

Maintaining Contour Trees of Dynamic Terrains

Introduction

Terrain

- Terrain is often represented as a planar triangulation (TIN) *M* with a continuous height function $h: \mathbb{R}^2 \to \mathbb{R}$
- Vertex Types
 - Determined by the number of down (or up) components in neighborhood (see fig.). A non-regular vertex is called a critical vertex
- Assume each vertex has unique height and there are only simple saddle (# comp. = 2)*

Filled (hollow) vertices are lower (higher) neighbors

Level set and Contour tree

- *I-level* set of a terrain is a subset M_I of M such that h(v) = I for all v in M_I .
- A **contour** C is a connected component in M_1 C is red/blue if inside is higher/lower.
- **Contour tree** is a topological abstraction of the terrain. It captures the topological changes of contours in the terrain.
 - The topological changes occurs only at critical vertices.
 - Minimum Create, Maximum Destroy. Saddle – Merge or Split.
 - Call it *merge saddle* or *split saddle* Can be computed in $O(n \log n)$ time. [1]

Problem

Maintaining the contour tree of a terrain under the following operation: ChangeHeight(v, r): Change the height of a vertex v in M to r.

References

- [1] H. Carr, J. Snoeyink, and U. Axen. Computing contour trees in all dimensions. Computational Geometry, 2003.
- [2] D. D. Sleator, and R. E. Tarjan. A Data Structure for Dynamic Trees. STOC, 1981.
- [3] P. K. Agarwal, L. Arge, and K. Yi. I/O-efficient batched union-find and its applications to terrain analysis. SoCG, 2006.

^{*} Non-simple saddle can be split into simple saddles, e.g. [2].

Events

ChangeHeight(v,r) operation is processed as a continuous deformation for the terrain over time. During this continuous deformation the combinatorial structure of the contour tree T changes only at discrete time instance, called **events**. More precisely, a event happens when h(v) = h(u) for a vertex u in **M**. We characterize the possible events.

- **Local Event** When v and u are adjacent in M.
 - **Shift event** Change label of node.
 - Birth/Death event Create/destroy a pair of nodes.

Data Structure

For the dynamic contour tree, we maintain two additional data structures called ascent and descent trees. Ascent trees are defined by the vertices of M and a set of oriented edges such that each vertex has an edge pointing to a lower neighbor. Descent trees are defined in the same way but with edges pointing to a higher neighbor. For a vertex v in M, let min_v (max_v) be the minimum (maximum) on the root of the descent tree (ascent tree resp.) containing v.

Handling Local Event

- Update ascent tree and descent tree if any edges in trees are flipped.
- Event type can be determined by scanning the neighbor vertices and comparing their height.
- *Shift event*: Simply update the label corresponding node in *T*.
 - (α,β) is always on the path in **T** between min_v and max_v .
- Birth event: Find the edge (α, β) in T that related to the contour containing v, and create new nodes for *v* and *u*.
- Death event: Remove the node v and u and connect α and β in T.

Time complexity

All operations for a event can be implemented in $O(d + \log n)$ time by Link-Cut tree [3], where d is the maximum degree of v and u.

- Interchange Event When u and v are saddle vertices and they are lying on the same contour. Let $\alpha(\beta)$ be the node in T corresponding to v (u resp.), and let t_0 the moment the event occurs. Let t_0^- (t_0^+) also be the moment before (after resp.) the event. (Think it as raising α up)
 - When the two saddles are both merge saddles. (For split, upside down)

	T	Contours			\mathbb{T}
	t_0^-	t_0^-	t_0	t_0^+	t_0^+
(a)	α β γ	$C^{-}_{\alpha\beta}$ $C^{-}_{\zeta\beta}$ $C^{-}_{\zeta\beta}$ $C^{-}_{\eta\alpha}$	$C_{\xi\alpha}$ $C_{\eta\alpha}$ $C_{\zeta\beta}$ α	$C_{\xi\alpha}^{+} C_{\beta\alpha}^{+}$ α $C_{\eta\beta}^{-} C_{\zeta\beta}^{+}$	$ \begin{array}{c} \alpha \\ \downarrow \alpha \\ \downarrow \eta \\ \downarrow \zeta \end{array} $
(b)	α β γ	α $C_{\overline{\zeta}\beta}$ $C_{\overline{\zeta}\beta}$ $C_{\overline{\zeta}\beta}$	α $C_{\xi\alpha}$ $C_{\zeta\beta}$ β	$\alpha = C_{\xi\alpha}^+ C_{\eta\beta}^+ \beta$ $C_{\beta\alpha}^+ \beta$	Δ^{ξ} Δ^{η} Δ^{ζ}
(c)	α β α β	α $C_{\eta\alpha}$ $C_{\eta\alpha}$ $C_{\zeta\beta}$	α $C_{\eta\alpha}$ β $C_{\zeta\beta}$	$\alpha \leftarrow C_{\eta\beta}^+ \beta C_{\zeta\beta}^+$ $C_{\beta\alpha}^+$	β

When one saddle is merge saddle and the other is split saddle. (mixed)

Handling Interchange Event

- Non-mixed event: Determine which one of the children of α contains min,, (or $amin_{\mu}^{**}$). Then, the child switches its parent to β and β becomes a child of α .
- Mixed event:
 - To determine whether it is case (a), we check if the lowest common ancestor of min_{ij} and $amin_{ij}$ is α . If it is the case, the sign change event occurs so just the labels get swapped.
 - For case (b) (c), we find η by finding the child of α contains min_{ij} and change the parent of η to β . Similarly we find the parent of β on the way to max, and make the node v's parent. Finally, α becomes a parent of β .

^{**} A saddle has two lower components in its neighborhood. amin, is the minimum on the root of the descent tree containing a lower neighbor of u not equal to min_{ij} .