
Hardness of Several Document Indexing Problems

MADALGO – Center for Massive Data Algorithmics, a Center of the Danish National Research Foundation

Jesper Sindahl Nielsen
Aarhus University

Background
As large amounts of data become part of our daily lives we need efficient 
data structures to search the data. One fundamental problem is to index a 
text such that we can decide fast whether a word or phrase appears in the 
text. Modifying this problem slightly, we want to index a collection of 
documents such that we can find all documents that contain a certain word 
or phrase fast. In search engines we are actually not necessarily 
interested in all the documents that match, only the “best” should be 
reported. This class of problems is known as top-݇ document retrieval. 
Now we have to define what “best” means. Usually a scoring function is 
designed where several important factors are considered. The measure 
that Google uses is called PageRank where each document gets a score 
depending on how many other documents link to it, in this sense the score 
of a document is somewhat independent of the query (it has to appear in it 
though!). A measure known as frequency is how many times the word or 
phrase appears in the document. Another one is term proximity where a 
document gets a score based on how close occurrences of the query are. 
A different approach to filter documents is to give more than one word as a 
query, for instance if searching through Wikipedia we might be interested 
in ‘Anatomy’ and ‘Lion’, that is we want all documents that contain both 
words, or alternatively we might interested in ‘Elephants’ but not ‘Africa’ to 
exclude articles about the elephants that live in Africa, while still being 
interested in the elephants living in Asia. 

Formal Definition

Excluded Pattern Problem: Given a set ࣞ ൌ ሼ݀ଵ, ݀ଶ, … , ݀஽ሽ of documents 
with total length ݊	 ൌ ∑ ݀௜௡

௜ୀ଴ , pre-process ࣞ such that whenever two 
patterns ܲା and ܲି come all documents where	ܲାoccurs and ܲି does not 
occur can be reported. We denote these patterns as the positive pattern 
and the negative pattern.

Two (or more) patterns Problem: Given a set ࣞ ൌ ሼ݀ଵ, ݀ଶ, … , ݀஽ሽ of 
documents with total length ݊ ൌ ∑ ݀௜௡

௜ୀ଴ , pre-process ࣞ such that 
whenever two (or more) patterns ଵܲ and ଶܲ come as a query, report all 
documents that contain both ଵܲ and ଶܲ.

A closely related problem known as the two-dimensional substring 
indexing problem has also been studied in the literature [2].

Two-dimensional Substring Indexing problem: Given a set of 
documents ࣞ ൌ ሼ ݀ଵ,ଵ, ݀ଵ,ଶ , ݀ଶ,ଵ, ݀ଶ,ଶ , … , ݀஽,ଵ, ݀஽,ଶ ሽ with total length 
݊ ൌ ∑ ݀௜௡

௜ୀ଴ , pre-process ࣞ such that whenever a pair ሺ ଵܲ, ଶܲሻ comes report 
all ݅ where ଵܲ occurs in ݀௜,ଵ and ଶܲ occurs in ݀௜,ଶ.

We show these three problems are all tightly related and we show that the 
problems are unlikely to have fast algorithms unless there is a fast Matrix 
Multiplication algorithm.

Matrix Multiplication Example of Reduction
The Matrix Multiplication problem is defined as: Given two ݊	 ൈ ݊
matrices ሺܽ௜,௝ሻ and ሺܾ௜,௝ሻ compute their product ܿ௜,௝ ൌ ∑ ܽ௜,௞ܾ௞,௝

௡
௞ୀଵ .

 The fastest known algorithm for Matrix Multiplication runs in ܱ ݊ଵ.ଵ଼ [3].
 That algorithm uses algebraic methods.
 The fastest combinatorial algorithm runs in ܱሺ݊ଵ.ହ ോ polylogሺ݊ሻሻ [4].

This means, if we can solve Matrix Multiplication using a solution to one of 
the document indexing problems, we achieve a conditional lower bound. 
That is, unless a better algorithm for Matrix Multiplication is found, we 
should not expect to find a better algorithm for the document indexing 
problems.

Set Intersection
Matrix Multiplication can be used to solve the Empty Set Intersection 
problem. Let a bit vector of length ݊ represent a subset of 
0,1,2, … , ݊ െ 1 where index ݅ equals 1 if element ݅ is in the set. In this 

manner, if we have a set ܣ of ݊ subsets and a set ܤ of ݊ subsets we 
can create a matrix for ܣ and a matrix for ܤ. Computing the product of ܣ
and ܤ, tells us that the intersection of the ݅th set in ܣ and ݆th set in ܤ is 
empty if and only if the (݅, ݆) entry in the product is 0.

Looking at the two first problems, one solution is to first find all documents
containing the first pattern, then all documents containing the second
pattern and compute their intersection (with some appropriate
modification). This is an inefficient algorithm but illustrates the underlying
problem well.

Suppose we are given ܣ and ܤ as 

ܣ ൌ	
0 1 1
1 0 0
1 0 1

and ܤ ൌ	
0 0 1
0 1 0
1 0 0

(the product ܥ ൌ 	
1 1 0
0 0 1
1 0 1

not given)

Then we define 

ଵܣ ൌ 	 ሼ1,2ሽ, ଶܣ ൌ 0 , ଷܣ ൌ 0,2 , ଵܤ ൌ 0,1 , ଶܤ ൌ 0,2 and ܤଷ ൌ ሼ1,2ሽ.

We write the first document from ܣ௜ and ܤ௜ by using 2 bits per value in the 
sets and one bit in the beginning indicating if the number is from ܣ or ܤ
and all numbers separated by a ‘#’: 

݀ଵ ൌ 001#010#100#101#
݀ଶ ൌ 000#100#110#
݀ଷ ൌ 000#010#101#110#

Looking at ݀ଵ the first two numbers are from ܣ and the last two from ܤ as 
indicated by the first bit in the numbers (0 for 1 ,ܣ for ܤ). Now we build the 
data structure on the three documents and execute the queries (0݅,1݆) for 
all values of ݅ and ݆.

Query(000,100) := is there a document with 000 but not 100? Yes ݀ଶ
Query(000,101) := Yes, ݀ଶ. Query(000,110) := No. Query(001,100) := No. 
Query(001,101) := No. Query(001,110) := Yes, ݀ଵ. Query(010,100) := Yes. 
Query(010,101) := No. Query(010,110) := Yes.

Writing these answers in matrix form with ‘1’ for yes and ‘0’ for no we get:

1 1 0
0 0 1
1 0 1

This is exactly the matrix product of ܣ and ܤ.

Solving Matrix Multiplication using Excluded Pattern
For two 0/1 matrices ܣ and ܤ we define the characteristic set of each row
of ܣ as the indices where there is a one. Similarly we define the 
characteristic set of each column of ܤ as the indices where there is a 0. 
We create documents based on these sets. For the ݅th cloumn and row 
one document is made by writing numbers from ܣ’s ݅th characteristic set in 
binary (each preceded by ‘0’ and all separated by ‘#’), followed by all 
numbers in ܤ’s ݅th characteristic set (each preceded by ‘0’ and all 
separated by ‘#’). Now build the data structure on these documents. It is 
not too hard to see that the query (0݅,1݆) gives the value of the (݅, ݆) entry 
in the product of ܣ and ܤ.

Since we are doing n queries to multiply two matrices we get a conditional
lower bound of ௡

భ.భఴ

௡
ൌ ݊଴.ଵ଼ on average for a query.

References
[1] K. G. Larsen, J. I. Munro, J. S. Nielsen, S. V. Thankachan. On Hardness of 

Several String Indexing Problems. Combinatorial Pattern Matching, 2014.
[2] P. Ferragina, N. Koudas, S. Muthukrishnan, and D. Srivastava. Two-

dimensional substring indexing. J. Comput. Syst. Sci., 2003.
[3] F. L. Gall. Powers of tensors and fast matrix multiplication. CoRR, 

abs/1401.7714, 2014.
[4] N. Bansal and R. Williams. Regularity lemmas and combinatorial algorithms. 

Theory of Computing, 2012.


