
I/O-efficient Event Based Depression Flood Risk

MADALGO – Center for Massive Data Algorithmics, a Center of the Danish National Research Foundation

Morten Revsbæk
SCALGO

Sarfraz Raza
Aarhus University

Mathias Rav
Aarhus University

Lars Arge
Aarhus University

Photo credit: Finn Årup Nielsen, CC BY-SA, via Wikimedia Commons

Left: In 2011, Copenhagen was hit by a massive flash flood.

Right: The result of our algorithm on a typical 5-year event,
red marking the cells that are flooded by ≥ 50 cm of rain water.

Merge Tree

External Memory Model

Algorithm

CPU RAM Disk

Block I/O

Example in 1 Dimension

Flash flood risk assessment
Our algorithm computes the areas of a terrain
that are flooded in a given flash flood event
by simulating how water flows on the terrain
and fills up depressions.

Previous work only considered events where rain
falls at a constant uniform rate on the entire terrain,
whereas our algorithm allows different rainfall in each cell.

Our algorithm is I/O-efficient, meaning it is able to handle
terrain models that are too large to fit in the RAM,
which is the case for the 1.6 m resolution model of Denmark.
Our algorithm can process the 1.6 m model in 2 hours on a
standard workstation, which shows that our algorithm can be
useful in near-term flood risk assessment.

We assume that water only flows on the surface of the terrain.
When a depression fills up, remaining water flows across a
saddle cell of the terrain into a neighboring depression.

The merge tree represents how depressions are nested.

The topological complexity is X, the number of sinks,
which is the number of leaves of the merge tree.

The performance of our algorithm depends
on the topological complexity of the terrain.

number of sinks in terrain
height of merge tree

We analyze our algorithms in the external memory model.
The cost of an algorithm is the number of I/Os it performs.

of items in input
of items per disk block
of items that fit in main memory

Scan(N) =
Sort(N) =

N =
B =
M =

X =
H =

N/B, the cost of reading N items sequentially
N/B·logM/B (N/B), the cost of sorting N items

Previous work has shown how to compute the watersheds
and merge tree of the terrain in O(Sort(N)) I/Os.
This computation is independent of the flash flood event
and only needs to be done once.

The key insight in the algorithm is that we in O(Scan(X)) I/Os
can compute the excess volume of each depression, which is
positive if it is full and negative if it has capacity for more rain.

First, our algorithm computes the excess volumes by subtracting
the rain amounts (240 and 152) from the depression volumes
(140 and 260).

Since the left depression has a positive excess of +100,
and the right depression has a negative excess of −108,
the flash flood event floods the left depression completely,
and the right depression receives an extra 100 volume of rain.

In Scan(N) I/Os we then compute for each cell if it is flooded.

In the following example, the two elementary depressions have
volumes 140 and 260, and they receive rain amounts 240 and
152 respectively.

Event:

Terrain: 144 104 80 68 76 96 108 112 92 60 32 28 88

V = 140 V = 260
V = 1000

44 46 40 26 30 38 16 25 29 27 19 17 35

240 152Sample terrain Merge tree

