

that the protocol may abort — a synchronous protocol can be executed in
an asynchronous fashion, using a single synchronization point to decide if
the protocol succeeded.

A crucial observation we make is that if the protocol is based on Shamir
secret sharing with threshold less than n/3, then the computation phase can
be done asynchronously and still guarantee termination, if the preprocessing
succeeded.

A final contribution of this chapter is an implementation of our proto-
col in VIFF. The protocol was designed with an eye towards an efficient
implementation in a system like VIFF, which is basically asynchronous and
operates on the principle that players proceed whenever possible (but can
handle synchronization points when asked to do so).

4.2 Overview and Security Model

The goal of the protocol is to securely compute (y1, . . . , yn) = f(x1, . . . , xn).
For notational convenience we assume that all inputs and outputs are single
field elements. In addition each yi can assume the value yi = ⊥, which
indicates to Pi that the computation failed.

When in the following, we say that x is publicly reconstructed from [x]t ,
where at most t < n/3 players are actively corrupted, this simply means
that each player sends his share to all other players. This allows all honest
players to reconstruct x using standard decoding techniques since t < n/3.
We may also privately open x to player Pi by sending shares only to him.

4.2.1 Overview of the Protocol

Our protocol consists of two phases, the preprocess and input phase and
the computation phase.

Preprocessing and input phase.

In the preprocessing phase, we can make use of any protocol that can
generate a given number of multiplication triples, i.e., random secret-shared
values [a], [b], [c] where ab = c. In addition, for each player Pi, it should
construct a secret sharing [ri] where ri is random and reveal ri privately
to Pi. The protocol ends by outputting “success” or “failure” to all players,
depending on whether the required values were successfully constructed or
not. The purpose of [ri] is to allow Pi to contribute his input xi securely by
broadcasting ri + xi.

Instead of attempting to build such a protocol directly for the asyn-
chronous model, it is much easier to design a protocol for the synchronous
model with broadcast, we give two examples of this in Section 4.3. We then
show below a special way to run any such protocol in an asynchronous way,
i.e., we can avoid the use of timeouts after each communication round and
we avoid having to implement broadcast. The price we pay for this is that
the adversary can force the preprocessing to fail.

4.2. Overview and Security Model 63

The basic idea is that in each round all parties just wait for messages
from all other parties and progress to the next round immediately if and
when they all arrived. Some extra technicalities are needed to make sure
there is agreement at the end on whether the preprocessing succeeded, and
to make sure that no information on the inputs is revealed prematurely.

To emulate a synchronous protocol with R rounds, each Pj proceeds as
follows:

1. Wait for an input (begin preprocess). Let r = 1 and for each Pi
compute the message mj,i,1 to be sent to Pi in the first round of the
synchronous protocol. Also compute the messagemj,1 to be broadcast
in the first round.

2. Send (mj,i,1,mj,1) to Pi.

3. While r ≤ R:

(a) Wait until a message (mi,j,r ,mi,r) arrived from all Pi.

(b) From the incoming messages(
(m1,j,r ,m1,r), . . . , (mn,j,r ,mn,r)

)
compute the messages

(mj,1,r+1, . . . ,mj,n,r+1)

that the preprocessing protocol wants to send in the next round,
and the message mj,r+1 to be broadcast.

(c) r := r + 1.

4. Let gj ∈ {preprocess success,preprocess failure} denote the
output of the preprocessing protocol and let Mj consist of the broad-
cast messages mi,r for i = 1, . . . , n and r = 1, . . . , R.

Send (check, gj ,Mj) to all parties.

5. Wait until all n− 1 other parties Pi send (check, gi,Mi). If all Pi sent
gi = preprocess success and Mi = Mj , then send sj = xj + rj to all
parties.

6. Wait to receive si from all other parties, let Sj = (s1, . . . , sn) and send
Sj to all parties.

7. If all n − 1 other parties Pi sent some Si before the timeout and all
Si = Sj , then let qi = success. Otherwise, let qi = failure.

8. Run a Byzantine agreement (BA) on the qi to agree on a common
value q ∈ {failure,success}. Being a BA this protocol ensures that
if qi = success for all honest parties, then q = success, and if
qi = failure for all honest parties, then q = failure.

64 Chapter 4. Active Adversaries in VIFF

We assume that the preprocessing phase is started enough in advance
of the time-out to guarantee that it will terminate successfully on time
when there is no cheating. However, as mentioned in the introduction, the
adversary can stop the preprocessing, in particular if a corrupted party does
not send a message the preprocessing dead-locks.

Note that if just one honest party outputs qi = success, then the pre-
processing protocol terminated successfully before the timeout and all the
values si were consistently distributed. In particular, if q = success, then
qi = success for at least one honest Pi, and therefore the preprocessing
and inputting were successful.

As for security, if after each communication round in Step 3 the parties
compared the messages mi,r and terminated if there was disagreement,
then it is clear that a secure synchronous protocol1 run asynchronously this
way is again secure. The only loss is that the adversary can now deprive
some parties of their input. The reason why it is secure to postpone the
check of consistency of the broadcasted message until Step 5 is that the
inputs xi do not enter the computation until Step 6 and that there are no
other secrets to be leaked, like secret keys. Sending inconsistent broadcast
messages before Step 6 will therefore yield no information leakage. After
Step 5 it is known that the preprocessing was an emulation of a consistent
synchronous execution, at which point it becomes secure to use the result
ri to mask xi.

This way to emulate a synchronous protocol in an asynchronous envi-
ronment is generic and does not just apply to our protocols here.

Computation phase.

If q = failure, then all parties output yi = ⊥. If q = success, then the
parties compute [xi] = si−[ri] for all Pi and run the asynchronous protocol
described below which compute sharings [yi] of the outputs from the shar-
ings [xi], making use of the multiplication triples from the preprocessing.
Finally the shares of [yi] are sent privately to Pi which computes yi.

We may assume that for each multiplication we have to do, a triple
[a], [b], [c] as described above is constructed in the preprocessing. To
handle any arithmetic circuit describing the desired function, we then only
need to describe how to deal with linear combinations and multiplications
of shared values.

Linear Combinations: Shamir sharing is linear, and any linear function of
shared values can therefore be computed locally by applying the same
linear function to the shares.

Multiplication: Consider a multiplication gate in the circuit and let [a], [b],
[c] be the triple constructed for this gate. Assume we have computed
sharings of the two input values [x] and [y], so we now wish to

1The synchronous security should be against a rushing adversary.

4.2. Overview and Security Model 65

compute [xy]. Note that

xy =
(
(x − a)+ a

)(
(y − b)+ b

)
= de+ db + ae+ ab,

where d = x − a and e = y − b. We may now publicly reconstruct d
and e, since they are just random values in F. The product can then be
computed locally as

[xy] = de+ d[b]+ [a]e+ [c].

The overall cost of this multiplication is the cost of two public recon-
structions and a constant number of local arithmetic operations.

A crucial observation is that this protocol (assuming the triples are given)
can be executed in a completely asynchronous fashion, and is guaranteed
to terminate. At each multiplication gate, each player simply waits until he
has received enough shares of d and e and then reconstructs them. More
precisely, we need that at least n − t shares of each value have arrived,
and that at least n− t of them are consistent with some polynomial. Since
there are n− t honest players, n− t consistent shares will eventually arrive.
Moreover, if n− t shares are found to be consistent, since t < n/3, these
must include at least t + 1 shares from honest players, and so the correct
value is always reconstructed. One can test if the conditions are satisfied
using standard error correction techniques.

4.2.2 Security Model

The security of our protocol can be phrased in the UC framework [23]. For
the protocol we assume the standard asynchronous communication model
of the UC model, except that we let the timeout of Pi be called by the
adversary by inputting (timeout) to that party, and that we assume secure
point-to-point channels where the adversary can decide when a message sent
is delivered. Our protocols are secure and terminate no matter when the
timeouts are called. They provide outputs, ≠ ⊥, if all parties behave honestly
in the preprocessing and the timeouts are called after the preprocessing
succeeded at all honest parties. We formalize that by implementing an ideal
functionality.

For a function f :Fn → Fn, let FfFSFE be the following ideal functionality
for fair secure function evaluation.

1. On input (begin preprocess) from Pi, inform the adversary by send-
ing it (Pi,begin preprocess).

2. On input (xi) from Pi, output (Pi,gave input) to the adversary.

3. If the adversary inputs (early timeout), then output (yi = ⊥) to all
Pi, and terminate.

4. If all Pi have input both (begin preprocess) and xi and the ad-
versary then inputs (late timeout), then compute (y1, . . . , yn) =
f(x1, . . . , xn) and output (yi) to all Pi, and terminate.

66 Chapter 4. Active Adversaries in VIFF

Note that the adversary can always make the evaluation fail, but must do so
in a fair way: either no party learns anything, or all parties learn a correct
output. Our protocol securely implements this ideal functionality when
t < n/3 parties are corrupted. If the BA is modeled as an ideal functionality,
then our implementation is perfectly secure. We will not give the full
simulation proofs below, as they follow more or less straightforwardly using
known techniques.

On a high level, however, the simulation proceeds as follows: First the
simulator simulates the first 4 steps while emulating the algorithms of
honest players as specified in the protocol. This is possible as the secret
inputs of honest players are not used in these steps. We write P̄P i for the
simulator’s “copy” of honest Pi.

If some honest P̄P j computed gj = preprocess failure, then the simu-

lator inputs (early timeout) to FfFSFE, which will make it output yi = ⊥ to
all players. Clearly the same happens in the real execution since Pj sends
gj = preprocess failure to all honest parties.

If all honest P̄P j compute gj = preprocess success, then the preproces-
sing was secure. This ensures that the sharings [ri] are consistent, and since
the simulator knows the shares of all P̄P j , it can compute all ri. From the si
broadcast by the corrupted parties in the simulation it computes xi = si−ri
and inputs these to FfFSFE on behalf of the corrupted parties. It broadcasts
random si’s on behalf of honest players.

Then the simulator finishes the execution of the preprocess and input
phase. If during this the adversary cheats or calls the timeouts at a time
which makes the BA terminate with q = failure, then the simulator inputs

(early timeout) toFfFSFE, which will make it output yi = ⊥ to all Pi. Clearly
the same happens in the real execution.

If q = success in the simulation, the simulator inputs (late timeout)
to FfFSFE, and learns the output for corrupted parties. It can now simulate
the computation phase using standard techniques until all parties have
computed their outputs.2 Namely, since the computation phase is a sequence
of public reconstructions, the simulator for each reconstruction selects the
value to be opened, either a random value or a result yi, as appropriate. It
then computes shares to send on behalf of the honest players such that
they are consistent with the opened value and the shares held by corrupted
players.

4.3 Protocol for Preprocessing

In this section, we describe the techniques used in the preprocessing phase.
One version of the preprocessing is obtained by simplifying in a straight-
forward way the protocols from Beerliová-Trubíniová and Hirt [7], where
hyperinvertible matrices are used to generate multiplication triples. Another
version is based on pseudorandom secret-sharing [29].

2In this process, the simulator may need to control the time at which results are delivered
to honest parties, depending on when the adversary chooses to deliver the messages in the
simulated execution.

4.3. Protocol for Preprocessing 67

4.3.1 Preprocessing based on Hyperinvertible Matrices

In this subsection we will show how the preprocessing and input phase
works. This amounts to showing how to generate the multiplication triples.

The key element in the way we generate triples is that while in [7], a player
elimination step is run whenever a fault occurs, we accept the possibility
that our protocol will not terminate. Therefore we can simplify and speed
up the protocols considerably by cutting away the player elimination and
simply aborting if a fault is detected. For completeness and readability, we
will describe the most important protocols here, but refer to [7] for security
proofs and some of the tools.

In order for us to be able to generate multiplication triples, we first
need to be able to generate double sharings of random element — that is,
two Shamir sharings of the same random element, possibly with different
thresholds. In other words we wish to generate for a random r ∈ F sharings
[r]d and [r]d′ , where d and d′ are the degrees or thresholds. A more
compact notation for the double sharing is [r]d,d′ .

We will need some facts from [7] on reconstructing shared values, namely
how to reconstruct a value robustly to one player using O(nk) bits of
communication and how to reconstruct up to T = n − 2t values publicly
using O(n2k) bits, where k is the size of a field element.

The following is based on the concept of hyperinvertible matrices. We
define “hyperinvertible” as in [7], where a straightforward way to construct
such a matrix is also presented:

Definition 4.1 Anm×nmatrixM is hyperinvertible if for any selection R ⊆
{1, . . . ,m} of rows and C ⊆ {1, . . . , n} of columns such that |R| = |C| > 0,
the square matrix MRC consisting of the intersections between rows in R and
columns in C is invertible. 	

The protocol for generating T = n− 2t double sharings now works as
follows (it assumes the existence of an publicly known n×n hyperinvertible
matrix M):

1. Each player Pi Shamir shares a random value si to the others using both
d and d′ as degrees. Every Pi now knows shares of [s1]d,d′ , . . . , [sn]d,d′ ,
but shares from corrupted players may be incorrect.

2. The players locally compute(
[r1]d,d′ , . . . , [rn]d,d′

)
= M

(
[s1]d,d′ , . . . , [sn]d,d′

)
.

Note that there are actually two vectors here, and the matrix is applied
to both, creating two new vectors.

3. All sharings [si]d,d′ are verified for i = T + 1, . . . , n. They are verified
by having each Pj send his share of [si]d,d′ to Pi. Each Pi that is given
shares must then check whether they are consistent and that both
parts of the double sharing represent the same value. If not, Pi sets an
unhappy flag to indicate the fault.

68 Chapter 4. Active Adversaries in VIFF

4. The double sharings [r1]d,d′ , . . . , [rT]d,d′ are the output.

The double sharing protocol is guaranteed to either output T = n− 2t
correct and random double sharings that are unknown to the adversary or
make at least one honest player unhappy. This is proved in [7], along with
the fact that the communication complexity is O(n2k) bits. In our case, if an
honest player becomes unhappy at any point, all other players are informed
and the honest players will abort, as described in the Section 4.2. That is,
we skip the player elimination used in [7].

If we only wanted to generate a set of T single Shamir sharings, it is easy
to see that we can use the protocol above but considering only sharings
using degree d for each step. The complexity of this is half that of creating
double sharings. This is used for generating the sharings [ri] of a random
ri for each player Pi, that we promised in the Section 4.2.

Generating Multiplication Triples.

Given sharings

[a1]t , . . . , [aT]t , [b1]t , . . . , [bT]t

and

[r1]t,2t , . . . , [rT]t,2t

of random and independent numbers ai, bi, ri ∈ F, we can generate T
multiplication triples as follows:

1. The players compute [ai]t[bi]t−[ri]2t = [aibi−ri]2t for i = 1, . . . , T .3

They then attempt to publicly reconstruct all of the aibi − ri. If the
reconstruction of any of the values fails, an honest player becomes
unhappy and we abort.

2. The players locally compute [aibi]t = aibi − ri + [ri]t . All honest
players now own shares of the [aibi]t , the [ai]t and the [bi]t for
i = 1, . . . , T .

This protocol is clearly secure, assuming that the sharings we start from
have been securely constructed. The simulator would choose random values
si to play the role of aibi− ri, it would then expand the set of shares known
by corrupt players of [aibi−ri] to a complete set consistent with si and use
these shares as those sent by honest players. Please see [7] for more details.

The communication complexity is O(n2k) bits for the reconstructions
and therefore a total of O(n2k) bits including the generation of the double
sharings. That is, we can reconstruct T = n − 2t = Θ(n) shares with a
communication complexity of O(n2k), where k is the bit length of the field
elements.

3The notation [ai]t[bi]t means that each player locally multiplies its shares [ai]t and
[bi]t . This gives a 2t sharing of aibi.

4.3. Protocol for Preprocessing 69

4.3.2 Preprocessing based on Pseudorandom Secret-Sharing

We show here how to do the preprocessing based on pseudorandom secret-
sharing. The techniques used are described in detail in [29], but we present
here an overview for completeness.

Pseudorandom Secret-Sharing.

Let A be a set of players of size n− t. We can create a random, shared secret
by defining for each set A a random value rA and give it to all players in A.
The secret is then given by

s =
∑
A
rA.

Now every maximal unqualified set {1, . . . , n} \A misses exactly one value,
namely rA.

Keeping the above in mind, pseudorandom secret-sharing (PRSS) is then
based on the observation that we can create many random shared secrets
by distributing once and for all one set of rA values.

The trick is to use a pseudorandom function ψrA with rA as its key. If
the parties agree on some publicly known value a, they can generate the
random values they need as ψrA(a). So the secret is now

s =
∑
A
ψrA(a).

What we actually want, however, is a Shamir sharing. This can be fixed as
follows. Define a degree at most t polynomial fA by fA(0) = 1 and fA(i) = 0
for all i ∈ {1, . . . , n} \A. Now each player Pi computes its share

si =
∑

A⊂{1,...,n}:
|A|=n−t,i∈A

ψrA(a)fA(i).

This is in fact a Shamir sharing of s, since it defines the polynomial

f(x) =
∑

A⊂{1,...,n}:
|A|=n−t

ψrA(a)fA(x).

It is easy to see that this polynomial has degree at most t and that

f(0) =
∑

A⊂{1,...,n}:
|A|=n−t

ψrA(a) = s,

which means that it shares the right secret. It is also clear that si = f(i),
which means that our sharing is a correct Shamir sharing.

Pseudorandom Zero-Sharing.

We will need one more tool to be able to generate multiplication triples,
namely what is defined in [29] as pseudorandom zero-sharing (PRZS).

70 Chapter 4. Active Adversaries in VIFF

Like PRSS, it creates a Shamir sharing using only local computations, but
in this case it is a sharing of 0. We will need a sharing of degree 2t in the
following, but the approach works just as well with other thresholds. First,
for a set A ⊆ {1, . . . , n} of size n− t we define the set

GA =
{
g ∈ Zp[x]

∣∣∣ deg(g) ≤ 2t∧g(0) = 0∧
(
j 6∈ A⇒ g(j) = 0

)}
.

This is a subspace of the vector space of polynomials of degree at most 2t.
Because every polynomial in the set has t+1 zeros, the subspace must have
dimension 2t + 1− (t + 1) = t. The construction from [29] needs a basis for
this subspace, but no explicit construction was given there. We suggest to
use the following:

(g1A, . . . , g
i
A, . . . , g

t
A) = (xfA, . . . , xifA, . . . , xtfA),

where the fA is defined as above. It is a basis because it has t elements of
GA which are all of different degrees and therefore linearly independent.
Exactly as for PRSS, we assume that we have values rA known (only) by
players in A. Now we define the share at player j as

sj =
∑

A⊂{1,...,n}:
|A|=n−t,j∈A

(t∑
i=1
ψrA(a, i)g

i
A(j)

)
.

Note here that the inner sum is a pseudorandom choice of a polynomial
from GA, evaluated in the point j. Now we want to show that this leads to a
Shamir sharing of 0, so we define the corresponding polynomial as

g0(x) =
∑

A⊂{1,...,n}:
|A|=n−t

(t∑
i=1
ψrA(a, i)g

i
A(x)

)
.

The degree of g0 is clearly at most 2t, and it is also easy to see that it is
consistent with the shares above and that g0(0) = 0.

Making triples using PRSS and PRZS.

In order to make multiplication triples, we already know that it is enough if
we can build random sharings [a]t , [b]t , and a double sharing [r]t,2t .

Using PRSS, it is easy to construct the random degree t sharings. A
double sharing can be constructed as follows: Create using PRSS a random
sharing [r]t and use PRZS to create a sharing of zero [0]2t . Now

[r]2t = [r]t + [0]2t
is clearly a sharing of r of degree 2t. We can therefore use pseudorandom
secret sharing and pseudorandom zero sharing to locally compute all the
values needed to make multiplication triples. The only interaction needed is
one public opening for each triple as described in Section 4.3.1.

This is faster than using hyperinvertible matrices for a small number of
players, but does not scale well: since n− t = Θ(n), the local computation is
exponential in n, as clearly seen from the benchmark results in Section 4.5.
The break-even point between PRSS and hyperinvertible matrices depends
both on local computing power and on the cost of communication.

4.4. Integration into VIFF 71

Security of the PRSS approach.

We claim that the overall protocol is secure against a computationally
bounded and static adversary, when based on PRSS.

To argue this, consider some adversary who corrupts t players, and let
A be the set of n− t honest players. Now let πrandom be the protocol that
runs as described above, but where the function ψrA is replaced with a truly
random function.4

When we execute PRSS or PRZS in πrandom, all secrets and sets of shares
held by the honest players are uniformly random, with the only restric-
tion that they are consistent with the shares held by corrupt players. We
can therefore use the proof outlined in Section 4.2.2 to show that πrandom

implements FfFSFE (with perfect security).
For the rest of the argument, we refer to the protocol using the pseudo-

random function as πpseudo. We claim that real-world executions of πrandom

and πpseudo are computationally indistinguishable. Assume for contradic-
tion that there exists some computationally bounded environment Z that
can distinguish between the two with a non-negligible advantage.

From Z we can now build a new machineM, which gets oracle access to
some function f and outputs its guess of whether the function is pseudo-
random or truly random.
M simply runs the protocol with f inserted in the place of ψrA (i.e., it

runs either πrandom or πpseudo) for Z. If Z outputs “πrandom”,M outputs “truly
random”, otherwise it outputs “pseudorandom”. Clearly, M can distinguish
between a pseudorandom function and a truly random function with a
non-negligible advantage, breaking the security of our PRF.

Combining this with the fact that πrandom securely realizes F , we see
that the same holds for πpseudo (with computational security): the simulator
that works for πrandom also works for πpseudo.

4.4 Integration into VIFF

The above protocol has been implemented in VIFF and we present benchmark
results in Section 4.5. Using the plug-in architecture of VIFF described in
Section 3.6.3, an application developer can use the protocol by creating a
runtime class mixed with the BasicActiveRuntime. This class contains the
multiplication protocol itself.

Multiplication triples are needed too and a common interface has been
defined for producing them. The two preprocessing techniques are imple-
mented in TriplesHyperinvertibleMatricesMixin and TriplesPRSSMixin. These
mixin classes work together with BasicActiveRuntime to make a full, usable
runtime. Such a runtime support all the operations of the passively secure
runtime, but with active security. The actively secure runtime can be used
as a drop-in replacement for a passively secure runtime. User code remain
unchanged and the programmer still writes

4This can be formalized by assuming an ideal functionality that gives oracle access to
the function for the honest players as soon as the adversary has corrupted a set of players
initially.

72 Chapter 4. Active Adversaries in VIFF

z = x * y

to make a secure multiplication. Likewise for comparisons and other com-
pound protocols, which inherit the security of the multiplication protocol
and thus automatically become actively secure.

4.5 Benchmark Results

An old proverb goes, the proof of the pudding is in the eating! We have
therefore put VIFF to the test in order to evaluate its performance. It is
worth pointing out that this is one of the major contributions of VIFF —
it is now feasible to actually implement a protocol found in the literature
and compare its performance to that of other protocols. The asymptotic
nature of the big-O notation hides constant factors. In some cases, these
constant factors are merely a distraction and here the big-O notation shines.
However, one should never forget that a real system is of a finite size, and
so a big constant factor can become very important. We will see an excellent
example of this behavior below, where a protocol with quadratic complexity
is beaten by a protocol with exponential complexity, albeit only for a small
number of players. Many protocols exhibit the same asymptotic round and
communication complexities, so we need real benchmarks on realistic data
to compare them.

4.5.1 Test Setup

We have tested VIFF on a number of machines located at the Department of
Computer Science, Aarhus University. The machines were connected by a
standard gigabit local area network. On the software side, we used Red Hat
Enterprise Linux Client 5.4, Python 2.4.3, and VIFF 1.0.

We group the machines into classes by their CPU type. The classes are
shown in Table 4.1, along with the number of machines in each class. At the
beginning of each test run, a set of n idle machines are selected. Machines
are picked from the most powerful class first (the top row), followed by
less powerful machines, until n machines have been found. Machines were
disqualified from selection if they had less than 512 MiB of free main memory
or if their load average over the past 1, 5, and 15 minutes measured over 0.3.
The system load is a classical performance metric on Unix-like systems. It is
defined as the average number of jobs waiting to be executed on the CPU.
The machines generally had loads of 0.0–0.1 when the benchmarks were
executed.

We ran run benchmarks with n = 4,7, . . . ,31 corresponding to thresholds
t = 1,2, . . . ,10, respectively. In each test we secret-shared 2,000 random
numbers and multiplied or compared the 1,000 pairs in parallel. We used
number in Zp where p is a 32-bit prime for multiplication and a 65-bit prime
for comparisons. The time needed for preparation of the input numbers is
not counted, we only report the time it took to compute the secret shared
result. We had each party output the total time used and we report the

4.5. Benchmark Results 73

Table 4.1: Machine classes used for benchmarks. For each class, the last column
gives the number of machines available with that configuration. All machines
were equipped with dual core CPUs. The data was read from /proc/cpuinfo and
/proc/meminfo.

Machine Class Speed Memory Count

Intel® Core™ 2 Duo CPU E8500 3.16 GHz 4 GiB 18
Intel® Core™ 2 Duo CPU E8400 3.00 GHz 4 GiB 1
Intel® Core™ 2 Duo CPU E6750 2.66 GHz 2 GiB 10
Intel® Core™ 2 Duo CPU E6550 2.33 GHz 2 GiB 5
Intel® Core™ 2 CPU 6600 2.40 GHz 2 GiB 3
Intel® Core™ 2 CPU 6400 2.13 GHz 2 GiB 1
Intel® Xeon™ CPU 3.00 GHz 1 GiB 24

minimum time per operation. The minimum value was chosen in order
to best compare the protocols against one another. We assume the local
clocks have a negligible skew, and so the minimum time gives the purest
performance indication — values above the minimum must contain errors
stemming from fluctuations in system load or congestion on the network.
That being said, we kept and eye on the median value and the average values.
The minimum value were generally within 0.1 ms from the median value,
and the average value were up to 0.5 ms further away from the minimum
for large values of n.

4.5.2 Multiplications

Multiplication and reconstruction of secret shared values are arguably the
most important protocols in VIFF. Many larger protocols are built upon
these primitives. The basic BGW protocol for multiplication [51] has every
party communicate with every other party in addition to performing a small
amount of local computation. Reconstructing (opening) a secret shared
value has an identical communication pattern, albeit with a little less local
computation. Because of their similarities, multiplications and openings are
often counted together and used as a measure of protocol performance. As
we will see below, they can only be lumped together for small values of n.

We tested how multiplications scale as the number of players grow.
These results are in Table 4.2 on the following page. Columns 3 and 4 give
the online time when using PassiveRuntime and ActiveRuntime, respectively.
The final two columns give the offline time spent per multiplication triple.

Passively Secure Protocol

The average online time per multiplication are shown in Figure 4.1 on the
next page. Looking at the graph, it may at first appear to grow linearly.
However, it turns out that the running time for the passively secure protocol
is better described by a quadratic function. The function f(x) = 0.799 −
0.006x + 0.009x2 fits the data best, yielding an R2 value of 0.986. This
function has been draw on the plot in Figure 4.1.

74 Chapter 4. Active Adversaries in VIFF

Table 4.2: Multiplication of 32-bit numbers.

n t Passive Active Hyper PRSS
Online Offline

4 1 0.7 ms 1.3 ms 5.7 ms 1.2 ms
7 2 1.2 ms 2.0 ms 10.0 ms 2.7 ms

10 3 1.7 ms 2.7 ms 13.9 ms 10.8 ms
13 4 2.4 ms 3.5 ms 20.0 ms 65.3 ms
16 5 3.1 ms 4.2 ms 26.3 ms 456.0 ms
19 6 3.9 ms 5.0 ms 34.9 ms —
22 7 4.8 ms 6.0 ms 46.7 ms —
25 8 5.6 ms 6.9 ms 65.9 ms —
28 9 6.9 ms 7.7 ms 73.4 ms —
31 10 9.5 ms 8.7 ms 102.0 ms —

Players (n)

T
im

e
(m

s)

0 4 7 10 13 16 19 22 25 28 31

1

2

3

4

5

6

7

8

9

10

Figure 4.1: Online time for multiplication of 32-bit numbers when using the pas-
sively secure protocol. The bullets show the measured running times, the curved
line is a best fit quadratic function.

4.5. Benchmark Results 75

Players (n)

T
im

e
(m

s)

0 4 7 10 13 16 19 22 25 28 31

1

2

3

4

5

6

7

8

9

10

Figure 4.2: Scatter plot of the online time for multiplication of 32-bit numbers
using the protocol secure against malicious adversaries. The line is a best fit linear
function.

The BGW protocol [10, 51] has linear communication complexity, but
quadratic computational complexity. The quadratic term enters when each
party Shamir shares the local product. To Shamir secret sharing a value,
the party selects a random polynomial of degree t and evaluates it in n− 1
points. Each evaluation takes time O(t), and with t fixed as a constant
fraction of n, the Shamir sharing becomes a quadratic operation. As the
number of parties grow, this factor becomes increasingly important. For
31 parties, the online time even exceeds the time for actively secure protocol.

Actively Secure Protocol

We have depicted the benchmark results for the actively secure protocol
in Figure 4.2. Here we see a strongly linear growth, which is also what the
theory predicts. The figure shown the function f(x) = −0.001 + 0.274x
along with the data. The R2 value was 0.997.

The actively secure protocol consist of two public reconstructions and a
constant number of local arithmetic operations. To reconstruct a Shamir
shared value we need compute

f(0) =
∑

(xi,si)∈S

(
si

∏
(xj ,sj)∈S,
j≠i

xj
xj − xi

)

for a set S = {(xi1 , si1), . . . , (xit+1 , sit+1)} of t + 1 shares where si = f(xi).
We can cache the λi = xj/(xj − xi) terms and this simplifies the expression

76 Chapter 4. Active Adversaries in VIFF

Players (n)

T
im

e
(m

s)

0 4 7 10 13 16 19 22 25 28 31

10

20

30

40

50

60

70

80

90

100

110

Hyper

PRSS

Figure 4.3: Offline (preprocessing) time needed to generate a single 32-bit multipli-
cation triple.

for f(0) to

f(0) =
∑

(si,xi)∈S
siλi.

This can be computed in time O(n). The λi clearly depend on the xi, but
we only need to compute each λi once.

4.5.3 Multiplication Triples

The key to the excellent online performance of the actively secure protocol
described in this chapter, is a supply of ready-made multiplication triples.
We generate those in advance using either a technique based on hyper-
invertible matrices or a technique based on pseudorandom secret sharing.
Columns 4 and 5 of Table 4.2 present the results and Figure 4.3 visualize
them.

As expected, the PRSS based preprocessing is much faster for a small
number of players but does not scale well. We had to abandon it for n > 16.
The amount of work per player depends on the number of subsets of
size n − t and with t as a fixed fraction of n,

(n
n−t

)
grows exponentially.

Still, for 4 or 7 parties, the PRSS based method is much superior to using
hyperinvertible matrices.

The preprocessing time per multiplication triple produced via hyper-
invertible matrices shows a more moderate growth, though it is still a
quadratic growth. As before, the communication complexity is linear, but

4.5. Benchmark Results 77

Table 4.3: Comparison of 32-bit numbers using a 65-bit prime field.

n t Passive Active

4 1 133 ms 175 ms
7 2 228 ms 284 ms

10 3 518 ms 587 ms
13 4 2,014 ms 2,593 ms

Players (n)

T
im

e
(m

s)

0 4 7 10 13

400

800

1,200

1,600

2,000

2,400

Passive

Active

Figure 4.4: Online time for comparison of 32-bit numbers.

the computational complexity is quadratic. This due to the Shamir sharing
and the matrix multiplication involved in producing the double sharings.

We tested the protocols on a gigabit LAN where the computational com-
plexity becomes the dominant factor — with ping times below 1 ms, the
parties can communicate faster than they can compute.

4.5.4 Comparisons

Secure comparison of secret shared values is another important protocol.
Without being able to compare values, it is difficult to make decisions based
on the inputs. VIFF provides two protocols for secure comparison. The
earlier of the two, provided by the class ComparisonToft05Mixin, takes two
inputs from Zp and produces a secret shared bit in GF(28). A later version
(with the imaginative name of ComparisonToft07Mixin) gives an output in
Zp and is thus a bit more straight-forward to use. We have benchmarked
the latter protocol here, please see Table 4.3 and Figure 4.4.

Instead of the usual 1,000 parallel operations, we only made 100 parallel
comparisons. The benchmarks demonstrate that secure comparisons are
2–3 orders of magnitude more expensive than multiplications in terms of
online processing time.

78 Chapter 4. Active Adversaries in VIFF

Table 4.4: Bandwidth statistics. We have measured the data sent per pair-wise
connection for a single operation when operating on 32-bit inputs. The total amount
of bandwidth used in the network is thus n(n− 1) times higher since each of the n
parties maintain n− 1 connections.

Operation Field Size Passive Active

Multiplication 32 bit 28 bytes 56 bytes
Comparison 65 bit 5,183 bytes 7,048 bytes

4.5.5 Bandwidth

A final parameter is the bandwidth usage of protocols. We have measured
the number of bytes sent over each pair-wise connection when doing mul-
tiplications and when doing comparisons. The results are in Table 4.4. In
contrast to the previous benchmarks, these results are independent of the
number of parties since we give the numbers per pair-wise connection. The
first thing to note is that, as expected, the actively secure multiplication
protocol uses exactly twice as much bandwidth as the passively secure
protocol. For comparisons, the gap between the two runs is smaller. We
will attribute this to the fact that a comparison consist of more than just a
number of multiplications — each secure comparison consumes 69 multi-
plication triples — it is only the multiplications that double in complexity
when we have to protect against malicious adversaries. In particular, the
protocol for pseudorandom secret sharing remains unchanged.

4.6 Conclusion

We have presented an efficient protocol for general multiparty computation
secure against active and adaptive adversaries. The protocol provides a
new trade-off between guaranteeing termination and efficiency which we
believe is relevant in practice. To demonstrate this we have implemented
the protocol in a framework for secure multiparty computation called VIFF.

This allowed us to show that achieving active security can be very efficient.
In fact, in our test environment, the protocol is faster than the standard
passively secure protocol for a large number of parties. For a smaller
number of parties, the cost of security against a malicious adversary is only
a fixed overhead of about 1 ms in online time. The protocol assumes one is
willing to accept that the preprocessing step might fail without revealing any
private data. We believe this to be very well-suited for practical applications
where the parties typically have a much stronger incentive to participate in
the computation than to halt it.

For a small number of parties, the cost of preprocessing is only slightly
larger than the online cost. For instance, 7 parties can prepare 1,000 multi-
plications in about 2.7 seconds and execute them in using only 2 seconds.
With 7 parties, this gives a throughput of 500 secure multiplications per
second (770 multiplications per second for 4 parties), which we feel should
cover many practical applications.

Chapter 5

From Passive to Covert
Security at Low Cost

Chapter 3 presented a protocol secure against active adversaries along with
an implementation of the protocol in VIFF. In this chapter, we will define
a third kind of adversary — a covert adversary — and show how one can
compile many passively secure protocols into protocols secure against a
covert adversary.

Apart from Section 5.6, which is new, the material is taken from [39],
which was presented at the TCC 2010 conference. Some technical details
have been deferred to a full version of the conference paper, which can be
found in the Cryptology ePrint Archive [38].

5.1 Introduction

When studying cryptographic protocols, the behavior of the adversary has
traditionally been categorized as being either semi-honest (passive) or ma-
licious (active). A semi-honest adversary will only listen in on the network
communication and spy passively on the internal state of the corrupted pro-
tocol participants. At the other end of the spectrum, a malicious adversary
can make corrupted parties behave arbitrarily and will try to actively disrupt
the computation in order to gain extra information and/or cause incorrect
results.

The notion of a semi-honest adversary was first defined by Goldreich et al.
[54], though it was used implicitly in other early works (e.g., by Yao [100] in
the describing of a solution to the millionaire’s problem). While [54] also con-
sidered malicious adversaries this is also a classic notion in the distributed
communication community, where such behavior is called Byzantine [64].

Aumann and Lindell [3] introduce a third type of adversary called a covert
adversary. This is intuitively an adversary which is able to do an active
attack, but will behave correctly if the risk of being caught is sufficiently
large — even if that risk is not essentially 1. The argument for studying
covert adversaries is that there are many real world situations where the

79

80 Chapter 5. From Passive to Covert Security at Low Cost

consequences of being caught out-weights the benefit of cheating — even
a small but non-negligible risk of being caught is a deterrent. An example
could be companies that agree to conduct an auction using secure multiparty
computation. If a company is found to be cheating it may be subject to
fines and it will hurt its long-term relationships with customers and other
companies.

In the standard simulation-based definition of secure multiparty compu-
tation a protocol is said to securely evaluate a function f if no attack against
the protocol can do better than an attack on an ideal process where an ideal
functionality evaluates f and hands the result to the parties. Aumann and
Lindell [3] give three different models of what a covert adversary can do by
defining two different ideal functionalities that may compute f as usual,
but may also act differently, depending on what the adversary does. They
also define what it means for a protocol to implement an ideal functionality
securely, this is a fairly standard simulation-based definition for sequentially
composable protocols.

Thus, the special ingredient in the model that allows to accommodate
covert attacks is only in the definition of the functionalities, which corre-
spond to different levels of security, which are called Explicit Cheat Formu-
lation (ECF) and Strong Explicit Cheat Formulation (SECF).1 The basic idea in
both cases is that the adversary may decide to try to cheat and must inform
the functionality about this. The functionality then decides if the cheating is
detected which happens with probability ε, where ε is called the deterrence
factor. In this case all parties are informed that some specific corrupt party
cheated. Otherwise, with probability 1− ε, the cheating is undetected, and
there is no security guarantee anymore: the functionality gives all inputs to
the adversary and lets him decide the outputs. The difference between the
two variants is that for ECF, the adversary gets the inputs of honest parties
and decides their outputs immediately when he decides to cheat. For SECF,
this only happens if the cheat is not detected.

Thus, with ECF, the adversary is caught with probability ε, but will learn
the honest parties’ inputs even if he is caught. With SECF, he must try to
cheat and succeed to learn anything he was not supposed to.

5.1.1 Our Contribution

We propose a new construction that “compiles” a passively secure pro-
tocol into a new protocol with covert security. The approach is generic,
but for concreteness we describe the idea starting from the classical BGW
protocol [10] for evaluating arithmetic circuits.

We assume honest majority and synchronous communication with secure
point-to-point channels. We also assume a poly-time adversary, as we use
cryptographic tools.

The basic idea is to first use a protocol with full active security to do
a small amount of computation. Here, we will prepare two sets of (secret-
shared) inputs to the passively secure protocol. However, only one set of

1They also have a so called Failed Simulation definition which is weaker and which we do
not use here.

5.1. Introduction 81

sharings contains the actual inputs, while the other — the dummy shares
— contain only zeros. Initially, it is unknown which set is the dummy one.
Then we run the passively secure protocol on both sets of inputs until
parties hold shares of the outputs, which they must commit to.

Now we reveal which sharings contained dummy values, and everything
concerning the dummy execution can be then made available to check that
no cheating occurred here. If no cheating was detected, we open the outputs
of the real execution.

The intuition is that the adversary has to decide whether to cheat without
knowing which execution is the dummy one, and therefore we can catch
him with probability 1

2 if he cheats at all, so one would expect this to give a

deterrence factor of 12 .

However, while the intuition is straightforward, there are several non-
trivial technicalities to take care of to make this work. We need parties
to be able to prove that they really sent/received a given message earlier,
and we have to do the final check without introducing too much overhead.
After solving these problems, we obtain a protocol with deterrence factor 14
whose complexity is essentially twice that of the passive protocol plus the
overhead involved in preparing the inputs (which does not depend on the
size of the computation).

It should be noted that there is an overhead involved in proving what
messages were sent in the past. For this, players need to sign the messages
they send. However, unless the arithmetic circuit we compute has very large
depth and small breath, the cost of signing can be amortized over several
operations requiring communication, and so is not significant. For the most
advanced version of our construction, players also need to UC commit at
the end to the set of messages they sent to each player. Our solution to this
in the standard model is based on Paillier encryption and is quite elaborate,
but for a practical implementation one can use the random oracle model, in
which case commitment reduces essentially to hashing the messages, and is
not a major cost.

We note that we focus on the complexity we get when there is no devia-
tion from the protocol. In our construction, the adversary can slow things
down by a factor linear in the number of parties by deviating, but the pro-
tocol is still secure, the adversary can only make it fail if he runs the risk
of actually cheating and hence of being caught. Now, the spirit of covert
security is that the adversary is to some extent rational, he does not cheat
because it does not pay off to do so. It seems to us that there is little benefit
in practice for the adversary in only slowing things down, while he cannot
learn extra information or influence the result. We therefore believe that the
complexity in practice can be expected to be what we get when there is no
deviation.

We show our protocol is secure by showing that it implements Aumann
and Lindell’s functionality in the UC model [23], i.e., we do not use their
simulation notion. The only difference this makes is that we get a stronger
composition property for our protocol.

We show that the classical passively secure protocol by Ben-Or et al. [10]

82 Chapter 5. From Passive to Covert Security at Low Cost

can be compiled to give a protocol with SECF security. Our approach can
be used in a more general way, to compile any passively secure protocols
into a covert protocol, if the original protocol satisfies certain reasonable
conditions. The conditions are essentially as follows. The protocol should
be based on secret sharing and consist of a computation phase and a
reconstruction phase.

Computation phase: The computation phase starts from sharings of the
inputs and produces sharings of the outputs, where the view of t < n/2
passively corrupted parties is independent of the shared inputs being
computed on.

Reconstruction phase: The reconstruction phase consists of a single mes-
sage from each party to each other party — i.e., it is non-interactive.

Passive security: Suppose uniformly random sharings of the inputs are
dealt by an ideal functionality. Consider the protocol that executes the
computation phase on these sharings followed by the reconstruction
phase. This protocol should be passively secure against t < n/2
statically corrupted parties.

The approach is again to run two executions of the computation phase
in parallel, one on the real inputs and one on dummy inputs, and to commit
the parties to their communication in both. Then it is reveal which execution
is which and the dummy execution is checked for consistency before the
reconstruction phase is run. Since the view of the corrupted parties in the
computation phase is independent of the inputs being computed on as long
as they follow the protocol, the corrupted parties have to decide on which
execution to cheat in without knowing which is which and is hence caught
with probability 1

2 . The reader interested in the details can refer to [38]. If
the computation phase leaks no information, even under active attacks (as is
the case for the BGW protocol), we get SECF security, otherwise ECF security
is obtained.

5.1.2 Related Work and Discussion

Goyal et al. [55] improve Aumann and Lindell’s 2-party protocol and also
give a general multiparty computation protocol with covert security for the
case of dishonest majority.

Our work focuses instead on honest majority. The skeptical reader may
ask whether this is really interesting: The motivation for covert security is
to settle for less than full robustness in return for more efficient protocols,
and it may seem that we already know how to have great efficiency with
honest majority and full active security. For instance, in [7, 32], it is shown
that unconditionally secure evaluation of a circuit C for n parties and
t < n/3 corruptions can be done in complexity O(|C|n) plus an overhead
that only depends on the depth of the circuit, and in [35], it is shown under
a computational assumption that this can be reduced to O(|C|) except for
logarithmic factors plus an overhead that is independent of the circuit. Here,
the security threshold can be arbitrarily close to 1

2 .

5.2. Preliminaries 83

How could we hope to be better than that? There are two answers to
this: First, the previous protocols are not as efficient as it may seem. The
result from [35] only works asymptotically for a large number of parties and
very large computations, it makes non black-box use of a pseudorandom
function and is, in fact, very far from being practical. The protocols in [7, 32]
use only cheap information theoretic primitives, but the security threshold
in non-optimal and there is an overhead implying that deep circuits are
expensive.

However, these protocols can all become much simpler and more prac-
tical if we assume the adversary is semi-honest. For instance, when the
adversary is semi-honest the protocols from [7, 32] can tolerate t < n/2 and
no longer have an overhead that depends on the circuit depth. Our compiler
works for any “reasonable” protocol that is based on secret sharing, so we
can use it on these simpler passively secure protocols and get a protocol
with covert security, but with efficiency and security threshold similar to the
passively secure solutions.

The second answer is that general circuit evaluation is not the only
application. There are many special purpose protocols that are designed for
a passive adversary but where obtaining active security comes at a significant
cost. One example is the protocol by Algesheimer et al. [2] for distributed
RSA key generation. Another is the auction application described in [16]. In
both cases the protocols do not go via evaluation of a circuit for the desired
function, but gets significant optimizations by taking other approaches. We
can use our construction here to get covert security at a cost essentially a
factor of two.

5.2 Preliminaries

Aumann and Lindell [3] present three successively stronger notions of se-
curity in the presence of covert adversaries, of which we consider the two
strongest ones. There the adversary is forced to decide whether to cheat
without knowledge of the honest parties’ inputs. As mentioned, these are
called ECF and SECF and are defined by specifying two (very similar) ideal
functionalities.

For convenience, we give the ECF and SECF functionalities here. The only
differences from [3] is that we do not include an option for the adversary to
abort the protocol, and also, if no cheating is detected, the adversary cannot
stop the functionality from giving outputs to the honest parties. This gives
a stronger notion of security, and we can obtain it as we assume an honest
majority.

Another difference is that we relax the requirements on the detection
mechanism slightly. In [3] it is required that only one corrupted party is
detected and that the honest parties agree on that party. We allow that
several corrupted parties are detected and allow that different honest parties
detect different sets of corrupted parties. The only requirement is that there
is at least one corrupted party which is detected by all honest parties. In the
presence of an honest majority, the stronger detection requirement in [3]

84 Chapter 5. From Passive to Covert Security at Low Cost

can then be implemented using a Byzantine agreement at the end of the
protocol on who should take the blame. We prefer to see this negotiation
as external to the protocol and thus allow the more relaxed detection. See
Figure 5.1.

Let f be a function with n inputs and n outputs, where n is the number of

parties. The ECF functionality FfECF for function f with deterrence factor ε
works as follows:

Inputs: Any honest party Pi sends input xi to FfECF, while the adversary
A sends input on behalf of the corrupted parties.

Cheat detection: Let C ⊂ {1, . . . , n} denote the indices of the corrupted
parties and let H = {1, . . . , n}\C be the honest parties. The adversary

can at any time instruct FfECF to give outputs of the form (corrupt, j)
for j ∈ C to Pi with i ∈ H. For i ∈ H, let Ji ⊂ C be the set of j for
which Pi output (corrupt, j).

Attempted cheat: If the functionality FfECF receives (cheat) from A, it
will send (x1, . . . , xn) toA. It then decides randomly if the cheating
was detected or not:

Undetected: With probability 1− ε, FfECF sends (undetected) to the
adversary. Then A specifies for each i ∈ H an output yi and

FfECF outputs yi to Pi for i ∈ H.

Detected: With probability ε, FfECF sends (detected) to A. In this
case A also gets to decide the output yi for i ∈ H, but must
ensure that ∩i∈HJi ≠ � at the end of the execution.

Output generation: IfA did not attempt to cheat, FfECF computes outputs
(y1, . . . , yn) = f(x1, . . . , xn) and gives yi to Pi.

Figure 5.1: Functionality FfECF.

The functionality FfSECF is defined exactly as FfECF, except that when the
adversary sends a cheat message, the functionality does not send the inputs
of honest parties to the adversary. This only happens if the cheating is
undetected.

We can now define security:

Definition 5.1 Protocol π computes f with ε-ECF (SECF) security and thresh-

old t if it implements FfECF (FfSECF) in the UC model, securely against poly-
time adversaries corrupting at most t parties. 	

This definition naturally extends to a hybrid UC model where certain
functionalities are assumed to be available. By the UC composition theorem
and given implementations of the auxiliary functionalities, a protocol follows
that satisfy the above definition without auxiliary functionalities.

In the following, we will consider secure evaluation of an arithmetic
circuit C over some finite field F. We assume that each input and output of
C is assigned to some party, whence C induces in a natural way a function

5.3. Auxiliary Functionalities 85

fC of the form considered above. In the following, “computing C securely”
will mean computing fC securely in the sense of the above definition.

5.3 Auxiliary Functionalities

We define some ideal functionalities in order to make the presentation
clearer. They represent sub-protocols which we show how to implement in
Section 5.5.

Message Transmission Functionality

We will make use of a functionality FTRANSMIT that is an enhancement of
the standard model for secure point-to-point channels. It essentially allows
to prove to third parties which messages one received during the protocol,
and to further transfer such revealed messages. It does not commit the
corrupted parties to what they sent to each other. See Figure 5.2 for details.

The ideal functionality FTRANSMIT works with message identifiers mid en-
coding a sender s(mid) ∈ {1, . . . , n} and a receiver r(mid) ∈ {1, . . . , n}.
We assume that no mid is used twice. The functionality works as follows:

Secure transmit: On input (transmit,mid,m) from Ps(mid) and input
(transmit,mid) from all (other) honest parties, store (mid,m),
mark it as undelivered, and output (mid, |m|) to the adversary.
If Ps does not input a (transmit,mid,m) message, then output
(corrupt, s(mid)) to all parties.

Synchronous delivery: At the end of each round, deliver each undelivered
(mid,m) to Pr(mid) and mark (mid,m) as delivered.

Reveal received message: On input (reveal,mid, i) from a party Pj
which at any point received the output (mid,m), output (mid,m) to
Pi.

Do not commit corrupt to corrupt: If both Pj and Ps are corrupt, then
the adversary can ask FTRANSMIT to output (mid,m′) to any honest
Pi for any m′ and any mid with s(mid) = s.

Figure 5.2: Ideal Functionality FTRANSMIT.

This functionality will be used for all private communication in the
following, and provides a way to reliably show what was received at any
earlier point in the protocol. This is used when the dummy execution is
checked for consistency.

Input Functionality

For notational convenience we assume that each Pi has one input xi ∈ F.
The input functionality is given in Figure 5.3 on the following page. Note
that we let the adversary pick the dummy inputs, which is done simply not
to decide at this abstract level on any specific set of dummy inputs. We

86 Chapter 5. From Passive to Covert Security at Low Cost

also let the adversary pick the shares the functionality should produce for
corrupt players. This is necessary to be able to implement the functionality
with a real-life protocol.

The ideal functionality FINPUT is parametrized by a secret sharing scheme,
sss, and works as follows.

1. Receive an input xi from each Pi and an input (d1, . . . , dn) from the
adversary. The adversary also inputs xi for i ∈ C .

2. Flip a uniformly random bit d ∈R {0,1}.
3. Let e = 1− d. Let x(i,d) = di be the dummy inputs and let x(i,e) = xi

be the enriched inputs.

4. For every xi,d and xi,e, the adversary inputs sets of shares Xi,d and
Xi,e. They each contain a share for every player in C, and we think
of Xi,d as the set of shares of xi,d that the adversary wants the
functionality to produce for corrupt players.

5. For j = 1, . . . , n and c = 0,1, sample [x(j,c)] ← sss(x(j,c) | Xj,c),
by which we mean that shares of xi,c are sampled, conditioned on
players in C receiving shares Xi,c .

6. Output (x(j,0)i)nj=1 and (x(j,1)i)nj=1 to Pi.

7. On a later input (reveal, i, k), output d and (x(j,d)i)nj=1 to Pk.

Figure 5.3: Ideal Functionality FINPUT.

Commitment Functionality

We use a flavor of commitment where the committer cannot avoid that a
commitment is revealed. The details are given in Figure 5.4.

The functionality FCOMMIT uses commitment identifiers encoding the
sender s(cid) of the commitment. It works as follows:

Commit: On input (commit, cid,m) from Ps(cid) and input (commit, cid)
from all (other) honest parties, FCOMMIT store (cid,m) and output
(commit, cid, |m|) to the adversary.

Reveal: On input (reveal, cid, r) from all honest parties, where (cid,m)
is stored, give (cid,m) to Pr .

Figure 5.4: Ideal Functionality FCOMMIT.

Coin-Flip Functionality

We use the coin-flip functionality given in Figure 5.5 on the facing page.

5.4. Protocol 87

The functionality FBFLIP is parametrized by a positive integer B and works
as follows:

1. Sample a uniformly random k ∈R {0, . . . , B − 1}.
2. When the first honest party inputs (flip), output k to the adversary.

3. If in the round where the first honest party inputs (flip) there is
some party Pi which does not input (flip), then output (corrupt, i)
to all parties.

Figure 5.5: Ideal Functionality FBFLIP.

5.4 Protocol

Having defined the necessary ideal functionalities, we will now describe how
we use them to compile the classical passively secure protocol by Ben-Or
et al. [10] based on Shamir secret-sharing into one with covert security. This
protocol computes an arithmetic circuit C with passive security. Assuming
the inputs to the arithmetic circuit have been secret shared, the protocol
does addition by having parties add their shares locally, and multiplication
by local multiplication of shares followed by a re-sharing by each parties
of the local products. Due to space constraints, we assume the details are
known to the reader.

The protocols in this section use the auxiliary functionalities we defined.
Thus the actual complexity of our construction depends on the implemen-
tation of those auxiliary functionalities. It turns out that the overhead
incurred includes a contribution coming from the cryptographic primitives
we use, this overhead does not depend on the communication complexity
of the protocol we compile. In addition, the adversary can choose to slow
down FTRANSMIT by a factor of n, but since he cannot make it fail, a covert
adversary is unlikely to make such a choice as discussed in the introduction.

We begin with a simple construction which has a rather poor computa-
tional complexity. Following that, we show how the simple protocol can be
adapted to yield a better complexity.

Theorem 5.2 The protocol in Figure 5.6 on the next page computes C with
1
2 -SECF security in the (FTRANSMIT,FINPUT,FCOMMIT,FFLIP)-hybrid world. This
is against a static adversary and with threshold t, where t < n/2. �

Proof: Initially S is given the inputs of the corrupt parties. It passes them
on toA and simulates the protocol execution up until the point where the
bit d is revealed and it is determined which of the two executions were
the dummy execution. S does this by inventing random shares whenever
A would expect to see a share from an honest party. A will always see
only t shares and any subset of size t look completely random in the real
protocol execution. S can therefore simulate them perfectly by giving A
random values.

During the protocol,A is observed by S and it can thus be determined if
A ever sends an incorrect intermediate result to one of the honest parties.

88 Chapter 5. From Passive to Covert Security at Low Cost

In general, if any of the ideal functionalities output (corrupt, j) to Pi, then
Pi also outputs (corrupt, j). Not mentioning this further, the protocol
proceeds in five steps:

1. All parties provide input to FINPUT. In return they obtain shares of
secret sharings [x(j,0)] and [x(j,1)] for j = 1, . . . , n. Nobody knows
which sharings are dummy at this point.

2. Each party Pi generates random keys K0i and K1i and commit to them
using FCOMMIT twice.

3. The passively secure protocol is run on both input sets {[x(j,0)]}nj=1
and {[x(j,1)]}nj=1. This evaluates the circuit C twice. The parties use
FCOMMIT to commit to their shares of the output. All randomness
used in the first and second protocol run come from pseudorandom
generators seeded by K0i and K1i , respectively.

4. The parties query FINPUT for the random bit d and the shares of
{[x(j,d)]}nj=1. They then use FCOMMIT to reveal the key Kdi used for
the pseudorandom generator for all Pi. Knowing the initial inputs and
the seed for the pseudorandom generator used, the entire message
trace of all parties is fixed. The parties also open the commitments
to the dummy output shares.

5. Each party locally simulates the entire dummy execution to determine
if any cheating took place. This amounts to checking for each party
whether his input shares of [x(j,d)] (revealed by FINPUT) and seed
Kdi (revealed by FCOMMIT) together lead to the shares he claims to
have obtained of the output (revealed by FCOMMIT) if he follows the
passively secure protocol on the messages that other parties would
have sent if they followed the protocol on their shares and expanded
randomness. If no discrepancies are found, the output shares of the
real execution are opened.

Otherwise, the honest parties must determine who cheated. Note
that it is possible for a corrupt party to “frame” an honest party by
sending him wrong intermediate results. The honest party cannot
tell the difference and will produce incorrect output. FTRANSMIT is
there to safeguard honest parties against this form of attack. The
parties call it to reveal all messages that were received in the dummy
execution.

The parties have already locally simulated the dummy execution
so they know the correct message trace. It is therefore simple to
match this against the actual message trace revealed by FTRANSMIT

and pinpoint the first deviation. If Pj made the first mistake, the
honest parties output (corrupt, j) and halt.

Figure 5.6: Simple version.

5.4. Protocol 89

• IfA did not cheat at all, or ifA cheated in both executions, then S sim-

ply follows the protocol. In the first case FfCSECF will give S the outputs
for the corrupt parties, which S can pass along toA unchanged. In the
second case, A will be caught with certainty before seeing anything
which depend on the honest parties inputs. S can therefore simulate
the protocol execution towardsA using random shares only.

• If A cheats in execution d′ (first or second execution), S will send
(cheat) to F . The functionality then determines if the cheat was
successful:

Detected: The simulator must now ensure thatA believes he cheated
in the dummy execution.

A will want to query FINPUT for the value of d and the shares of
the dummy inputs. In response, S sends a response with d = d′,
which means that A cheated in the dummy execution. S must
also send back shares of the inputs {x(j,d) = dj}nj=1 consistent
with the shares A has already seen. At this point A has only
seen the shares it chose for the (non-qualified) subset of corrupt
parties when FINPUT was called initially. S can therefore choose
polynomials that agree with these values and correspond to a
sharing of the inputs dj , and finally compute consistent shares of
the honest parties using these polynomials.

If Pj were the first corrupt party who send an incorrect message

to an honest party, S will send (corrupt, j) to FfCSECF.

Undetected: If the adversary A was not caught, the functionality
responded with (undetected) together with the honest parties’
inputs. The simulator must therefore make it look as ifA cheated
in the execution that was not opened, i.e., the real execution. As
above, S can compute polynomials that will give a correct sharing
of inputs based on whatA already knows and with d = 1− d′.
Using these inputs together with the corrupt parties’ inputs and
outputs, S can now compute the consequence ofA’s cheating, i.e.,
the altered outputs of the honest parties. It passes these outputs

to FfCSECF as the honest parties’ outputs.

It is clear that the above simulation matches the output of A in the
hybrid world perfectly when A did not cheat and when A was foolish
enough to cheat in both executions.

When A cheats in just one execution, S will make the honest parties
output (corrupt, j) for some corrupt Pj (if A was detected) or output
normal outputs (ifA was undetected). Each of these two cases are picked

with probability exactly 1
2 by the random choice made by FfCSECF. We get the

same probability distribution in the hybrid world where FINPUT picks the bit
d uniformly at random.

In total, we can now conclude that the protocol in Figure 5.6 on the facing
page computes fC with 1

2 -SECF security. �

90 Chapter 5. From Passive to Covert Security at Low Cost

The above protocol has each party execute the passively secure protocol
twice after which each party simulates the actions of all other parties in the
dummy execution. In the standard BGW protocol [10], each party has a com-
putational complexity of O(n) per gate. By asking every party to simulate
every other party, we increase the computational complexity to O(n2) per
gate.

The communication complexity is doubled by running the passively se-
cure protocol twice. In the normal case where the dummy execution is found
to contain no errors, the communication complexity is increased no further.
When errors are detected, every party is sent the messages communicated
by every other party. This will again introduce a quadratic blowup, now in
the communication complexity. We argued in the introduction that even
a small fixed probability of catching misbehavior is enough to deter the
parties. Because of that, we expect to find no discrepancies most of the
time, and thus obtain the same communication complexity as the original
protocol within a constant factor. We still have a quadratic blowup in the
computational complexity. However, local computations are normally con-
sidered free compared to the communication, i.e., the network is expected to
be the bottleneck. So for a moderate number of parties, this simple protocol
can still be quite efficient.

Still, we would like to lower the complexity when errors are detected. Be-
low we propose a slightly more complex protocol which has only a constant
overhead in both computation and communication both when no errors are
detected and when the parties are forced to do a more careful verification.

If no errors are detected, each party does two protocol executions fol-
lowed by a check of the input/output behavior of one other party. This is
clearly a constant factor overhead compared to the passively secure proto-
col. When a party is accused, all other parties must check this party. This
adds only a linear overhead to the overall protocol, and thus the protocol in
Figure 5.7 on the facing page has a linear overhead compared to the passively
secure protocol.

It might seem as an overkill in the protocol in Figure 5.7 on the next page
to use FTRANSMIT for communication and then also have the parties commit
to their communication using FCOMMIT. The reason for the commitments
is to commit the corrupted parties to what they sent among each other
before it is revealed which parties check which parties. If we do not do that,
they might decide on which of them was the deviator after the revelation
of d and k and thus always pick the deviator to be one which is checked
by a corrupted party. For an example of what can go wrong without the
commitments the interested reader can refer to Section 5.4.1.

Theorem 5.3 The protocol in Figure 5.7 on the facing page computes C with
1
4 -SECF security in the (FTRANSMIT,FINPUT,FCOMMIT,FFLIP)-hybrid world. This
is with threshold t, where t < n/2. �

Proof: The simulator for the protocol in Figure 5.7 on the next page runs
like the simulator for the protocol in Figure 5.6 on page 88, except that it
must now only output (corrupt, i) to F if it determines that a message

5.4. Protocol 91

This is a modification of the protocol in Figure 5.6 on page 88. After
running Step 1–3 unchanged, it continues with:

1. All Pi use FCOMMIT to commit to their view of the protocol, i.e., all
messages exchanged between Pi and Pj for all j. This results in

commitments comm(i,0)
{i,j} for the first execution and comm(i,1)

{i,j} for the

second, where comm(m,c)
{i,j} is the view of Pm of what was sent between

Pi and Pj in execution number c.
2. The parties query FINPUT for the random bit d and the shares of

the dummy inputs. They then use Fn−1FLIP to flip a uniformly random
k ∈ {1, . . . , n−1} that will be used when checking. FCOMMIT is used by
all parties to reveal the key Kdi used for the pseudorandom generator
for all Pi. Finally, the commitments to shares in the output from the
dummy execution are opened.

3. Each party Pi checks Pl, where l = (i−1+kmod n)+1, i.e., he checks
Pi+k with wraparound from Pn back to P1.

The commitments comm
(j,d)
{l,j} and comm(l,d)

{l,j} are opened to Pi, i.e., the
committed views of Pl and Pj of what was exchanged between them.
If there is a disagreement, then Pi broadcasts a complaint and Pl and
Pj must decommit to all parties and use FTRANSMIT to show which
messages they received from the other. This will clearly detect at
least one corrupt party among Pl and Pj if Pi was honest, or reveal Pi
as corrupt if the commitments were equal after all, i.e., if Pi made a
false accusation.

If all committed views agree, then Pi simulates the local computations
done by Pl and checks whether this leads to the shares of the dummy
output opened by Pl and the messages sent according to comm(l,d)

{l,j}.
If a deviation is found, Pi broadcasts an accusation against Pl, and
all parties check Pl as Pi did. If they verify the deviation they output
(corrupt, l), otherwise they output (corrupt, i).

4. If no accusations were made, the output of the real protocol execution
is opened.

Figure 5.7: Efficient version.

92 Chapter 5. From Passive to Covert Security at Low Cost

trace for a corrupt party Pi was checked by an honest party, and it must do
while maintaining the same probability distribution as in the hybrid world.

As before, S will simulate A and observe the messages sent to honest
parties. As soon as an incorrect message is observed in execution d′ and all
parties committed to their communication with the other parties, we know
there exists an offset k′ ∈ {1, . . . , n− 1} for which an honest Pi would catch
a corrupt Pl, where l = (i− 1+ k′ mod n)+ 1 in execution d′:

• If two parties Pl and Pj committed to comm(l,d′)
{l,j} ≠ comm

(j,d′)
{l,j} , then

one of them is corrupted, Pl say, and we pick k′ such that Pl is checked
by an honest Pi.

• If comm(l,d′)
{l,j} = comm

(j,d′)
{l,j} for all pairs of parties, then the wrong

message sent to an honest party in execution d′ implies that some
party Pl is committed to values which are not consistent with an
execution of the protocol, and we pick k′ to ensure that Pl is checked
by an honest party.2

The simulator sends (cheat) to FfCSECF. We have two outcomes:

Detected: Set d = d′ and sample k at random such that Pl is checked by an
honest party.

Undetected: Set d = d′ with probability 1
3 , and d = 1−d′ otherwise. Sample

k ∈ {1, . . . , n − 1} such that Pl is checked by an honest party with
probability α = 4

3((n− t)/(n− 1)−
1
4).

IfA did not cheat, S selects d and k as in the hybrid protocol. The simulation
continues as in the hybrid world with these choices for d and k. The ideal
world output clearly matches the hybrid world.

WhenA did cheat, we will show that d and k are picked with the correct
distribution. First note that S pick d = d′ with probability 1

4 · 1+
3
4 ·

1
3 =

1
2 ,

as in the hybrid world.
For the selection of k, note that a cheating party will always have a

unique distance to every honest party. These distances make up a subset of
{1, . . . , n− 1} of size n− t. The cheater is caught exactly when the offset is
picked within this subset. This happens with probability (n− t)/(n− 1) in
the hybrid world. The simulator picks k among the indices of honest parties
with the same probability: 14 +

3
4α = (n − t)/(n − 1). We conclude that S

will simulate the hybrid world. �

5.4.1 Chinese Whispers

In our protocol we have all parties commit to the messages they exchanged
before the revelation of d and k. This might seem superfluous, as FTRANSMIT

was already used to commit the parties to their messages. The difference

2Note that Pl need not be the one who sent the incorrect message to the honest party —
Pl may have behaved locally consistent given its inputs — but S will be able to find a first
deviator, and it will clearly not be one of the honest parties.

5.5. Implementation of Sub-Protocols 93

is that FCOMMIT also binds the corrupted parties to what they have ex-
changed among themselves, whereas FTRANSMIT allows the corrupted parties
to change their mind on what they exchanged among themselves. We give
an example demonstrating that it makes a difference whether the corrupted
parties are committed to was sent among them before we reveal who checks
who.

Consider the following passively secure protocol Chinese-Whispers for
computing the identity function (x1, . . . , xn), (x1, . . . , xn).

1. In round 1 party P1 should send 0 to P2.

2. For i = 2, . . . , n− 1, in round i party Pi should take the bit sent from
Pi−1 and send it to Pi+1.

3. In round n all parties i = 2, . . . , n should behave as follows: If they
received a 0 from Pi−1 in round i, then they should output xi. If they
received a 1 then they should broadcast xi and then output xi.

Chinese-Whispers is clearly passively secure. Consider now a setting
where P1, . . . , Pt are corrupted and where Pt sends 1 to Pt+1 in round t, a
serious deviation which lets the corrupted parties learn all the inputs of the
honest parties. If we now let the honest parties check a corrupted party
at random, then with probability going to 1, as n grows, there will be a
corrupted party Pi, i ∈ {2, . . . , t − 1}, which is checked by a corrupted party.
The adversary can then behave as if P1, . . . , Pi−1 all received and sent 0, that
Pi received 0 and sent 1, and Pi+1, . . . , Pt all received and sent 1. Now all
the parties except Pi followed the protocol, and since the local consistency
of Pi is not checked this goes unnoticed. If we had forced the adversary to
picked the party Pi having received 0 and sent 1 before the assignment of
who checks who was made public, then Pi would have been checked by an
honest party with probability at least 12 , which is what we need.

Chinese-Whispers itself does not fit as a protocol we can transform, but
can be embedded into any such protocol to render it vulnerable to the above
attack.

5.5 Implementation of Sub-Protocols

In this section we sketch how to implement the sub-protocols described
above. In all sub-protocols we will need a tool for stopping the protocol
“gracefully” when corruption is detected This is done by all parties running
the following rules in parallel.

1. If a party Pi sees that a party Pd deviates from the protocol, then Pi
signs (corrupt, d) to get signature γi and sends the signature to all
parties. Then Pi outputs (corrupt, d).

2. If Pk received a signature γi on (corrupt, d) from t+1 distinct parties
Pi, it considers these as a proof that Pd is corrupted, sends this proof
to all parties, outputs (corrupt, d), waits for one round and then
terminates all protocols.

94 Chapter 5. From Passive to Covert Security at Low Cost

3. If Pk receives a proof that Pd is corrupt from any party, it relays this
proof to all parties, outputs (corrupt, d), waits for one round and
then terminates all protocols.

If the signature scheme are unforgeable and only corrupted parties
deviate from the protocol, then the protocol has the following two properties,
except with negligible probability.

Detection soundness: If an honest party outputs (corrupt, d), then Pd is
corrupt.

Common detection: If an honest party terminates the protocol prema-
turely, then there exists Pd such that all honest parties have output
(corrupt, d).

The reason why the relayer Pr waits for one round before terminating is
that Pr wants all other parties to have seen a proof that Pi is corrupt before
it terminates itself. Otherwise the termination of Pr would be considered a
deviation and an honest Pr could be falsely detected. In the following we do
not always mention explicitly that the detection sub-protocol is run as part
of all protocols.

Transmission Functionality

The transmission protocol can run in two modes. In cheap mode FTRANSMIT

is implemented as follows.

1. On input (transmit,mid,m) party Ps(mid) signs (mid,m) to obtain
signature σs and sends (mid,m,σs) to Pr(mid).

2. On input (transmit,mid) party Pr(mid) waits for one round and then
expects a message (mid,m,σs) from Ps(mid), where σs is a valid signa-
ture from Ps(mid) on (mid,m). If it receives it, it outputs (mid,m).

3. On input (reveal,mid, i) party Pj , if it has output (mid,m) at some
point, sends (mid,m,σs) to Pi, which outputs (mid,m) if σs is valid.

It is easy to check that this is a UC secure implementation under the follow-
ing restrictions:

Synchronized input from honest parties: If some honest party receives in-
put (transmit,mid), then all honest parties Pi ≠ Ps(mid) receives input
(transmit,mid) and if Ps(mid) is honest it gets input (transmit, mid,
m) for some m.

Signatures: Even corrupted Ps send along the signatures σs .

The restriction Synchronized input from honest can be enforced by the
way the ideal functionality is used by an outer protocol, i.e., by ensuring that
the honest parties agree on which message identifiers are used for which
message in which rounds. This is the case for the way we use FTRANSMIT.
The restriction signatures is unreasonable, and we show how to get rid of it

5.5. Implementation of Sub-Protocols 95

below. We need the rule Do not commit corrupt to corrupt in FTRANSMIT as
we cannot prevent a corrupt Ps from providing a corrupt Pi with signatures
on arbitrary messages, i.e., we cannot commit the corrupted parties to what
they have sent among themselves.

As mentioned, the above implementation only works if all senders hon-
estly send the needed signatures. If at some point some Pr does not receive
a valid signature from Ps , it publicly accuses Ps of being corrupted and the
parties switch to the below expensive mode for transmissions from Ps to Pr .

1. On input (transmit,mid,m) party Ps(mid) signs (mid,m) to obtain
signature σs and sends (mid,m,σs) to all Pi ≠ Ps(mid).

2. On input (transmit,mid) parties Pi ≠ Ps(mid) wait for one round and
then expects a message (mid,m,σs) from Pr(mid), where σs is a valid
signature of Ps(mid) on (mid,m). If Pi receives it, it sends (mid,m,σs)
to Pr(mid).

Otherwise, it sends a signature γi on (corrupt, i) to all parties.

3. On input (transmit,mid) party Pr(mid) waits for two rounds and then
expects a message (mid,m,σs) from each Pi, where σs is a valid
signature of Ps(mid) on (mid,m). If it arrives from some Pi, then Pr
outputs (mid,m).

Note that now each round of communication on FTRANSMIT takes two rounds
on the underlying network. Between two parties where there have been no
accusations, messages are sent as before (Step 1 in the above protocol) and
the extra round is used for silence — it is necessary that also non-accusing
parties use two rounds to not lose synchronization.

If Ps sends a valid signature to just one honest party, then Pr gets its
signature and can proceed as in optimistic mode. If Ps does not send a valid
signature to any honest party, then all n− t honest Pi send γi to all parties
and hence all honest parties output (corrupt, s) in the following round,
meaning that Ps was detected. Using these observations it can easily be
shown that the above protocol is a UC implementation of FTRANSMIT against
covert adversaries with deterrence factor 1. Note that it is not a problem
that we send m in cleartext through all parties, as an accusation of Ps by Pr
means that Ps or Pr is corrupt, and hence m need not be kept secret.

We skipped the details of how the accusations are handled. We could
in principle handle accusations by using one round of broadcast after each
round of communication to check if any party wants to make an accusation.
After broadcasting the accusations, the appropriate parties can then switch
to expensive model. To avoid using a Byzantine agreement primitive in each
round, we use a slightly more involved, but much cheaper technique which
communicates less than n2 bits in each round and which only uses a BA
primitive when there are actually some accusations to be dealt with. The
full details are given in [38].

In cheap mode, using FTRANSMIT adds an overhead Nκ bits compared to
plain transmission, where κ is the length of a signature and N is the number
of messages sent. In expensive mode this overhead is a factor n larger.

96 Chapter 5. From Passive to Covert Security at Low Cost

Commitment Functionality

The protocol uses a one-round UC commitment scheme with a constant
overhead (commit to κ bits using O(κ) bits), which can be realized with
static security in the PKI model [5] given any mixed commitment scheme [31]
with a constant overhead. Concretely we can instantiate such a scheme
under Paillier’s DCR assumption. Note that opposed to Barak et al. [5] we
do not need a setup assumption: we assume honest majority and can thus,
once and for all, use an active secure MPC to generate the needed setup [54].
The protocol also uses an error-correcting code (ECC) for n parties which
allows to compute the message from any n− t correct shares.

If one is willing to use the random oracle model, UC commitment can
instead be done by calling the oracle on input the message to commit to,
followed by some randomness. In practice, this translates to a very efficient
solution based on a hash function.

The protocol proceeds as follows.

1. On input (commit, cid,m), Ps(cid) computes an ECC (m1, . . . ,mn) of
m. The sender then computes ci ← commitpki(mi) and sends ci to Pi
via FTRANSMIT.

2. On input (reveal, cid, r), Pi opens each ci to Pi. The opening is sent
via FTRANSMIT. If any Pi receives an invalid opening, it transfers ci and
mi to all parties and Ps is detected as a cheater. Otherwise, Pi transfers
ci and the opening to Pr .

3. Then Pr collects validly opened ci. Let I be the index of these and let
mi be the opening of ci for i ∈ C . If |I| < n− t, then Pr waits for one
round and terminates.3 If (mi)i∈I is not consistent with a codeword in
the ECC, then Pr transfers (ci)i∈I and the valid openings to the other
parties which detect Ps as corrupted. Otherwise, Pr uses (mi)i∈I to
determine m and outputs (cid,m).

Assuming that a commitment to ` bits have bit-length O(max(κ, `)),
where κ is the security parameter, the complexity of a commitment to ` bits
followed by an opening is O(nmax(κ, `/n)) = O(n(κ + `/n)) = O(`+nκ).
This is assuming that there are no active corruptions, such that FTRANSMIT

has constant overhead.

Flip Functionality

To implement FBFLIP the parties proceed as follows.

1. On input (flip), all Pi commit to a uniformly random ki ∈ {0, . . . , B −
1}.

2. In the next round all Pi reveal ki to all parties.

3. All parties output k =
∑n
i=1 ki mod B.

3Since we assume that at most t parties are corrupted, we can assume that either Ps is
detected or Pr receives n− t commitments with corresponding valid decommitments.

5.6. Conclusion 97

Under the condition that the protocol is used by the honest parties in a
way that guarantees that they input (flip) in the same round, the argument
that the protocol implements the functionality against a covert adversary
(with deterrence 1) is straight forward.

Input Functionality

The input functionality can be implemented using a VSS with a multiplication
protocol active secure against t < n/2 corruptions. The VSS should have the
property that it is possible to verifiable reconstruct the secret and the share
of all parties given the shares of the honest parties — standard bivariate
sharing has this property. We sketch the protocol.

1. Each Pi deals a VSS �xi� of its input xi.

2. The parties use standard techniques to compute a VSS �d� of a uni-
formly random d ∈R {0,1} ⊂ F.

3. For each input �xi� the parties use an actively secure multiplication
protocol to compute �x(i,0)� = �di · xi� and �x(i,1)� = �(1− di) · xi�.
Each Pi takes its output to be (x(j,0)i)nj=1 and (x(j,1)i)nj=1, where x(j,c)i
is its point on the polynomial used by the sharing �x(j,c)�. The other
values of the VSS are internal to the implementation of FINPUT and only
used for the below command.

4. On input (reveal, i, k) the parties reconstruct �d� and all �xi,d� to-
wards Pk and Pk computes the points x(j,d) of Pj in all sharings and

output (x(j,d)i)nj=1.

5.6 Conclusion

Protection against an honest but curious adversary is often not enough.
Most real-world scenarios will at least demand that cheating can be detected
and that the guilty can be prosecuted using the normal legal system. A
passively secure protocol does not offer any of these guarantees — if a
corrupt party deviates from the protocol there will normally not be any
mechanism in place to detect this. Additionally, if cheating can be detected,
it might be the case that the honest parties cannot place the blame on any
one party.

The notion of covert adversaries put these issues straight. For a protocol
to securely realize a functionality in the presence of covert adversaries, the
honest parties must be able to detect cheating, at least sometimes. When
cheating is detected the protocol must ensure that it is done accurately.

We have shown how it is possible to compile a protocol secure against
a semi-honest adversary into a protocol secure against a covert adversary.
The cost is roughly a doubling in communication complexity and either a
linear or quadratic overhead in computational complexity. Considering that
a passively secure protocol (such as the well-known BGW protocol [10]) is
already highly efficient, we find these overheads to be quite acceptable.

98 Chapter 5. From Passive to Covert Security at Low Cost

While we have not presented a implementation of our transformation,
we believe that it is well suited for implementation in a framework like VIFF.
The main obstacle is that we must have careful control over the randomness
used. The program counters in VIFF would be the key tool to ensure that the
honest parties agree on the randomness, i.e., the randomness for a given
operation would be K0i ‖ pc and K1i ‖ pc in the first and second execution,
respectively. Realizing this could be a nice project for a master’s thesis.

Chapter 6

Integrity Protection for
Revision Control

We started this dissertation by studying protocols secure against passive
adversaries in Chapters 2 and 3. In Chapter 4, we described a protocol secure
against active adversaries. These protocols have all been implemented.
Chapter 5 described protocols under the more exotic notion of a covert
adversary, but presented no implementation. In this chapter, we will yet
again switch setting and investigate the possible consistency guarantees for
revision control when clients use a malicious server. The material herein
was published at the ACNS 2009 conference [19].

6.1 Introduction

Nowadays people from all continents and all time zones collaborate together
in global companies and other organizations, formal or not. Prominent
examples are open-source development projects, such as the GNU/Linux
operating system. For exchanging documents and storing the output of their
work, they typically rely on a remote provider that hosts a shared storage
service. An important class of such storage services are revision control
systems (RCS) that facilitate collaboration on a set of documents that belong
together and exist in multiple versions.

Although the collaborators trust the storage provider to preserve their
documents, there are good reasons to verify that the provider indeed be-
haves correctly. For example, there are reported cases of break-ins to
popular open-source repositories, where security-critical operating system
code may have been altered undetectedly [26]. In cooperations that span
multiple organizations, the storage provider often is a third party with little
interest in the resulting work. Generally, verification reduces trust in the
storage provider. To protect against faulty or corrupted storage providers,
cryptographic protection methods are needed.

In this chapter, we address cryptographic integrity protection for revision
control systems. They represent the most important kind of multi-user

99

100 Chapter 6. Integrity Protection for Revision Control

storage and collaboration tools today, together with Wikis. We assume that
clients are isolated and communicate directly with each other only under
special circumstances; in fact, many clients may not even know each other.
Our goal is to obtain a strong guarantee that a potentially faulty service
provider has not altered the shared data.

The clients may use public-key signatures to authenticate their opera-
tions; this ensures that no unauthorized party can forge data in the reposi-
tory. But in our model, replay attacks by a malicious storage server cannot
be prevented, i.e., the server may return an outdated value to a reader,
omitting a more recent update by another client. SUNDR [66] was the first
storage system to address this problem by providing every client with a fork-
linearizable view of the shared data. This notion ensures that all operations
that a client does see are observed in the agreed linearization order, and
if the server causes the views of two clients to differ in a single operation,
they may never again see each others operations. This makes even subtle
changes to the stored data easily detectable.

In this work, we describe the design and implementation of a consistent
revision control system that preserves fork-linearizability. It relies on the
fork-linearizable storage protocol of Cachin et al. [20] that reduces the com-
munication overhead by an order of magnitude compared to the protocol of
SUNDR. Our implementation extends the popular revision control system
Subversion in a modular way.

The challenge in our work lies in the details of the integration of the
fork-linearizable storage protocol with a revision control system. First, the
abstract storage protocol uses only simple read and write operations on a file,
whereas the revision control system implements transactions that usually
read and update many files at once. Second, our goal is to be transparent
to the server side of the underlying revision control system; therefore, we
still rely on it to serialize concurrent updates. The implementation of our
consistent revision control system merely extends this serialization order
with the cryptographic consistency guarantees. Finally, the cryptographic
operations must not be overly expensive; our hash-tree implementation
exploits caching of the tree nodes and maintains them in the Subversion
repository itself. This adds only little extra storage on top of the unchecked
repository and requires few more operations.

6.1.1 Related Work

Protecting the integrity of stored data is an important question with a long
history. But good solutions are needed today more than ever before [4],
because personal and institutional data is stored and archived electronically.
We describe here only a selection of the literature that uses the same model
as our system, i.e., a remote untrusted bulk storage provider that offers read
and write operations, accessed by one or more isolated clients with a small
trusted memory.

Blum et al. [13] formalize the problem of memory checking and present
the classical protection scheme based on hash trees [75]. With a memory
consisting of n items and with random-access read and write operations

6.2. Design 101

to the memory, hash trees incur an overhead of O(logn) cryptographic
operations. Several storage-system prototypes protect data integrity using
hash trees; TDB [68] and SiRiUS [52] are two prominent examples. A similar
approach has been proposed for protecting a CPU equipped with a trusted
cache against unauthorized modifications to the main memory [25]. For
database systems accessed through a query interface, Mykletun et al. [77]
analyze the cost of integrity protection with cryptographic signatures that
can be aggregated to reduce the space overhead. The recent work of Papa-
manthou et al. [82] shows how an array of data items can be authenticated
with constant overhead for reading and sub-linear overhead for writing.

All systems mentioned so far consider either only one client or construct
an abstraction of the trusted memory between clients (e.g., with digital
signatures). The SUNDR system [66] is the only one protecting integrity for
storage space shared by multiple clients that do not communicate among
themselves. SUNDR guarantees linearizability when the storage service is
correct and fork-linearizability when the service is faulty.

In distributed revision control, the two popular systems Git (http://git.
or.cz/) and Mercurial (http://mercurial.selenic.com/) both employ
hash values for identifying revisions. Without digital signatures, a corrupted
server can trivially present modified changesets to a client (a changeset is the
unit of an update between two revisions). The clients will no longer agree on
the hashes identifying the revisions, but the server can keep passing content
back and forth between the clients. Even if every client would sign all its
updates, replay attacks would still be possible despite the use of hashes.
Distributed revision control systems explicitly allow offline commits, and so
the server can withhold changesets and claim that it has not seen them yet.

In practice, many open-source projects also publish digests or even
cryptographic signatures on every release of their code. But since the
cryptographic operations for authentication and verification are not trans-
parently integrated with the storage mechanism, they require some manual
intervention; hence, this method is not suitable for everyday collaboration.

6.1.2 Overview

The remainder of the chapter is organized as follows. Section 6.2 presents
our system model and the design for our consistent revision control system.
Section 6.3 describes our implementation. We evaluated our prototype
system and present the results in Section 6.4. Section 6.5 discusses some
limitations of our system and presents an outlook.

6.2 Design

This section presents the design of our consistent revision control system.
In Section 6.2.1, we first describe the assumptions used by our system and
the properties that it guarantees. We then introduce our abstract consistent
storage service in Section 6.2.2, which provides a fork-linearizable storage
space for small values, and review those properties of revision control

http://git.or.cz/
http://git.or.cz/
http://mercurial.selenic.com/

102 Chapter 6. Integrity Protection for Revision Control

systems that are relevant for our work in Section 6.2.3. In Section 6.2.4, we
explain the design of the consistent revision control system.

6.2.1 Model

The system consists of an a priori unknown number of clients and a storage
server. The server provides an abstraction of consistent shared storage to
the clients, who access it using operations to read and write data, and with
operations to control different revisions of the data. We assume that all
clients are correct and follow the protocol. The server may be faulty or
corrupted and deviate from the protocol in arbitrary ways, but not break
any cryptographic primitives.

The clients never communicate with each other directly, they commu-
nicate only via the server. This model is convenient and realistic because
the clients are not required to know each other, the network topology may
prevent direct communication between them, and they can operate indepen-
dently of each other. Revision control systems enable a convenient form
of computer-supported cooperative work, because the collaborators can
contribute at different times and from different locations.

We assume that each client is identified by a public key/private key
pair, signed by a trusted certification authority (CA). Every client trusts
one or more CAs, whose root keys it stores in a local directory in the form
of self-signed X.509 certificates. Clients identify each other only by their
public key; more precisely, clients accept every public key as the identity of
another client when the key is accompanied by a certificate from a trusted
CA. The system distributes the keys among clients as needed; a client
only needs the trusted CA keys before it starts to interact with the storage
service. Representing client identities by keys simplifies key distribution
considerably [73].

Every client maintains a small trusted memory, whose size is independent
of the size of the shared storage space. In order to prevent a corrupted
server from introducing unauthorized modifications to the shared data,
clients sign all their write operations and verify the integrity of the data they
read using digital signatures. But since the clients do not communicate with
each other, we cannot prevent that the server completes a write operation
of one client, and still returns stale data to another client.

The notion of fork-linearizability provides the next-best notion of con-
sistency in this model [20, 72]. It ensures that all operations in the view of
every client are legal in the sense that data returned by a read operation
has been written by the indicated client, and that when the server causes
the views of two clients to differ, even in a single operation only, then these
clients may not see any further operation of each other afterwards.

Our goal is to implement a storage service that provides read and write
operations, which execute atomically and according to their specification
whenever the server is correct; when the server is faulty, the storage service
still provides fork-linearizability. We refer to the work of Cachin et al. [20]
for a formal notion that captures this requirement under the name of a
fork-linearizable emulation of a storage service on a potentially corrupted

6.2. Design 103

server. In the subsequent sections, we explain how fork-linearizable storage
is implemented by our consistent storage service and by our consistent
revision control service.

Naturally, a corrupted server may simply refuse to cooperate, and then
the clients will have to reconstruct the shared data from their own records.
But this attack cannot be prevented. There is no easy solution to this
problem, except to choose a more trustworthy server.

On the other hand, a fork-linearizable emulation ensures that the server
cannot violate the consistency of the storage service and hide this attack
from clients that are suspicious. Even if the clients communicate out-of-
band only occasionally, for example, by sending email to each other directly,
or through a discussion forum on a project website, they are guaranteed to
immediately discover any inconsistencies that were introduced ever by a
faulty server.

A more subtle attack occurs when the server conspires with a client and
violates the assumption that clients are correct. The current design does not
prevent such behavior, but our system provides some means that help the
correct clients to recover from such attacks. We discuss these in Section 6.5.

6.2.2 Consistent Storage Service

The consistent storage service (CSS) provides a simple interface for reading
and writing short byte arrays and ensures fork-linearizability with an un-
trusted server. There is no hard limit on the size of the stored byte arrays,
but the service is designed for sizes up to 10 or 100 KiB because all values
are transiently kept in main memory.

CSS provides one storage location for every client, called a register. The
client is the only one who may write to its register, but all clients may read
from it, and there is an operation that reads all registers in a single step.
Formally, CSS combines an array of single-writer/multi-reader registers [59]
with an atomic snapshot object [1].

The service provides the following interface to clients, expressed as
method invocations:

getkeys() returns a list of all client identities that are known to the server
so far, represented by their public keys. The server learns the identity
of a client as soon as the client invokes its first method. A client may
use the output of the operation in subsequent queries.

write(data) stores data in the register of the client at the server, overwriting
data previously stored there. In CSS, a client may only write to its own
register.

read(key) reads the register identified by the public key key and returns
the stored data. If no such data exists, the operation returns none.

readall() reads all registers in one step and returns a list of pairs (key, data),
representing all registers stored by the server; every pair contains
the corresponding client key and the stored data. This method is
equivalent to invoking getkeys(), followed by invoking read(key) for

104 Chapter 6. Integrity Protection for Revision Control

all key values returned, all in one atomic step. Its purpose is to give a
consistent view of all registers.

We use the lock-step protocol of Cachin et al. [20] to implement CSS. The
protocol is noteworthy for using the server only as intermediary storage;
in particular, the server does not perform any cryptographic operations.
The protocol has been modified from using a fixed number of clients to
handle an a priori unbounded number of clients that are identified only
by a public key. Instead of using vectors, versions are represented by an
associative array that maps every known client key to the corresponding
timestamp. The clients maintain some state in their local memory and
save it on persistent storage between operations. The protocol is shown in
Figure 6.1.

The lock-step protocol has the drawback of not being wait-free [59]
because when the server waits for the commit message from a client, no
other client can proceed with an operation. Mazières and Shasha [72] and
Cachin et al. [20] both present seemingly more efficient protocols that allow
some client operations to proceed in parallel. However, it has been shown
that in all fork-linearizable storage emulation protocols, a reader must wait
for a concurrent writer [20].1

We therefore chose to implement CSS with the lock-step protocol for the
following reasons: First, the addition of the readall operation introduces
the above conflict between readall and every write operation. We know that
our consistent revision control application (described in Section 6.2.4) will
use only write and readall operations, and we expect that they occur about
equally often. Hence, the potential for exploiting concurrency is reduced to
concurrent read operations. Second, the protocol allowing for concurrent
operations is considerably more involved than the lock-step protocol. The
small potential gain did not merit the added implementation complexity.

6.2.3 Revision Control

A revision control system (RCS) provides operations for storing and retrieving
multiple versions of the same set of documents. It facilitates collaboration
among multiple users, who may work independently with the information.
The RCS assigns revision numbers to the documents and maintains a history
of all versions. The documents usually consist of a hierarchical set of files
and directories in a file system. Revision control systems are an important
collaboration tool, as can be seen from the large number of existing sys-
tems (Wikipedia’s “List of revision control software” lists 64 systems as of
September 2008).

For the purpose of designing our consistent RCS, we describe here the
main features of a generic centralized RCS. A centralized RCS uses a dedi-
cated server for controlling revisions and storing the history, in contrast to a
distributed RCS, where this task is shared by all users. Our RCS is modeled af-
ter two popular RCS for source code, CVS (http://www.nongnu.org/cvs/)

1Weaker semantics than fork-linearizability can give rise to wait-free storage emulation
protocols [21].

http://www.nongnu.org/cvs/

6.2. Design 105

Preliminaries. CSS stores a register value datakey for each client identified by

key. Only the client identified by key may write to datakey, but every client

may read from any register. Every client locally maintains a timestamp that it
increments during every operation. We call an array of timestamps a version;
a version is an associative array V that maps keys to timestamps, denoted by
V[key] = t. We write V[key] = ⊥ if V[key] is not defined. Versions acts as a
vector clock for ordering operations. Two versions V and W are ordered so that V
is smaller than or equal to W whenever V[key] ≤ W[key] for all values key such
that V[key] ≠ ⊥.

Client state. The client maintains a version T representing its last completed
operation. Note that a client identified by key finds its own timestamp in T[key].
For simplicity of the description, we assume the client also keeps a copy of its
own data value datakey and writes it back during every read operation. (In the

implementation, it only stores a collision-resistant hash of the data value and
sends that in a read operation; in a write operation, it sends the data value.)

Server state. The server stores the register values in an associative array X,
where X[key] = (datakey, σkey), representing the register value and a digital

signature issued under key on the string value‖datakey‖t, where t is a timestamp

equal to T[key] when the client completed the operation that wrote datakey.

The server also keeps information from the last completed operation: the version
V associated to it, the key last identifying the client performing the operation,
and a digital signature ω under key last on commit ‖ V .

Operation. When a client identified by key invokes a write, read, or readall
operation, it sends the request together with key in a submit message to the server.
The server sends a reply message, containing the version V , the key last, and
the accompanying signature ω from the last operation. In a read operation for
register identified by rkey, the server also sends the register value X[rkey] =
(datarkey, σrkey). In a readall operation, the server adds all register values X.

The server then waits for a commit message from this client and does not process
any messages from other clients.

The client verifies that the reply message contains valid data: the version V must
be at least as large as its own version T , the entry V[key] must be equal to its
own timestamp T[key], and the signature ω on commit ‖ V must be valid under
key last. In a read or readall operation, the client also verifies that σrkey is a

valid signature under rkey on the string value ‖datarkey ‖V[rkey], either for only

one rkey in a single-register read or for all values rkey such that X[rkey] ≠ ⊥
in a readall operation. When the client detects any inconsistency in the reply, it
considers the server to be faulty, generates an alarm, and aborts.

After the client has successfully verified the reply, it adopts the received version V
as its own version T , increments its timestamp T[key], and signs the new version
T , resulting in a signature ϕ. It issues another signature σ on value ‖ datakey ‖
T[key], binding its data value to the timestamp. Then it sends a commit message
to the server, containing T , ϕ, datakey, and σ .

When receiving the commit message, the server stores T , key, and ϕ as its
version V , client key last, and signature ω that represent the last operation. The
server also updates X[key] with the received value datakey and σ .

Figure 6.1: CSS using the lock-step protocol (adapted from [20, 72]).

106 Chapter 6. Integrity Protection for Revision Control

and Subversion (http://subversion.tigris.org/); they both allow users
to update the same document concurrently.

We expect the client interface of an RCS to provide the following main
operations:

Checkout: A checkout operation transfers all documents from the server
repository to the client. It creates a copy of the files and directories
on the client, called the working copy. All editing takes place there.
The RCS also supports attributes attached to documents and version
control for them.

Commit: After adding, modifying, or deleting some files in the working
copy, the client wants to transfer the changes back to the central
server, thereby making the changes visible to other clients. The client
does this with a commit (or checkin) operation. Its effect is to create a
new revision with a distinct identifier, called the revision number. We
assume that revision numbers in a sequence of commits issued by
multiple clients increase monotonically over time.

Update: An update operation transfers the most recent revision of all files
from the server to the client and updates the working copy accordingly.
The system also supports updating to a revision with a particular
revision number.

When a client has modified some files locally and wants to commit
the changes, it may have to perform an update, before the RCS allows
a commit operation. This happens when some modifications of the
client overlap and conflict with modifications committed by others.
In this case, the commit operation will fail, the client is told to first
update its working copy and to merge the concurrent changes, before
the client may attempt another commit.

Typical RCS also support operations to populate the server repository
with a set of documents initially, to rename repository contents, to create
branches and merge them again, and to tag revisions with keywords. These
operations may be present, but are not our main focus because they can be
expressed as variations of the above three main operations.

We assume that all operations are transactional so that their changes
either take effect in one atomic step on the server, or leave no trace in the
repository in case of a failure.

6.2.4 Consistent Revision Control

Our consistent revision control system (CRCS) implements a revision control
system that protects the integrity of the repository against a corrupted
server. CRCS provides the same operations as an ordinary RCS and em-
ulates a fork-linearizable storage service on the repository. We achieve
fork-linearizability in terms of the checkout and update operations of CRCS,
which implement a read operation on the repository, and in terms of the
commit operation, which implements a write operation on the repository.

http://subversion.tigris.org/

6.2. Design 107

Fork-linearizability for a revision control system guarantees the following.
Suppose a client A updates its working copy with CRCS to some revision
number r . If A sees even a single file that was committed by another client B
in revision r , then fork-linearizability implies that all files in client A’s
working copy have been cryptographically verified and are equal to those
committed by B in revision r . Conversely, if there exists a more recent
revision s > r committed by a third client C , and the server hides revision s
from A, then A can never again update to any revision committed by C or
by anyone who updated to s. Because of this all-or-nothing implication of
fork-linearizability, one can very easily detect even subtle modifications of a
single file by a corrupted server.

We implement CRCS by combining our CSS with an unmodified RCS.
CRCS computes a hash tree [75] over the set of documents in the repository
and basically stores the root hash of the tree using CSS. This construction
extends the integrity guaranteed by CSS from the root hash to the entire
data. Suppose every client commits changes to CRCS by first committing its
working copy using RCS, thereby obtaining a revision number r , computing
the new root hash h, and then writing the tuple (r ,h) to its register. This
stores all information in CSS that another client needs for updating its
working copy to the most recent revision and for verifying its integrity. But
because CRCS also supports cryptographically verified update operations
for previous revisions in the repository, the design is more complex.

Every client maintains a revision log L with information about every
revision that it committed. The revision log is a list of tuples (r ,h, c), denot-
ing the revision number r , the root hash h, and a revision commitment c,
sorted chronologically (i.e., according to r). Let H denote a collision-free
cryptographic hash function. The revision commitment binds together all
previous commit operations of the client in a hash chain; when committing
revision r with hash h, the client computes c as H(r ‖ h ‖ c′), using the
revision commitment c′ from the last tuple in L (or c′ = ⊥ if L is empty).
The same chaining scheme has been used in many other timestamping and
data authentication algorithms [58].

For the description of the CRCS algorithm below, assume that every
client stores its complete revision log in L. For increased efficiency, an
implementation may actually maintain only the last tuple of L in CSS and
keep the rest of L in untrusted shared storage; the collision resistance of
H guarantees the uniqueness of every revision log given its last revision
commitment.

The client proceeds now as follows to implement the main operations
of CRCS. If one of the checks in the algorithm fails, the client generates an
alarm and aborts.

Checkout: To check out the highest revision, the client invokes the readall()
operation of CSS and determines the largest revision number r from
the returned revision logs and the corresponding root hash h. After
invoking checkout of RCS for revision r , the checkout algorithm re-
computes the hash tree on the working copy and verifies that its root
hash is equal to h.

108 Chapter 6. Integrity Protection for Revision Control

Commit: The client first calls the update operation of CRCS (see below) to
bring its working copy to the most recent revision according to CSS.
Then it commits the working copy with RCS to obtain a new revision
number r . If this fails, the operation aborts and the client is told
to update and to try again. If all goes well, the client computes the
root hash h of the hash tree on its working copy, extends the client’s
revision log L with r and h, and invokes write(L) from CSS.

Update: The update operation is very similar to checkout. The client per-
forms readall() to obtain all revision logs, determines the largest revi-
sion number r with corresponding root hash h, calls update from RCS
to bring its working copy to revision r , recomputes the changed paths
in the hash tree, and verifies that the root hash matches h.

For updating to a particular revision r , the algorithm determines the
client that committed r from all revision logs, locates the correspond-
ing tuple (r ,h, ·) in some revision log L, and verifies L by following
the hash chain from the tuple with r to the end of L. Then it proceeds
as above, updating to revision r from RCS and verifying the working
copy with respect to h.

When recomputing the hash tree for files that have changed in the
repository, it is important that the client does that on a clean working
copy, before the modifications from its working copy are applied. As
the RCS merges the updates with the client’s own changes, the update
operation creates a working copy that differs from revision r in the
repository.

Because the operations of CRCS verify that the working copy is consistent
with the revision numbers and their root hashes maintained by CSS, the
fork-linearizability of CSS implies the same property also for CRCS.

Note that the above algorithm introduces no new race conditions com-
pared to RCS. As a consequence of synchronizing the client with CSS and
RCS, it would be possible to create such problems. But the atomicity of the
operations on CSS ensures that the more complex operations of CRCS are
also atomic. In particular, whenever a client invokes checkout or update and
retrieves some revision number from CSS, it always finds this revision in the
repository of RCS. This holds because the commit operation of RCS precedes
the writing of the corresponding revision number to CSS. Of course, there
may already exist a more recent revision in the repository of RCS in the
mean time, but this may also happen in the generic RCS, when another
commit operation occurs immediately after an update.

6.3 Implementation

We have implemented our design in Python on Unix in two parts: first,
the consistent storage service and, second, the consistent revision control
system. The Python programming language encourages the kind of rapid
prototyping we wanted and allowed a very natural transcription of the

6.3. Implementation 109

protocols. We chose Subversion (SVN) as the lower-level revision control
system because it is widely used and because it fits our model of an RCS
from Section 6.2.3. Hence, we refer to our implementation as Consistent
Subversion (CSVN). Cryptographic operations are provided by OpenSSL via
the M2Crypto Python interface to OpenSSL [93].

6.3.1 Consistent Storage Service

The implementation of CSS according to Section 6.2.2 stores arbitrary byte
arrays. It is available as a library to clients. We wrote a simple interactive
client application to read and write values entered by the user. The rich
syntax of Python resulted in the server part of the algorithm in Figure 6.1
consisting of about 250 lines of code and the client part consisting of
about 200 lines of code, including the operations for key management. The
critical parts of our code, which implement Algorithm 1 and 2 from [20], is
reproduced in Figure 6.2 for the client and Figure 6.3 for the server code.
Python’s support for (nested) tuple assignment makes this an almost literal
translation of the original pseudo-code. Having a succinct implementation is
important for maintainability, and especially important for security-relevant
software.

CSS uses Python’s object serialization over TCP connections for transport.
The server implementation is single-threaded according to the lock-step
protocol; it uses a time-out (with a default value of 300 sec) in order to
tolerate a client that crashes between sending a submit message and send-
ing the corresponding commit message. It would be prudent to integrate
SSL support for increasing the security of the client-server connections;
currently, network attacks appear to the clients as server faults.

6.3.2 Consistent Revision Control with Subversion

We implemented CSVN in the form of a library that interfaces to SVN
and provides the three main revision control operations. The operations
invoke our consistent storage service and the Python SVN Extension (http:
//pysvn.tigris.org/). The SVN server remains unchanged. We also
created small wrapper scripts for a user to invoke the client operations.
The CSVN library consists of about 170 lines of code, and the scripts of
about 75 lines of code each. Hence, the code is very compact.

For the description below, let a path denote the unit of information
managed by SVN; a path may be a directory containing other paths, a file, or
a symbolic link.

Hash Trees

The protocol requires to compute a hash tree over the documents in a
revision. Let us define a hash functionH on paths maintained by SVN. The
hash value of a path p that represents a file or a symbolic link is defined as

H (p) = H
(
H(p) ‖H

(
C(p)

))
,

http://pysvn.tigris.org/
http://pysvn.tigris.org/

110 Chapter 6. Integrity Protection for Revision Control

def read(self, cert):
"""Read from the register identified by *cert*."""
x = self.x_bar
self.send("SUBMIT", self.cert, "READ", cert)
(V, l, phi_prime, (y, rho)) = self.recv("REPLY")
self.validate_version(V, l, phi_prime)

if not (V[cert] == 0 or self.verify(cert, rho, "VALUE", y, V[cert])):
abort("Validation failed in read")

self.T = V
self.T[self.cert] += 1
phi = self.sign("COMMIT", self.T)
sigma = self.sign("VALUE", x, self.T[self.cert])
self.send("COMMIT", self.T, phi, x, sigma)
return y

def write(self, x):
"""Write *x* to my register."""
self.x_bar = x
self.send("SUBMIT", self.cert, "WRITE")
(V, l, phi_prime) = self.recv("REPLY")
self.validate_version(V, l, phi_prime)
self.T = V
self.T[self.cert] += 1
phi = self.sign("COMMIT", self.T)
sigma = self.sign("VALUE", x, self.T[self.cert])
self.send("COMMIT", self.T, phi, x, sigma)

Figure 6.2: Main client code of the lock-step protocol, matching Algorithm 1 in [20].

def handle_read(self, cert, read_cert):
"""Handle a read operation"""
self.send("REPLY", self.V, self.l, self.omega, self.X[read_cert])
(T, phi, x, sigma) = self.recv("COMMIT")
(self.V, self.l, self.omega) = (T, cert, phi)
self.X[cert] = (x, sigma)

def handle_write(self, cert):
"""Handle a write operation."""
self.send("REPLY", self.V, self.l, self.omega)
(T, phi, x, sigma) = self.recv("COMMIT")
(self.V, self.l, self.omega) = (T, cert, phi)
self.X[cert] = (x, sigma)

Figure 6.3: The central code of the server, matching Algorithm 2 in [20].

6.3. Implementation 111

where C(p) is the content of p. The hash value of a path p representing a
directory is

H (p) = H
(
H (p1) ‖H (p2) ‖ · · · ‖H (pn) ‖H(p)

)
,

where p1, . . . , pn is a sorted list of all paths in p. We denote the root hash
of a repository byH (“.”).

It would be prohibitively expensive to recompute the hash values of all
paths in a large repository upon every change of a single file. Therefore,
the client stores the hash value of every path as an SVN property of the
path. During an update operation, CSVN recomputes the hash values of all
changed files and of all directories along the path from the changed files
to the root. For a repository with n files, this reduces the cost of updating
m modified files from linear in n to O(m + d), where d is the maximum
affected depth in the directory tree.

The hash values are stored on the SVN server because properties are
revision-controlled in SVN. Note that storing them on untrusted storage
is unproblematic. The hash values are not actually needed by a client
who checks out the complete repository because the client recomputes the
entire hash tree anyway during verification. But they are needed for partial
checkouts, as explained below.

Integration with SVN

During checkout and update operations, CSVN installs a callback before
invoking the SVN library, which collects all relevant events reported by SVN;
such relevant events are the addition, update, and deletion of a path. Then
CSVN invokes CSS to obtain a revision number r and retrieves revision r
from SVN, as described in Section 6.2.4. To recompute the root hash of the
working copy, CSVN traverses the working copy, but visits only paths for
which a relevant event was collected during the SVN operation.

For a commit operation, CSVN first determines the modified paths which
are going to be written to the repository. It does that with an SVN “info”
operation that outputs a collection of changed paths. Then it traverses the
working copy, visiting and recomputing hash values only for changed paths,
and getting hash values for unchanged paths from their SVN properties.
This yields the root hash h = H (“.”). CSVN further invokes the “commit”
operation of SVN to write the updates to the repository and to obtain the
new revision number r . Finally, it retrieves the revision commitment c from
the last tuple in L, appends (r ,h,H(r ‖ h ‖ c)) to L, and writes L using CSS.

This completes the description of the main CSVN operations. Further
SVN operations can be implemented easily using the CSVN library and the
three main CSVN operations.

The description so far assumes that clients always check out and update
the complete file set in the repository at once. But this is not required in
SVN, where a client may check out only a subdirectory from a repository, or
commit only a subset of its working copy. The revision number and the root
hash stored in CSS are always global properties of the repository, though.
Operations on the partial repository are supported by our design and rely

112 Chapter 6. Integrity Protection for Revision Control

on the hash values stored in the SVN properties. For example, to check out
a subtree from a repository, CSVN also needs to read all files along the path
from the subtree’s root to the repository root before it can verify the root
hash.

An important and nice feature of this implementation is that it does not
add any additional SVN server operations; because they usually involve the
network and contain a cryptographic authentication operation during login,
they tend to be rather slow.

6.4 Evaluation

We report on benchmarks to measure the performance of CSVN client
operations in comparison to an unmodified SVN client. Since every operation
of CSVN also invokes the corresponding operation of SVN, we are primarily
interested in the overhead of CSVN over SVN.

We report on two kinds of performance evaluations: an application
benchmark using real-life file sets of different sizes and a synthetic bench-
mark with artificially made-up file sets. Each benchmark consists of a series
of tests executed by two clients, called A and B, where each test uses dif-
ferent data. For each test, we run the unmodified SVN client and the CSVN
client 20 times in succession and measure the average time taken by each
step in the test. Every run starts with an empty repository and a freshly
initialized CSS. Each test uses a pair of related file sets; we are interested in
the time it takes to update a working copy and the repository from one file
set to the other one.

Each run in a test consists of the following steps:

1. Client A initializes a new empty repository on the server. This step is
the same for both systems, so we do not measure it.

2. Create — client A checks out revision 0, creating a working copy from
the empty repository.

3. Import — client A copies the first file set into its working copy, adds it
to the repository, and commits the changes; we measure the time for
the commit operation only.

4. Checkout all — client B checks out the content of the repository into
its own working copy; the working copies of A and B are now identical.

5. Client B modifies its working copy to reflect the second file set. This
involves adding the files contained only in the second file set, deleting
the files only present in the first set, and copying the changed files
from the second set into the working copy. This step is identical for
both systems and is not measured.

6. Commit diff — client B commits the changes in its working copy.

7. Update diff — client A, whose working copy still contains the first file
set, updates it to the most recent revision in the repository, which

6.4. Evaluation 113

Table 6.1: The four tests of the application benchmark and the used Linux kernel
version pairs. The third and fourth columns list the number of files in the first file
set and the number of changed (added, modified, or deleted) files between the two
file sets, respectively.

Test (version pair) Size Files Changed

0.11 → 0.12 0.63 MiB 100 91
1.0 → 1.0.1 5.9 MiB 561 12
2.0.1 → 2.0.2 27 MiB 2,021 28
2.2.0 → 2.2.1 62 MiB 4,599 10

contains the second file set; the working copies of A and B are again
identical.

This sequence of steps is designed to capture the overhead of committing
and updating a large file set at once (in the import and checkout all steps)
and of committing and updating smaller number of files in a larger file set
(in the commit diff and update diff steps).

The benchmarks use two separate hosts, one for the server and one for
both clients; they are connected by a gigabit LAN. The machine for the
clients is an IBM x345 system with 2 GiB of RAM and two hyper-threaded
Intel Xeon CPUs (3.06 GHz clock speed). The machine for the server is an
IBM x335 system with 2 GiB of RAM and two hyper-threaded Intel Xeon CPUs
(2.80 GHz clock speed). Both machines have a single IBM Ultra320 SCSI disk
with 73.4 GB capacity and run Debian GNU/Linux 4.0 with kernel 2.6.18 and
Subversion 1.5.2. The SVN server is accessed using SSH and all data is stored
on the local filesystems. We use the SHA-1 hash function and 1,024-bit RSA
for signatures.

6.4.1 Application Benchmark

The file sets in our application benchmark are different versions of the Linux
kernel source tree, as reported in Table 6.1. All files can be downloaded from
the Linux kernel archive (http://kernel.org/). We choose them since they
represent a realistic directory structure and because the repository sizes
range over several orders of magnitude, from 632 KiB to 62 MiB. We selected
the four versions that make up the first file set in a test based on their
relative size. For each test, we pick the subsequently released version of
the Linux kernel and use it as the second file set. The results are shown in
Table 6.2.

6.4.2 Synthetic Benchmark

In this benchmark, we wish to measure how the running time changes when
we grow the directory structure in a repository from one directory to a
large tree, but keep the number of files constant. To do this, we create four
artificial file sets, each consisting of 256 files, each file of size 10 KiB, for a
total data size of 2.5 MiB per file set. The files are filled with random pieces

http://kernel.org/

114 Chapter 6. Integrity Protection for Revision Control

Table 6.2: Results of the application benchmark. The numbers denote average
elapsed time and standard deviation in seconds for SVN and CSVN in 20 runs, and
the ratio of the two average times.

(a) Version 0.11→ 0.12.

Step SVN CSVN Ratio

Create 1.18± 0.09 1.53± 0.33 1.30
Import 0.93± 0.02 1.94± 0.00 2.08
Checkout all 0.99± 0.00 1.10± 0.00 1.11
Commit diff 1.50± 0.02 2.30± 0.29 1.53
Update diff 0.94± 0.00 1.05± 0.01 1.11

(b) Version 1.0→ 1.0.1.

Step SVN CSVN Ratio

Create 1.05± 0.05 1.45± 0.38 1.38
Import 3.70± 0.11 6.76± 0.00 1.83
Checkout all 1.98± 0.00 3.17± 0.48 1.60
Commit diff 1.24± 0.42 2.03± 0.01 1.63
Update diff 0.94± 0.01 1.11± 0.00 1.17

(c) Version 2.0.1→ 2.0.2.

Step SVN CSVN Ratio

Create 1.46± 0.17 1.34± 0.25 0.92
Import 14.08± 0.71 28.84± 1.02 2.05
Checkout all 7.49± 2.38 12.31± 2.44 1.64
Commit diff 3.89± 1.59 5.15± 0.47 1.32
Update diff 0.94± 0.00 2.28± 0.02 2.42

(d) Version 2.2.0→ 2.2.1.

Step SVN CSVN Ratio

Create 0.68± 0.06 1.18± 0.29 1.72
Import 36.35± 1.05 79.26± 1.29 2.18
Checkout all 13.38± 2.04 29.28± 2.28 2.19
Commit diff 10.20± 3.68 9.64± 2.53 0.95
Update diff 1.27± 1.53 1.69± 0.49 1.33

6.4. Evaluation 115

Table 6.3: Results of the synthetic benchmark. The numbers denote average elapsed
time and standard deviation in seconds for SVN and CSVN in 20 runs, and the ratio
of the two average times.

(a) Depth 0.

Step SVN CSVN Ratio

Create 1.48± 0.12 1.35± 0.40 0.91
Import 2.71± 0.06 4.19± 0.50 1.55
Checkout all 1.99± 0.00 2.90± 0.01 1.46
Commit diff 1.87± 0.22 3.02± 0.01 1.61
Update diff 0.95± 0.00 1.73± 0.01 1.83

(b) Depth 2.

Step SVN CSVN Ratio

Create 1.25± 0.06 1.25± 0.39 1.00
Import 2.01± 0.33 3.89± 0.01 1.93
Checkout all 1.99± 0.00 2.40± 0.01 1.21
Commit diff 0.93± 0.05 1.51± 0.01 1.63
Update diff 0.95± 0.00 1.01± 0.01 1.07

(c) Depth 4.

Step SVN CSVN Ratio

Create 1.27± 0.01 1.46± 0.39 1.15
Import 1.95± 0.27 3.88± 0.01 1.99
Checkout all 1.99± 0.01 2.30± 0.02 1.16
Commit diff 0.92± 0.06 1.61± 0.03 1.75
Update diff 0.95± 0.00 0.94± 0.01 1.00

(d) Depth 8.

Step SVN CSVN Ratio

Create 0.86± 0.23 1.33± 0.14 1.55
Import 4.33± 0.42 10.59± 0.89 2.44
Checkout all 8.75± 1.52 9.95± 1.14 1.14
Commit diff 0.88± 0.04 1.31± 0.24 1.50
Update diff 2.28± 1.15 1.90± 0.51 0.84

116 Chapter 6. Integrity Protection for Revision Control

of C code taken from the Linux 2.2.1 kernel; this is to generate files looking
like a real source tree. The files are stored in a directory structure of varying
depth. We define a directory structure of depth d as a full binary tree of
depth d and store 256/2d files in each of the 2d leaf directories.

Our file sets are four directory structures with depths 0 (all files in one
directory), 2, 4, and 8 (every file in a separate directory). In each test, the
second file set is identical to the first one, up to a random modification to
one of the files in a leaf directory. The results are shown in Table 6.3.

6.4.3 Results

The results of both benchmarks show that CSVN adds an overhead of a factor
that is generally less than 2 and usually also less than 1.5. In absolute terms,
the import and the checkout all steps are the slowest operations because
they involve all files. The import step generally incurs also the biggest
overhead, usually around 2. But the overhead of the checkout all step is not
noticeably different from the overhead of the remaining steps. Generally,
CSVN adds only a moderate overhead to most operations compared to the
normal SVN client.

Observe the bigger variation in the execution times of the tests with
larger file sets. One reason for this effect may be that large data sets create
more unexpected interactions with other programs due to swapping and
disk operations than small data sets that fit in the kernel’s buffer cache.
Such variations also explain the few overhead ratios smaller than 1.

Among the results of the application benchmark in Table 6.2, the second
largest overhead (after the import step) usually occurs for the commit diff
step. The overhead on the large file sets is not bigger than that on the
smaller file sets. This clearly shows the benefit of using a hash tree when
only a small part of a large file set is updated.

In the results of the synthetic benchmark in Table 6.3, observe the
overhead of the commit diff and the update diff steps. In both steps, only
a single file is changed. The CSVN client must then read the hash values
of all sibling files to compute the new hash values for the directory. With
the increasing depth of the directory structure, the number of sibling files
drops from 255 to 0, and this is reflected in the decreasing overhead.

In summary, although a 50%–100% larger execution time for SVN opera-
tions is clearly noticeable by the clients, we believe it is a reasonable price
to pay for the added guarantee of cryptographically verified data integrity.
These results should serve as a lower bound for the efficiency of our design,
because they were carried out with our straight-forward layered prototype
implementation in Python. If the CSVN operations would be integrated with
the SVN client library, the directory tree in the working would have to be
traversed only once instead of twice; moreover, hashing could be integrated
with the traversal and performed concurrently with receiving or sending
data to the server. With such an integrated design, the cryptographic over-
head is likely to vanish, as shown in other benchmarks of cryptographic
storage and file systems [99].

6.5. Conclusion 117

6.5 Conclusion

Protecting data integrity against unauthorized modifications is an important
aspect of networked storage systems.

In this chapter, we have presented a novel approach to securing the
integrity of data stored in revision control systems, and demonstrated its
feasibility with our Consistent Subversion (CSVN) prototype. Our evaluation
shows that the overhead is reasonable.

The biggest threat to our system are client failures. Protecting the system
from malicious clients is also the area where future work is needed.

Our implementation already tolerates client crashes; one or more ma-
licious clients alone cannot harm the integrity if the service provider is
correct — measures to prevent such behavior can easily be added [66], but
have not been described in this work. A corrupted client conspiring with a
corrupted service provider, however, may undermine fork-linearizability.

A first barrier against such an attack is the CA that must authorize
all clients before they access the service. It is therefore a good idea to
make the CA is a separate entity from the storage service. If the threat
of such a client-server conspiracy attack becomes too serious, one might
adopt the complex cross-checking of versions signed by different clients
introduced in SUNDR [72]. Unfortunately, the SUNDR protocol involves a
much higher communication overhead in every operation. One should also
develop an additional tool that helps the clients to recover from a server
failure; it should automatically reconcile the state of the repository from
the information held by the clients in their working copies and their local
memories.

Acknowledgments. We are grateful to Idit Keidar, Alexander Shraer, and
Marko Vukolić for many discussions and valuable comments.

This work was supported in part by the European Commission through
the IST Programme under Contract IST-2002-507932 ECRYPT.

Chapter 7

Conclusion and Future Work

In this final chapter, we will first sum up the experiences we have gained
with the work on implementing secure multiparty computation. Following
that, we will describe some possible future extensions to VIFF before we
conclude this dissertation.

7.1 Lessons Learned

While working with VIFF, we have learned a number of lessons about real-
world implementation of multiparty computation. We will discuss some of
them in this section.

First, we will make a general observation on protocol design: simple,
information theoretically secure protocols should be preferred. Intuitively,
one might expect protocols secure against a weaker polynomial time adver-
sary to be easier to implement and faster to execute than protocols secure
against a much stronger adversary with unbounded computing power. This
is not the case. Unconditionally secure protocols often employ simple
arithmetic whereas cryptographically secure protocols end up using more
expensive arithmetic such as exponentiations.

A cryptographically secure primitive must by definition rely on some
hardness assumption. One must make a judgment about the amount of
computing power the adversary is willing to invest in breaking the scheme,
and choose a suitable margin. This safely margin ends up as a computational
overhead in the protocol. Unconditionally secure protocols do not have such
a safety margin.

7.1.1 Large-Scale Testing Matters

The traditional wisdom in protocol design is that local computation is free.
The very first paper on multiparty computation by Yao [100] mention that
the proposed solution becomes impractical when the size of the input num-
bers increase. The concern is the number of bits that must be transmitted,
not the amount of local computation.

119

120 Chapter 7. Conclusion and Future Work

The underlying assumption is thus that network is the bottleneck. This
was also our initial assumption. It is reflected in the section on benchmark
results in [37], where we write that the quadratic growth in preprocessing
time (when using hyperinvertible matrices) is unexpected.

The quadratic growth is unexpected if local computations are not consid-
ered since the communication complexity of the protocol (for a single party)
is O(n|C|k) where |C| is the size of the arithmetic circuit being computed
and k is the bit length of elements in the field used.

Our testing showed (Section 4.5) that the local computations cannot be
ignored on a fast network. With our benchmarks using a large number of
parties, we saw a quadratic growth in the running time for both the classic
BGW protocol [10] and for our preprocessing protocol using hyperinvertible
matrices. This is not surprising when one inspects the code — there are
several places which clearly depend in a quadratic way on the number
of parties. The effect is slight and we would not have discovered this
misconception if we had not tested on a large number of parties.

7.1.2 Choice of Language

One of the most important decisions in any software system is the imple-
mentation language. Among many other things, the choice of language
effect the speed of development, the speed of the resulting implementation,
and the supported platforms.

The SCET project used Microsoft’s C# as the implementation language,
along with a number of other Microsoft technologies. This limited the num-
ber of supported platforms to essentially one, namely Microsoft Windows.
When the SIMAP project was started, it was decided that we wanted a broader
platform coverage. All programmers on the project had experience with
Java, which has better cross-platform support than C#. This made Java a
natural choice for the project. In VIFF, we use Python as our implementa-
tion language, largely due to the Twisted network library, but also because
Python is a true cross-platform language.

Python Critique

While Python is a wonderful language to program in — expressive, concise
and flexible — it does have a number of shortcomings. The biggest problem
is the lack of a static type system. Python is a strongly typed language,
which means that all variables have a known type at runtime, but the type is
not known statically and may even change from one execution to another.

This dynamic behavior makes it difficult to make any kind of static
analysis of the code. This in turn makes it difficult to perform even the
simplest classic optimization techniques such as function inlining, loop
hoisting, or strength reduction.

The lack of static guarantees means that everything must be interpreted
at runtime by the Python VM. Compared to compiled languages, this results
in a quite substantial overhead for simple things such as function calls. As
we shift our focus from designing VIFF to actually using it, we would like to

7.1. Lessons Learned 121

seek ways to lower this overhead. Moreover, while we were initially satisfied
with comparing protocols within VIFF, we would now like to compare our
performance to other systems such as Fairplay and Sharemind. Their
languages (Java and C++, respectively) offer many more opportunities for
compilers to optimize the code.

Python Variants

There are some more or less experimental projects trying to lower or elim-
inate the overhead associated with Python. We shall mention only two
project here. The most promising is the Unladen Swallow1 project, which is
proposed to be merged with the current C implementation of Python [98].
This work introduces a just-in-time compilation (JIT) backend to the Python
virtual machine. The JIT compiler will emit optimized machine code. The
performance improvements vary between benchmarks, but seem to lie
around 40%. The initial goal for Unladen Swallow developers a five time
improvement in performance. This was based on experience from JIT com-
pilation of JavaScript code — another language which is notoriously hard to
optimize due to its dynamic nature. The hope is still to reach this level of
improvement with Python.

The PyPy project [87] has a more long-term goal of improving the speed
of Python and other dynamic languages. For this purpose, they have written
framework (in Python) that allows them to translate a language description
(of Python, say) into a concrete virtual machine. Hence the name “PyPy”
which hints to an implementation of Python in Python.

The idea is that it is easier to extend and change the target VM by
changing the high-level Python translation process instead of changing the
code of the VM itself, which may be written in a language like C. The PyPy
project has also experimented with adding a JIT compiler to the Python
VM. Their benchmarks show that it produces code that is 5–8 times faster
than the standard Python. This was on benchmark programs doing lots
of arithmetic. This might be interesting for VIFF, since our programs also
contain a lot of arithmetic.

We have so far focused on the design and implementation of new proto-
cols for VIFF. Optimizing for speed has been a secondary concern, and so
we have not conducted benchmarks using either Unladen Swallow or PyPy.

Python Alternatives

Python has been great for rapid prototyping. The author of this dissertation
feels that the succinct syntax and the flexibility of the language plays an
important role here. Another language with a famously elegant syntax
is Haskell [83]. Haskell is a lazily evaluated, statically typed, functional
language. It supports type inference which greatly reduces the amount
of boilerplate code needing to be written: local variables only need to be

1The Python programming language is named after Monty Python, not the species of snake.
In Monty Python and the Holy Grail, the keeper of the Bridge of Doom asks King Arthur about
the air-speed of an unladen swallow.

122 Chapter 7. Conclusion and Future Work

explicitly typed in rare circumstances when the compiler cannot determine
their type by itself.

Being a statically typed language, the Haskell compiler has full access to
all the known optimization techniques. The Haskell compilers are known to
produce good machine code, comparable with that of modern C compilers.

The Haskell runtime has a feature which is of particular interest to us:
ultra light-weight threads. A program can create thousands of these threads,
which are then automatically multiplexed onto a handful of operating system
threads. Using these threads, we should be able to obtain the very fine-
grained parallelism present in VIFF, but without the use of callbacks.

The basic idea is to spawn a new light-weight thread for each operation.
The thread will block until its inputs are ready. The Haskell concurrency
libraries provide a type called MVar, which act as a kind of “box”. The box
can be either empty or full, and threads block when they try to grab the
value from an already empty box. Using these boxes instead of Deferred
instances, we can implement multiplication like this:

mul :: MVar Int −> MVar Int −> IO (MVar Int)
mul x y = do

z <− newEmptyMVar
forkIO $ do

x_val <− takeMVar x
y_val <− takeMVar y
putMVar z (x_val * y_val)

return z

The function takes two boxes (holding integers) as input and produces a
new box holding an integer.2 The function essentially creates an empty box
and returns it to the caller. Meanwhile, a new light-weight thread has been
spawned with forkIO. The thread performs the action in the inner do-block:
it blocks on each input in turn, and stores the result in the box z.

The multiplication function is used as follows:

main = do
x <− newMVar 10
y <− newEmptyMVar
z <− mul x y
putMVar y 20
z_val <− readMVar z
print z_val

Notice how we multiply x and y, where x is a box containing 10 and y is
an empty box. When we put a value into y, we can read the product out of z
and finally print it on the terminal.

This example is of course far from complete, but it is encouraging to
see how easy threads can be used in Haskell. The callback-based style of
programming is more cumbersome than initially expected, so a return to a
more normal control flow would be welcomed.

2The IO tag on the return type indicates that computation takes place in the so-called I/O
monad. This is not important for our discussion.

7.2. Future Work 123

7.1.3 Memory Management

It has turned out to be difficult to control the memory usage of programs
that use VIFF. The problem is the “eager” evaluation used, in which it is easy
to allocate a huge amount of work. Consider a simple loop:

for i in range(1000):
x = x * x

With normal execution semantics, this would not require any additional
memory given that x had already been allocated. However, when x is a Share
object, the above two lines will not just overwrite the memory location of x
in each iteration. What happens instead is that a large tree (shaped like a
linked list) is formed in memory to hold the intermediate values.

This behavior is a double-edged sword: it is sometimes seen as a fea-
ture and sometimes seen as a bug. It is a feature when VIFF is able to
automatically run things in parallel which the programmer might not even
have considered. But when a program is slowed down by excessive memory
allocations, then we would rather be without this “feature”.

It is clear that the above example gains nothing from scheduling all 1,000
multiplications at once. Unfortunately, it is far from intuitive how to rewrite
it to run in a constant amount of memory:

def sqpow(x, i):
rt = x.runtime
sq = x * x
if i > 1:

rt.schedule_callback(sq, lambda ignored: sqpow(sq, i − 1))
return sq

x = sqpow(x, 1000)

Here we use a callback to suspend the remainder of the computation until
each squaring is done. This kind of rewriting is only feasible for small
examples like ours.

If we had used a system with light-weight threads as discussed in the
previous section, we would have a simple, yet powerful, way to solve this
problem: we could simply limit the number of active threads. The thread
that computes the loop would block mid-way through the loop when it
exhaust the thread pool. When the first multiplications finish, the thread is
unblocked and can schedule further multiplications. This mechanism would
give us a handle to control the amount of outstanding work and thus the
amount of allocated memory.

7.2 Future Work

The protocols we have described in this dissertation can all extended to
cover situations similar to the ones we have described them in. The secure
comparison from Chapter 2 is a prime example, and we gave a number of
examples of how to adapt it in Section 2.5.

124 Chapter 7. Conclusion and Future Work

High-Level Language

VIFF Library Calls

Python VM

Operating System

compiled to

interpreted by

executed on

Figure 7.1: The language stack.

In this section, we will focus on future extensions for VIFF. When imple-
menting any large software system, compromises will be made and design
decisions that once seemed natural, can now be seen in a different light. VIFF
is no different and has given rise to a number of ideas for improvements.
We will describe some of them here.

7.2.1 VIFF as a Platform

Currently, VIFF is just a library for writing MPC protocols, and programs
using VIFF are therefore normal Python programs. While VIFF already
provides a rather high-level API for writing protocols, it would be interesting
to develop an even higher-level language so that the programmer wont
have to know Python at all. A compiler for this language would target the
VIFF API as its platform. Figure 7.1 illustrates how VIFF can be used as an
intermediate language.

Apart from additional convenience in the form of syntactic sugar, the
high-level language can provide different kinds of static security analysis of
the programs, something which is not possible for VIFF itself to do.

Meldgaard et al. [74] have already done some work in this direction as
part of the CACE project. They have designed a language called PySMCL,
which is a domain specific language for MPC embedded into Python. The
language is a subset of Python, for which some static analysis can be per-
formed. The analysis include tracking the data flow of secret shared values.
This is used to warn the programmer of potential leaks when secret shared
values are opened. The programmer must then acknowledge each leak by a
special annotation to indicate that the programmer takes responsibility of
the leak.

7.2.2 Recovering from Fail-Stop Crashes

Theoretically, the honest parties are supposed to follow the protocol exactly
as it is laid out. However, as we all know, computers cannot be trusted
to function perfectly at all times. . . This means that, despite our best

7.2. Future Work 125

intentions, the parties may crash in the middle of a protocol execution. This
applies to both honest and corrupt parties. In the following we will assume
a fail-stop model [90], that is, we expect (honest) parties to simply halt when
they crash. Corrupt parties should also halt when they crash in case the
adversary is semi-honest.

A program using VIFF will currently not handle failures in an elegant
way, i.e., it will crash too when trying to use the half-closed TCP connection,
or it will become stuck waiting for input that will never arrive. In the case of
a protocol which only guarantees security against a semi-honest adversary,
there are two ways to react:

• Do nothing like VIFF currently does. This is by definition the “right
choice” since any protocol deviation should be treated as an active
attack. In particular, there are no way to differentiate between a
malicious party that tries to stall the computation by disconnecting
and an unlucky party with a bad Internet connection.

Whatever the cause, it is a correct choice for a passively secure protocol
to abort when it detects that it is operating outside of the model in
which it was proven secure.

• Attempt to recover — but do it securely. This is clearly more ambitious.
It is clear that this can only work for benign errors where a party still
wants to participate in the protocol.

A protocol secure against a malicious adversary will by definition be
able to handle uncooperative parties and malformed input. However, even
though the protocol by itself can deal with missing or bad input, VIFF also
needs to handle failed connections and decoding exceptions robustly. The
actively secure protocol implemented in ActiveRuntime will currently abort
when it detects malformed input. If a sufficient number of parties crash or
refuse to participate, the protocol becomes stuck.

Recovery Protocol

We will now sketch how VIFF can be extended to deal with crashing parties.
Put simply, the parties maintain a log of their activities and use this to
synchronize with each other after a crash.

As described in Section 3.5.4 on page 46, everything sent and received
in VIFF is identified by a program counter. Each party keeps a log of all
sent and received data. The log contains the program counter, the ID of the
sender or receiver and the data itself. The log is stored on disk or some
other durable medium (such as a transactional database). The size of the
log file will be quite modest: instrumenting VIFF reveals that a single secure
multiplication of 32-bit numbers using PassiveRuntime requires a player to
send 28 bytes of data to each its peers (see Section 4.5.5). That number
includes the program counters. A secure comparison of 32-bit numbers
requires more, about 5 KiB in total. The double-auction implemented by the
SIMAP project requires only 12 secure comparisons with a default price grid
of 4,096 prices.

126 Chapter 7. Conclusion and Future Work

When a party Pi is rebooted after a crash, it first re-establishes con-
nections with the other parties. It then asks each peer Pj for its list of
expected data. This is a list of program counters for which Pj has not yet
received any data from the crashed party. The log file is used to seed the
list incoming_data dictionary for the crashed player and after that, Pi can
quickly replay the computation.3 Whenever Pi wants to send something to
another party, it first consults the list of expected data for that party. That
way, Pi can avoid sending data which Pj has already received.

When Pi has caught up, it may be the case that it now expects to receive
some data from Pj , which Pj sent before the crash. Normally, Pi does not
need to tell Pj when it expects data from it — that information is part of the
protocol. However, when catching up, this inherent synchronization is lost.
To ensure full synchronization, Pi will therefore explicitly inform each of its
peers about what data is expects to receive from them after it has depleted
its incoming_data dictionary of pre-seeded data.

Security

The above protocol for catching up leaks no private information. The
crashed party will not send anything to the other parties which it has not
already sent before. A party Pj might claim that is has not received anything
at all from Pi, in which case Pi will replay the entire communication with Pj .
This slows down Pi, but leaks no information. Note also, that when Pi sends
out its request for data, the other parties may “change their mind” and send
something else than they did before. This is of no consequence, since they
base this decision on no more information than before.

All in all, when a player crashes and catches up, it is equivalent to having
a (possible large) delay in the communication with that player.

The solution outlined above is quite practical and could be implemented
in the current VIFF system. A more sophisticated solution would store the
program state in addition to the network traffic. A crashed party could then
restart its computation from where it crashed, instead of replaying it from
the beginning. Using static analysis, it would be possible to prune the log
file significantly. As an example, consider the following tiny program:

x = a * b
y = x * c

When we store x in the program state, we can throw away the data received
in the multiplication protocol — it wont be needed again. Furthermore, if a
and b are not used again, we can throw away the original shares that were
recombined to give a and b. Additionally, Pi no longer needs to hold onto
the share of x it sent to Pj when Pi receives a share of y from Pj . This is
because Pj cannot send a share of y unless it already has all the shares
it needs for x. Such static dependency analysis seems best suited for a
dedicated compiler.

3With no network communication, Pi is able to quickly catch up.

7.2. Future Work 127

7.2.3 Protection Against Active Adversaries

The previous section described how we could extend VIFF to better handle
players that fail by accident, e.g., someone trips over the Internet connection
and an otherwise honest party must now rejoin the computation. In this
section we will look at how VIFF can be improved to better protect the
honest parties from malicious behavior from the corrupt parties.

Handling Malformed Input with Twisted

As already mentioned, the ActiveRuntime will abort if the stringReceived
method cannot unpack data received over the network. This is often not
the optimal strategy considering that actively secure protocols are made to
withstand bogus or missing input.

VIFF should instead raise an asynchronous exception. The Twisted li-
brary already provides an infrastructure for raising and handling exceptions
asynchronously. This is done by attaching errback functions to Deferred in-
stances. An errback is called if an exception is raised in a callback. Normally,
control passes from callback to callback along the callback chain. However,
when an exception is raised in a callback, control passes to the next errback.
The errback can now attempt to correct the error. If the errback does not
handle the failure, the next errback is called. Using this system, it is possible
to simulate the normal try/except mechanism.

Consider a simple example where we parse a string as an integer check
that the value is a legal value in our field. This is just a toy-example:

import sys
from twisted.internet.defer import Deferred

def parse_data(data):
value = int(data)
if value > 1031: # field modulus

raise ValueError("%s is too large" % value)
return value

def handle_error(failure):
print "Correcting failure: %s" % failure.getErrorMessage()
return 0

def output(value):
print "Final value: %s" % value

a = Deferred()
a.addCallback(parse_data)
a.addErrback(handle_error)
a.addCallback(output)

Trigger callback:
a.callback(sys.argv[1])

128 Chapter 7. Conclusion and Future Work

The handle_error errback is called if the parse_data function raises an
exception. The error handler “corrects” the error by fixing the value to
zero. Finally, the output callback prints the final value (either the integer
parsed from the string or the zero coming from handle_error). Testing with
different strings gives:

$ python errbacks.py 500
Final value: 500
$ python errbacks.py 5000
Correcting failure: 5000 is too large
Final value: 0
$ python errbacks.py bogus
Correcting failure: invalid literal for int() with base 10: ’bogus’
Final value: 0

In VIFF, we would convert an exception in the stringReceived method to a
Failure instance instead of calling abort. This change would force the rest of
the code to handle Failure objects too. Today, a Share object is assumed to
(eventually) hold an element of a finite field, and as such, the code expects
to be able to do arithmetic with Share objects. When a Share can also
contain a Failure, this is no longer the case. A Share containing a Failure
would probably have to simply short-circuit any arithmetic operation it
participates in: if x is the faulty Share, then w = x + y * z would immediately
make w a failed Share too. This is just a very rough sketch of how exception
handling could work in VIFF.

Denial of Service Attacks

There is another area related to active adversaries where we could improve
VIFF: denial of service attacks. If a corrupt party Pj sends 100 MB of data to
an honest party Pi, the honest party will naively accept the data and insert
it into its incoming_data dictionary. The data will sit around there for the
duration of the computation unless Pi happens to expect data from Pj with
a matching program counter. Working together, the corrupt parties can
probably make Pi run out of memory. A first step to solve this would be
to reject messages larger than, say, 100 KB. It is, however, not a complete
solution since the corrupt parties can easily send many small messages.

Once again, the program counters (see Section 3.5.4 on page 46) will help
us. We already saw how it is possible to predict the amount of preprocessed
data needed in a protocol by making a dummy execution. We can do the
same to obtain a trace with the valid program counters. When data is
received, the program counter is stored after the first 5 bytes. This means
that Pi can read the first part of the data to determine the program counter.
It is then a simple matter to verify if the program counter is valid for the
protocol.

Some protocols can deviate slightly from run to run. The protocol for
secret sharing a bit from Zp using pseudorandom secret sharing is the best
example: The parties generate a sharing of a uniformly random element [r]

7.2. Future Work 129

from Zp and compute [b] = [r]/
√
r 2 , which is either −1 or 1.4 The division

fails if r 2 = 0 and the parties must then restart the protocol, which leads to
different program counters.

It is possible to handle those cases by reserving a small amount of extra
program counters, depending on the expected number of restarts. The PRSS
protocol just described is restarted with probability 1/p. Here p could be
a, say, 32-bit prime. Reserving program counters for only 4 extra restarts
will thus bring the probability of falsely rejecting a good message down to
under 1/2160. This lets the corrupt parties send very few “spam” messages
while making sure that messages are not rejected incorrectly.

7.2.4 Black-Box Secret Sharing

When Shamir shared values are recombined in VIFF, the code used is com-
pletely general, i.e., it does a full Lagrange interpolation. Given a set
S = {(xi1 , si1), . . . , (xit+1 , sit+1)} of t + 1 shares, where si = f(xi) for a
random polynomial f of degree t, then f can be reconstructed as

f(x) =
∑

(xi,si)∈S

(
si

∏
(xj ,sj)∈S,
j≠i

x − xj
xi − xj

)
.

Evaluating f(0) allows us to recover the secret shared value. The computa-
tion is done over a finite field which leads to modular reductions after each
multiplication and addition. Also, the fraction must be computed by first
inverting the denominator followed by a multiplication in the field.

If we restrict ourselves to the common situation with three parties and
at most one corrupt party, then things are simplified significantly. We can
in fact do the computations directly over the integers instead of working
inside the field. This will save a fair amount of local computation.

Shamir secret sharing a value s into s1, s2, and s3 using f(x) = αx + s
results in these shares for the parties:

P1: s1 = α+ s, P2: s2 = 2α+ s, P3: s3 = 3α+ s.

It is now clear that we can reconstruct the secret s again as:

s = 2s1 − s2 = 3s2 − 2s3.

This computation does not rely on any modulo reductions — it holds over
the integers and is independent of the field used. A secret sharing scheme
that work for an arbitrary Abelian group is called a black-box secret sharing
scheme [27, 40].

Black-box schemes use only integer linear combinations for secret shar-
ing and recombination. This makes it possible to use the scheme in settings
where the group order is unknown. We have looked at the specific setting
with (n, t) = (3,1), but in the literature the focus has been on finding

4Add one and divide by two to turn this into a true bit value. Note that r2 can be opened
safely since it does not reveal if r is positive or negative.

130 Chapter 7. Conclusion and Future Work

schemes for general (n, t). We will likely only need schemes for small values
of n, so the above scheme may already be sufficient for our purposes.

We have made a quick implementation of the black-box reconstruction
function described above. Benchmarks show that we can save about 15–20%
on the time for a secure multiplication.

7.3 Conclusion

Nearly thirty years ago, Yao famously asked how the two millionaires can
engage in a conversation in order to determine who is richer, but without
disclosing any additional information. In the three decades that followed, a
lot of effort has gone into answering Yao’s question and into answering the
broader question of how to conduct general secure multiparty computation.

We have given several answers of our own in this dissertation. First, in
Chapter 2, we presented a highly practical protocol for secure comparison.
Then, in Chapter 3 and 4 we presented protocols for general secure multi-
party computation with security against both passive and active adversaries.
Chapter 5 presented a compiler that will transform any protocol secure
against a semi-honest adversary into a protocol secure against a covert
adversary. Finally, Chapter 6 described how clients of online services can be
better protected against a malicious server.

In addition to new protocols, a novel aspect of this dissertation is the
focus on concrete implementations. Implementing the protocols allow us to
compare protocols directly, instead of relying solely on the big-O notation.
This is not to say that the asymptotic performance is unimportant, it is only
a reminder that the hidden constants matter when looking at real-world
performance. We have presented implementations and benchmarks of the
protocols from all chapters except Chapter 5.

We hope this dissertation advance the state of the art in cryptographic
protocol implementations. We have showed that it is now practical to
implement and use the protocols developed during the last three decades.
We hope many more will take up the challenge of turning protocols into
running code.

Bibliography

[1] Y. Afek, H. Attiya, D. Dolev, E. Gafni, M. Merritt, and N. Shavit. Atomic
snapshots of shared memory. Journal of the ACM, 40(4):873–890,
1993.

[2] J. Algesheimer, J. Camenisch, and V. Shoup. Efficient computation
modulo a shared secret with application to the generation of shared
safe-prime products. In CRYPTO, pages 417–432, 2002.

[3] Y. Aumann and Y. Lindell. Security against covert adversaries: Efficient
protocols for realistic adversaries. In S. P. Vadhan, editor, TCC, volume
4392 of Lecture Notes in Computer Science, pages 137–156. Springer,
2007.

[4] M. Baker, M. A. Shah, D. S. H. Rosenthal, M. Roussopoulos, P. Maniatis,
T. J. Giuli, and P. P. Bungale. A fresh look at the reliability of long-term
digital storage. In Y. Berbers and W. Zwaenepoel, editors, EuroSys,
pages 221–234. ACM, 2006.

[5] B. Barak, R. Canetti, J. B. Nielsen, and R. Pass. Universally composable
protocols with relaxed set-up assumptions. In FOCS, pages 186–195.
IEEE Computer Society, 2004.

[6] D. Beaver, S. Micali, and P. Rogaway. The round complexity of secure
protocols (extended abstract). In STOC, pages 503–513. ACM, 1990.

[7] Z. Beerliová-Trubíniová and M. Hirt. Perfectly-secure MPC with linear
communication complexity. In R. Canetti, editor, TCC, volume 4948
of Lecture Notes in Computer Science, pages 213–230. Springer, 2008.

[8] Z. Beerliová-Trubíniová, M. Hirt, and J. Nielsen. Almost-asynchronous
multi-party computation with faulty minority. Manuscript, 2008.

[9] A. Ben-David, N. Nisan, and B. Pinkas. FairplayMP: a system for secure
multi-party computation. In P. Ning, P. F. Syverson, and S. Jha, editors,
ACM Conference on Computer and Communications Security, pages
257–266. ACM, 2008.

[10] M. Ben-Or, S. Goldwasser, and A. Wigderson. Completeness theorems
for non-cryptographic fault-tolerant distributed computation. In STOC,
pages 1–10. ACM, 1988.

131

132 Bibliography

[11] I. F. Blake and V. Kolesnikov. Strong conditional oblivious transfer and
computing on intervals. In P. J. Lee, editor, ASIACRYPT, volume 3329
of Lecture Notes in Computer Science, pages 515–529. Springer, 2004.

[12] I. F. Blake and V. Kolesnikov. Conditional encrypted mapping and com-
paring encrypted numbers. In G. Di Crescenzo and A. Rubin, editors,
Financial Cryptography, volume 4107 of Lecture Notes in Computer
Science, pages 206–220. Springer, 2006.

[13] M. Blum, W. Evans, P. Gemmell, S. Kannan, and M. Naor. Checking the
correctness of memories. Algorithmica, 12:225–244, 1994.

[14] D. Bogdanov, S. Laur, and J. Willemson. Sharemind: A framework
for fast privacy-preserving computations. In S. Jajodia and J. López,
editors, ESORICS, volume 5283 of Lecture Notes in Computer Science,
pages 192–206. Springer, 2008.

[15] P. Bogetoft, I. Damgård, T. Jakobsen, K. Nielsen, J. Pagter, and T. Toft.
A practical implementation of secure auctions based on multiparty
integer computation. In G. Di Crescenzo and A. Rubin, editors, Finan-
cial Cryptography, volume 4107 of Lecture Notes in Computer Science,
pages 142–147. Springer, 2006.

[16] P. Bogetoft, D. L. Christensen, I. Damgård, M. Geisler, T. Jakobsen,
M. Krøigaard, J. D. Nielsen, J. B. Nielsen, K. Nielsen, J. Pagter, M. I.
Schwartzbach, and T. Toft. Secure multiparty computation goes live.
In R. Dingledine and P. Golle, editors, Financial Cryptography, volume
5628 of Lecture Notes in Computer Science, pages 325–343. Springer,
2009.

[17] D. Boneh and M. K. Franklin. Efficient generation of shared rsa keys
(extended abstract). In B. S. K. Jr., editor, CRYPTO, volume 1294 of
Lecture Notes in Computer Science, pages 425–439. Springer, 1997.

[18] S. Brands. Rapid demonstration of linear relations connected by
boolean operators. In J. Stern, editor, EUROCRYPT, volume 1233 of
Lecture Notes in Computer Science, pages 318–333. Springer, 1997.

[19] C. Cachin and M. Geisler. Integrity protection for revision control. In
M. Abdalla, D. Pointcheval, P.-A. Fouque, and D. Vergnaud, editors,
ACNS, volume 5536 of Lecture Notes in Computer Science, pages 382–
399, 2009.

[20] C. Cachin, A. Shelat, and A. Shraer. Efficient fork-linearizable access
to untrusted shared memory. In I. Gupta and R. Wattenhofer, editors,
PODC, pages 129–138. ACM, 2007.

[21] C. Cachin, I. Keidar, and A. Shraer. Principles of untrusted storage: a
new look at consistency conditions. In R. A. Bazzi and B. Patt-Shamir,
editors, PODC, page 426. ACM, 2008.

[22] R. Canetti. Security and composition of multiparty cryptographic
protocols. Journal of Cryptology, 13(1):143–202, 2000.

133

[23] R. Canetti. Universally composable security: A new paradigm for
cryptographic protocols. In FOCS, pages 136–145. IEEE, 2001.

[24] D. Chaum, C. Crépeau, and I. Damgård. Multiparty unconditionally
secure protocols. In STOC, pages 11–19. ACM, 1988.

[25] D. E. Clarke, G. E. Suh, B. Gassend, A. Sudan, M. van Dijk, and
S. Devadas. Towards constant bandwidth overhead integrity checking
of untrusted data. In IEEE Symposium on Security and Privacy, pages
139–153. IEEE Computer Society, 2005.

[26] CNET News. Red Hat, Fedora servers compromised, Aug. 2008. Avail-
able online: http://news.cnet.com/8301-1009_3-10023565-83.
html.

[27] R. Cramer and S. Fehr. Optimal black-box secret sharing over arbitrary
abelian groups. In M. Yung, editor, CRYPTO, volume 2442 of Lecture
Notes in Computer Science, pages 272–287. Springer, 2002.

[28] R. Cramer, I. Damgård, and J. B. Nielsen. Multiparty computation
from threshold homomorphic encryption. In B. Pfitzmann, editor, EU-
ROCRYPT, volume 2045 of Lecture Notes in Computer Science, pages
280–299. Springer, 2001.

[29] R. Cramer, I. Damgård, and Y. Ishai. Share conversion, pseudorandom
secret-sharing and applications to secure computation. In J. Kilian,
editor, TCC, volume 3378 of Lecture Notes in Computer Science, pages
342–362. Springer, 2005.

[30] I. Damgård and M. Keller. Secure multiparty AES. In FC, 2010 (to
appear).

[31] I. Damgård and J. B. Nielsen. Perfect hiding and perfect binding uni-
versally composable commitment schemes with constant expansion
factor. In M. Yung, editor, CRYPTO, volume 2442 of Lecture Notes in
Computer Science, pages 581–596. Springer, 2002.

[32] I. Damgård and J. B. Nielsen. Scalable and unconditionally secure
multiparty computation. In CRYPTO, pages 572–590, 2007.

[33] I. Damgård, M. Geisler, and M. Krøigaard. Efficient and secure compar-
ison for on-line auctions. In J. Pieprzyk, H. Ghodosi, and E. Dawson,
editors, ACISP, volume 4586 of Lecture Notes in Computer Science,
pages 416–430. Springer, 2007.

[34] I. Damgård, M. Geisler, and M. Krøigaard. Homomorphic encryption
and secure comparison. International Journal of Applied Cryptogra-
phy, 1(1):22–31, 2008.

[35] I. Damgård, Y. Ishai, M. Krøigaard, J. B. Nielsen, and A. Smith. Scalable
multiparty computation with nearly optimal work and resilience. In
CRYPTO, pages 241–261, 2008.

http://news.cnet.com/8301-1009_3-10023565-83.html
http://news.cnet.com/8301-1009_3-10023565-83.html

134 Bibliography

[36] I. Damgård, M. Geisler, and M. Krøigaard. A correction to ‘Efficient and
Secure Comparison for On-Line Auctions’. IJACT, 1(4):323–324, 2009.

[37] I. Damgård, M. Geisler, M. Krøigaard, and J. B. Nielsen. Asynchronous
multiparty computation: Theory and implementation. In S. Jarecki and
G. Tsudik, editors, Public Key Cryptography, volume 5443 of Lecture
Notes in Computer Science, pages 160–179. Springer, 2009.

[38] I. Damgård, M. Geisler, and J. B. Nielsen. From passive to covert
security at low cost. Cryptology ePrint Archive, Report 2009/592,
2009. http://eprint.iacr.org/.

[39] I. Damgård, M. Geisler, and J. B. Nielsen. From passive to covert
security at low cost. In D. Micciancio, editor, TCC, volume 5978 of
Lecture Notes in Computer Science, pages 128–145. Springer, 2010.

[40] Y. Desmedt and Y. Frankel. Threshold cryptosystems. In G. Brassard,
editor, CRYPTO, volume 435 of Lecture Notes in Computer Science,
pages 307–315. Springer, 1989.

[41] W. Diffie and M. Hellman. New directions in cryptography. IEEE
Transactions on Information Theory, 22(6):644–654, Nov. 1976.

[42] eBay Inc. Bid increments, Oct. 2006. Available online: http://pages.
ebay.com/help/buy/bid-increments.html.

[43] SFDL Specification — Version 2.0. Fairplay Project, Sept. 2008.

[44] M. Fischlin. A cost-effective pay-per-multiplication comparison
method for millionaires. In D. Naccache, editor, CT-RSA, volume
2020 of Lecture Notes in Computer Science, pages 457–472. Springer,
2001.

[45] E. Fujisaki and T. Okamoto. Statistical zero knowledge protocols to
prove modular polynomial relations. In B. S. K. Jr., editor, CRYPTO, vol-
ume 1294 of Lecture Notes in Computer Science, pages 16–30. Springer,
1997.

[46] J. Garay, B. Schoenmakers, and J. Villegas. Practical and secure solu-
tions for integer comparison. In T. Okamoto and X. Wang, editors,
PKC, volume 4450 of Lecture Notes in Computer Science, pages 330–
342. Springer, 2007.

[47] M. Geisler. VIFF: Virtual ideal functionality framework, 2007. Home-
page: http://viff.dk/.

[48] M. Geisler. Implementing Asynchronous Multi-Party Computation. PhD
progress report, University of Aarhus, Denmark, Jan. 2008.

[49] M. Geisler and N. P. Smart. Distributing the key distribution centre in
Sakai-Kasahara based systems. In M. G. Parker, editor, IMA Interna-
tional Conference, volume 5921 of Lecture Notes in Computer Science,
pages 252–262. Springer, 2009.

http://eprint.iacr.org/
http://pages.ebay.com/help/buy/bid-increments.html
http://pages.ebay.com/help/buy/bid-increments.html
http://viff.dk/

135

[50] M. Geisler, I. Damgård, and B. Pinkas. MPC virtual machine specifica-
tion. Technical Report D4.3, CACE: Computer Aided Cryptography
Engineering, 2009.

[51] R. Gennaro, M. O. Rabin, and T. Rabin. Simplified vss and fact-track
multiparty computations with applications to threshold cryptography.
In PODC, pages 101–111, 1998.

[52] E.-J. Goh, H. Shacham, N. Modadugu, and D. Boneh. SiRiUS: Securing
remote untrusted storage. In NDSS. The Internet Society, 2003.

[53] O. Goldreich and V. Rosen. On the security of modular exponentiation
with application to the construction of pseudorandom generators.
Journal of Cryptology, 16(2):71–93, 2003.

[54] O. Goldreich, S. Micali, and A. Wigderson. How to play any mental
game — a completeness theorem for protocols with honest majority.
In STOC, pages 218–229. ACM, 1987.

[55] V. Goyal, P. Mohassel, and A. Smith. Efficient two party and multi
party computation against covert adversaries. In EUROCRYPT, pages
289–306, 2008.

[56] J. Groth. A verifiable secret shuffle of homomorphic encryptions. In
Y. Desmedt, editor, PKC, volume 2567 of Lecture Notes in Computer
Science, pages 145–160. Springer, 2003.

[57] J. Groth. Cryptography in subgroups of Z∗n. In J. Kilian, editor, TCC, vol-
ume 3378 of Lecture Notes in Computer Science, pages 50–65. Springer,
2005.

[58] S. Haber and W. S. Stornetta. How to time-stamp a digital document.
Journal of Cryptology, 3(2):99–111, 1991.

[59] M. Herlihy and N. Shavit. The Art of Multiprocessor Programming.
Morgan Kaufmann, 2008.

[60] M. Hirt and U. M. Maurer. Robustness for free in unconditional multi-
party computation. In J. Kilian, editor, CRYPTO, volume 2139 of
Lecture Notes in Computer Science, pages 101–118. Springer, 2001.

[61] M. Hirt, J. Nielsen, and B. Przydatek. Asynchronous multi-party com-
putation with quadratic communication. In ICALP (2), pages 473–485,
2008.

[62] IT- og Telestyrelsen. OCES — digital signatur, 2005. Homepage:
https://www.signatursekretariatet.dk/.

[63] R. Jagomägis. Privacy-aware programming language SecreC. Technical
report, University of Tartu, Institute of Computer Science, Nov. 2009.

[64] L. Lamport, R. E. Shostak, and M. C. Pease. The byzantine generals
problem. ACM Transactions on Programming Languages and Systems,
4(3):382–401, 1982.

https://www.signatursekretariatet.dk/

136 Bibliography

[65] G. Lefkowitz, I. Shtull-Trauring, et al. Twisted. Release 2.5.0, Twisted
Matrix Laboratories, Jan. 2007. Homepage: http://twistedmatrix.
com/.

[66] J. Li, M. N. Krohn, D. Mazières, and D. Shasha. Secure untrusted data
repository (SUNDR). In OSDI, pages 121–136, 2004.

[67] Y. Lindell and B. Pinkas. A proof of security of Yao’s protocol for
two-party computation. Journal of Cryptology, 22(2):161–188, 2009.

[68] U. Maheshwari, R. Vingralek, and W. Shapiro. How to build a trusted
database system on untrusted storage. In OSDI, pages 135–150, 2000.

[69] D. Malkhi, N. Nisan, B. Pinkas, and Y. Sella. Fairplay – secure two-party
computation system. In USENIX Security Symposium, pages 287–302.
USENIX, 2004.

[70] A. Martelli et al. GMPY project, 2010. Homepage: http://code.
google.com/p/gmpy/.

[71] A. Mauland. Realizing distributed RSA using secure multiparty com-
putations. Master’s thesis, Norwegian University of Science and Tech-
nology, July 2009.

[72] D. Mazières and D. Shasha. Building secure file systems out of byantine
storage. In PODC, pages 108–117, 2002.

[73] D. Mazières, M. Kaminsky, F. Kaashoek, and E. Witchel. Separating
key management from file system security. In Proceedinigs of the 17th
ACM Symposium on Operating System Principles (SOSP), 1999.

[74] S. Meldgaard, I. Damgård, J. D. Nielsen, and M. Schwartzbach. Domain
specific language specifications with benchmark requirements. Tech-
nical Report D4.2, CACE: Computer Aided Cryptography Engineering,
2009.

[75] R. C. Merkle. Protocols for public key cryptosystems. In IEEE Sympo-
sium on Security and Privacy, pages 122–134, 1980.

[76] D. L. Mills. A brief history of NTP time: Memoirs of an Internet
timekeeper. Computer Communication Review, 33(2):9–21, 2003.

[77] E. Mykletun, M. Narasimha, and G. Tsudik. Authentication and integrity
in outsourced databases. ACM Transactions on Storage, 2(2):107–138,
May 2006.

[78] M. Naor, B. Pinkas, and R. Sumner. Privacy preserving auctions and
mechanism design. In EC, pages 129–139, New York, 1999. ACM Press.

[79] J. D. Nielsen and M. I. Schwartzbach. A domain-specific programming
language for secure multiparty computation. In PLAS, pages 21–30.
ACM, 2007.

http://twistedmatrix.com/
http://twistedmatrix.com/
http://code.google.com/p/gmpy/
http://code.google.com/p/gmpy/

137

[80] T. Nishide and K. Ohta. Multiparty computation for interval, equality,
and comparison without bit-decomposition protocol. In T. Okamoto
and X. Wang, editors, Public Key Cryptography, volume 4450 of Lec-
ture Notes in Computer Science, pages 343–360. Springer, 2007.

[81] P. Paillier. Public-key cryptosystems based on composite degree resid-
uosity classes. In J. Stern, editor, EUROCRYPT, volume 1592 of Lecture
Notes in Computer Science, pages 223–238. Springer, 1999.

[82] C. Papamanthou, R. Tamassia, and N. Triandopoulos. Authenticated
hash tables. In P. Ning, P. F. Syverson, and S. Jha, editors, ACM
Conference on Computer and Communications Security, pages 437–
448. ACM, 2008.

[83] S. L. Peyton Jones, editor. Haskell 98 Language and Libraries: The
Revised Report. Cambridge University Press, 2003.

[84] S. C. Pohlig and M. E. Hellman. An improved algorithm for comput-
ing logarithms over GF(p) and its cryptographic significance. IEEE
Transactions on Information Theory, 24:106–110, 1978.

[85] J. B. Postel, editor. Internet Protocol, RFC 791. Internet Engineering
Task Force, Sept. 1981. Available online: http://ietf.org/rfc/
rfc791.txt.

[86] J. B. Postel, editor. Transmission Control Protocol, RFC 793. Internet
Engineering Task Force, Sept. 1981. Available online: http://ietf.
org/rfc/rfc0793.txt.

[87] PyPy Development Team. PyPy project, 2004. Homepage: http:
//codespeak.net/pypy/.

[88] R. L. Rivest, A. Shamir, and L. M. Adleman. A method for obtaining
digital signatures and public-key cryptosystems. Communications of
the ACM, 21(2):120–126, 1978.

[89] M. Rode. Debat: Reglerne er strammet op. Morgenavisen Jyllands-
Posten, Oct. 2004.

[90] R. D. Schlichting and F. B. Schneider. Fail-stop processors: An approach
to designing fault-tolerant computing systems. ACM Transactions on
Computer Systems, 1(3):222–238, 1983.

[91] C.-P. Schnorr. Efficient signature generation by smart cards. Journal
of Cryptology, 4(3):161–174, 1991.

[92] A. Shamir. How to share a secret. Communications of the ACM, 22(11):
612–613, Nov. 1979.

[93] N. P. Siong and H. Toivonen. M2Crypto, 2008. Homepage: http:
//chandlerproject.org/Projects/MeTooCrypto.

[94] T. Toft. Secure Integer Computation with Applications in Economics.
PhD progress report, University of Aarhus, Denmark, June 2005.

http://ietf.org/rfc/rfc791.txt
http://ietf.org/rfc/rfc791.txt
http://ietf.org/rfc/rfc0793.txt
http://ietf.org/rfc/rfc0793.txt
http://codespeak.net/pypy/
http://codespeak.net/pypy/
http://chandlerproject.org/Projects/MeTooCrypto
http://chandlerproject.org/Projects/MeTooCrypto

138 Bibliography

[95] T. Toft. Primitives and Applications for Multi-party Computation. PhD
thesis, University of Aarhus, Denmark, Mar. 2007.

[96] G. van Rossum et al. Python. Release 2.5, Python Software Foundation,
Sept. 2006. Homepage: http://python.org/.

[97] H. Vegge. Realizing secure multiparty computations. Master’s thesis,
Norwegian University of Science and Technology, June 2009.

[98] C. Winter, J. Yasskin, and R. Kleckner. Merging Unladen Swallow
into CPython. PEP 3146, Python Foundation, 2010. Available online:
http://www.python.org/dev/peps/pep-3146/.

[99] C. P. Wright, J. Dave, and E. Zadok. Cryptographic file systems perfor-
mance: What you don’t know can hurt you. In IEEE Security in Storage
Workshop, pages 47–61. IEEE Computer Society, 2003.

[100] A. C.-C. Yao. Protocols for secure computations. In FOCS, pages
160–164. IEEE, 1982.

http://python.org/
http://www.python.org/dev/peps/pep-3146/

	Abstract
	Acknowledgments
	Introduction
	Outline
	Notation
	The Universally Composable Security Framework
	Security Definition
	Simulation
	Composability

	Homomorphic Encryption and Secure Comparison
	Introduction
	Our Contribution
	Related Work

	Homomorphic Encryption
	Key Generation
	Encryption and Decryption
	Security Evaluation
	Subgroup Indistinguishability Conjecture

	Comparison Protocol
	Security
	Correctness
	Privacy

	Extensions
	Both Inputs are Private
	Both Inputs are Shared, Secret Output
	Active Security
	Using the Cryptosystem for Multiparty Computation

	Complexity and Performance
	Setup and Parameters
	Implementation
	Benchmark Results

	Conclusion

	Virtual Ideal Functionality Framework
	Introduction
	History
	Feature Overview

	Related Work
	Fairplay
	Sharemind

	Security Model
	Adversary Types
	Network Types

	VIFF Ideal Functionality
	Real World Protocol
	Simulator

	VIFF Implementation
	Twisted Network Library
	Deferreds in VIFF
	Automatic Parallelism
	Tracking Asynchronous Operations

	Mapping the Protocol to VIFF Methods
	Standard Commands
	Additional Commands
	Commands from Mixin Classes

	Multiplication in VIFF
	VIFF Applications
	Nordic Sugar
	Distributed RSA
	Distributed AES
	Secure Voting

	Conclusion

	Active Adversaries in VIFF
	Introduction
	Overview and Security Model
	Overview of the Protocol
	Security Model

	Protocol for Preprocessing
	Preprocessing based on Hyperinvertible Matrices
	Preprocessing based on Pseudorandom Secret-Sharing

	Integration into VIFF
	Benchmark Results
	Test Setup
	Multiplications
	Multiplication Triples
	Comparisons
	Bandwidth

	Conclusion

	From Passive to Covert Security at Low Cost
	Introduction
	Our Contribution
	Related Work and Discussion

	Preliminaries
	Auxiliary Functionalities
	Protocol
	Chinese Whispers

	Implementation of Sub-Protocols
	Conclusion

	Integrity Protection for Revision Control
	Introduction
	Related Work
	Overview

	Design
	Model
	Consistent Storage Service
	Revision Control
	Consistent Revision Control

	Implementation
	Consistent Storage Service
	Consistent Revision Control with Subversion

	Evaluation
	Application Benchmark
	Synthetic Benchmark
	Results

	Conclusion

	Conclusion and Future Work
	Lessons Learned
	Large-Scale Testing Matters
	Choice of Language
	Memory Management

	Future Work
	VIFF as a Platform
	Recovering from Fail-Stop Crashes
	Protection Against Active Adversaries
	Black-Box Secret Sharing

	Conclusion

	Bibliography

