
Problem Assumption and Preliminaries Algorithm
 How does the water flow and depressions fill during non-uniform rain

over a terrain?

 Can we efficiently compute how water flow and depressions fill during
a local rain event (without processing the entire terrain)?

 Can we incorporate non-terrain features such as soil characteristic,
sewer system and etc. in uniform or non-uniform rain event
computations?

 Massive Dataset (I/O model).
 Two neighboring depressions have exactly one saddle point, where

they meet, and no other depression meet them on the same height.
 We already have the merge tree of the terrain defined below:

Illustration of one-dimensional merge tree

Terrain seen from above along with its merge tree

Sweep-up phase (rising water)
– Input The dfs-layout of merge tree where each leaf is annotated with

how much water has accumulated in the sink.
– Output Compute for each node how much excess water(∆) is standing

for its two children’s sub-trees (two depressions).
Algorithm
 Scan dfs-layout and compute for each vertex it’s excess water(∆), as

shown in figure, and output it.

Rising water phase Distribution of excess water phase

Sweep-down phase (distribution of excess water)
– Input Output of sweep-up phase and the dfs-layout.
– Output Water over each depression.

Algorithm
 Scan dfs-layout and sweep-up phase output while maintaining Slist

(a stack of lists, where a list contains all excess water to be
distributed for the leaves associated with a depression)
̶ If water coming from the watershed hierarchy of a depression is

greater then the remaining water volume, we signal its child
depression as full.

̶ Otherwise, we partition the list of excess water corresponding to
the saddle point and check if one of the child depression is filled,
if so we send the remaining excess water to the other depression
corresponding to the saddle point and push the lists for the child
depressions and update its own water.

Preprocessing The Merge Tree
 Compute the dfs-ordering of the merge tree. We need the ordering to

avoid random access.Previous Results
 Computing the spill time of all the terrain points was first addressed

by Lie et al. [1]. The solution was in the RAM–model.
 Arge et al. [2] gave the solution for computing the spill times of all the

points over the terrain I/O-efficiently.

Deficiency in both results
 It is raining uniformly all over the terrain.
 Updating the local rain event cannot be incorporated.

References
[1] Y. Liu and J. Snoeyink. Flooding Triangulated Terrain. International Symposium

on Spatial Data Handling, 2005.
[2] L. Arge, M. Revsbæk, N. Zeh. I/O-efficient Computation of Water Flow Across a

Terrain. Symposium on Computational Geometry, 2010.
[3] L. Arge, S. Raza, M. Revsbæk. I/O-efficient Water Flow and Terrain Flood Risk

with Non-uniform Rain Events. Manuscript under preparation, 2014.

Water Flow and Terrain Flood Risk with Non-uniform Rain Events

MADALGO – Center for Massive Data Algorithmics, a Center of the Danish National Research Foundation

Lars Arge
Aarhus University

Sarfraz Raza
Aarhus University

Morten Revsbæk
Aarhus University

