
What is Sampling? Proposed Algorithm Traditional Methods

Given a set S of n weights { w1,...,wn }, select a subset ∆ of S such
that Pr[i∆] wi, and each unique index is only sampled once per
sample. Sampling generally splits into three different categories.

Solitaire The size of the sample set ∆ is 1, thus, an element is

sampled with probability wi
∑ wjS

.

Subset The size of the sample set ∆ is not fixed, instead each
element is sampled with probability wi. This requires that wi is a
probability, meaning that wi [0,1].

Reservoir The output must be of size k, where 1 < k ≤ n.
Thus the probability of an index i to be in ∆ must be calculated
recursively. Here the probability of including i in an iteration,

assuming that i ∆, is wi
∑ S \ ∆

wj
.

Preprocessing

 Normalize all the weights such that ∑ wiS = 1.

 Sort indexes into buckets such that, with the exception of the last
bucket, the elements in each bucket are within a factor two of
each other.

 Build a tree on top of the buckets, each node containing the sum
of the weights in the buckets below it.

Sampling Items are sampled with weight of maximal element in
each bucket, let m be the maximal weight in the bucket.

 For 1,...,k, select a uniformly random number, and follow the path
down the tree, this corresponds to an index in the bucket. Reject
the selection with probability 1 – wi

m.
If we selected the index, update the path up the tree to reflect
that an element was removed.

 Reset the entire tree to an equivalent state when a sample has
finished.

Sample iteration

Some traditional approaches to solve the reservoir sampling
problem have been:

 Using a method for solitaire sampling, swapping selected
indexes out after individual draw.
O(k·n) query time, k random number generations.

 Using a method for solitaire sampling (e.g. the Alias method),
rejecting indices already selected.
Uses k random numbers, sampling time heavily dependent on
distribution of data, but Ω(k).

 Building a binary tree on top of the weights, updating the internal
nodes of the tree as elements are selected, like in the proposed
algorithm, but without blocking.
Sampling time O(k·log n), k random numbers used.

 In the streaming setting, methods exist using O(n) sampling time,
and O(n) or O(k·log n

k) random numbers.

Motivation Experiments

 Sampling is used in the modelling of biological systems, Monte
Carlo simulations and machine learning.

 Traditional methods have drawbacks as unpredictable running
time or can be made faster.

The figure shows the sampling time for 100 indices (k = 100) with
uniformly random weights.

These results are promising as the Alias method slows down
significantly for non-uniform data or when k → n.

Contribution

We present an algorithm that solves the problem of reservoir
sampling in a non-streaming setting where all input weights are
known beforehand and fit in memory.

Our presentation of this algorithm is accompanied by a thorough
investigation of the traditional methods of doing reservoir sampling,
as well comparisions with the algorithm we present.

Reservoir Sampling in a Non-Streaming Environment

MADALGO – Center for Massive Data Algorithmics, a Center of the Danish National Research Foundation

Kasper Eenberg
Aarhus University

Morten Nygaard
Aarhus University

Kasper Green Larsen
Aarhus University

1: Search down the tree for the correct block

3: Reset
return path

2: If we don’t reject, move the weight so we can skip it on next iteration

n

