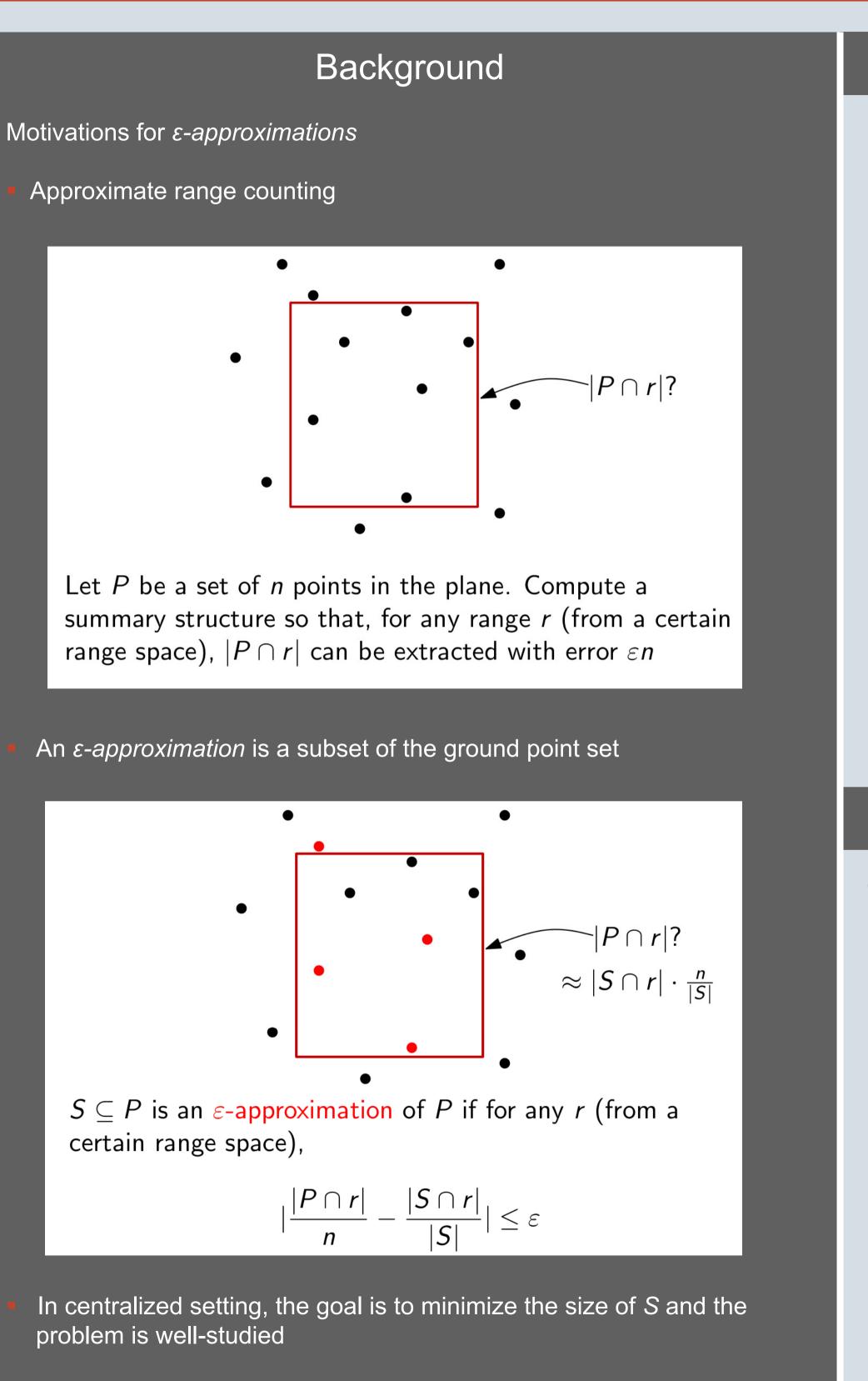
madalgo - - - -**CENTER FOR MASSIVE DATA ALGORITHMICS**

The Communication Complexity of Distributed ε -approximations

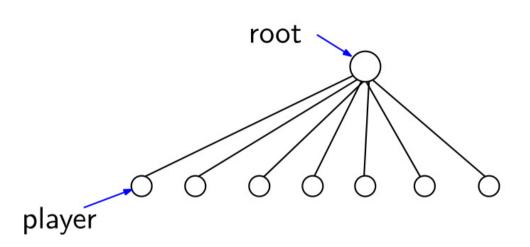


In this work we study this problem in distributed setting

MADALGO – Center for Massive Data Algorithmics, a Center of the Danish National Research Foundation

Distributed Model

Points are distributed across *k* players



• Each player *i* get a set X_i of n_i points All the player exchange messages with the root • The root output an ε -approximation of the whole set

This is a simplified and abstract model for real distributed systems In this setting, the goal is to minimize the communication cost Communication is a bottleneck in many applications

Simple Algorithms

Communication cost for straightforward algorithms

- 1. Random sampling
 - $O(k+\frac{1}{\epsilon^2})$
- 2. Combining local ε -approximations (deterministic)
 - S_1 is an ε -approximation of P_1 and S_2 is an ε -approximation of P_2 Then $S_1 \cup S_2$ is an ε -approximation of $P_1 \cup P_2$

 $O(\frac{k}{\epsilon})$ for 1-d intervals

There is a trade-off between k and ε Each approach is better for certain values of k and ε Can we improve?

Upper bounds

- We give an general algorithm for any *range space*, and the communication cost is better than the above two algorithms
- The algorithm is based on *combinatorial discrepancy*
- Results for some common range space are listed in the next table

Intervals in Boxes in \mathbb{R} Halfspaces in

Lower Bounds

- We propose two methods to prove communication lower bounds for this problem
- Using these two methods, we prove near optimal lower bounds for interesting range space in any dimension
- We prove the first near optimal deterministic lower bounds, which shows that the algorithm of combining local ε -approximations is the best we can do deterministically
- Some lower bound results are listed below

Intervals in **I** Boxes in \mathbb{R}^d

Halfspaces in

[1] Zengfeng Huang and Ke Yi. *The Communication Complexity of Distributed* ε -approximations. FOCS 2014.

Our Results

	Deterministic	Randomized
	0	0
\mathbb{R}^{1}	k/arepsilon	$\frac{\sqrt{k}}{\varepsilon}\sqrt{\log \frac{1}{\varepsilon}}$
\mathbb{R}^{d}	$\frac{\frac{k}{\varepsilon}\log^{d+\frac{1}{2}}\frac{1}{\varepsilon}}{k/\varepsilon^{\frac{2d}{d+1}}}$	$\begin{vmatrix} \frac{\sqrt{k}}{\varepsilon} \sqrt{\log \frac{1}{\varepsilon}} \\ \frac{\sqrt{k}}{\varepsilon} \log^{d+1} \frac{1}{\varepsilon} \\ k^{\frac{1}{d+1}} / \varepsilon^{\frac{2d}{d+1}} \cdot \log^{\frac{d}{d+1}} \frac{1}{\varepsilon} \end{vmatrix}$
${\mathsf n}{\mathbb R}^d$	$k/arepsilon^{rac{2d}{d+1}}$	$k^{\frac{1}{d+1}} / \varepsilon^{\frac{2d}{d+1}} \cdot \log^{\frac{d}{d+1}} \frac{1}{\varepsilon}$

	Deterministic	Randomized
	Ω	Ω
\mathbb{R}^1	k/arepsilon	$\sqrt{k}/arepsilon$
d	$\frac{k}{\varepsilon}\log\frac{1}{\varepsilon}$	$\frac{\sqrt{k}}{\varepsilon} \log \frac{1}{\varepsilon} \text{ for } d = 2, 3, 4;$ $\frac{\sqrt{k}}{\varepsilon} \log \frac{d-3}{2} \frac{1}{\varepsilon} \text{ for all } d$
	24	$\frac{\sqrt{k}}{\varepsilon} \log^{\frac{d-3}{2}} \frac{1}{\varepsilon}$ for all d
\mathbb{R}^{d}	$k/\varepsilon^{\frac{2d}{d+1}}$	$k^{\frac{1}{d+1}}/\varepsilon^{\frac{2d}{d+1}}$

References