madalgo -CENTER FOR MASSIVE DATA ALGORITHMICS

A Fast Approximation Algorithm for Tree-Sparse Recovery (ISIT'14)

Model-Based Compressive Sensing

Compressive sensing

Compressive sensing is a method for recording a sparse signal x with few linear measurements of the form y = Ax.

Sparsity model: the nonzeros of *x* form a rooted, connected subtree of size *k*.

Model-based compressive sensing

Model-based compressive sensing is a framework for reducing the number of measurements further by using more structure in the signal.

VS

(both 5% sparse)

Standard compressive sensing: $m = O(k \cdot \log(n/k))$ Model-based compressive sensing: *m* = O(*k*)

Motivation: Natural Images in Wavelet Basis

Many natural images are sparse in the wavelet basis.

We solve the problem via a Lagrangian relaxation of the sparsity constraint:

where Ω ranges over the supports forming a tree rooted at node 1.

- For a fixed value of the Lagrange parameter λ , we can solve the problem exactly with a dynamic program in O(n) time.
- We perform a binary search over λ in order to find a suitable trade-off between the approximation error and the support size.
- The final approximation error is at most twice as large as the best approximation error with a support in the tree-sparsity model.

Piotr Indyk MIT

MIT

The Tree Sparsity Model

Idea: wavelet coefficients can naturally be arranged as a tree.

Model projection problem: given an arbitrary signal, find the best approximation in the tree-sparsity model.

Tree-Projection Algorithm

arg min_{Ω} $||x - x_{\Omega}||_{2}^{2} + \lambda |\Omega|$

Recovery examples (parameters: n = 1024, k = 41, m = 144)

Algorithm	
Runtime (sec	

MADALGO – Center for Massive Data Algorithmics, a Center of the Danish National Research Foundation

Grundforskningsfond Danish National Research Foundation

Conclusions

• We provide a **fast algorithm** for recovering tree-sparse signals.

Empirically, our algorithm closely matches the sampling performance of the exact tree-projection algorithm, which is significantly slower.

In follow-up work (ICALP'14), we show how to use our algorithm in a fast recovery scheme with provable recovery guarantees.

The mathematically rigorous recovery scheme relies on the approximation-tolerant model-based compressive sensing framework introduced in Hegde-Indyk-Schmidt, SODA'14.