
Path Computation in External Memory

In this work we focus on undirected, unweighted graphs with small
diameter. This fits well for real world graph data as social network or web
graphs. Determining the distance from one vertex to all other vertices in
such a network is possible by a Breath-First Search (BFS).

The best known BFS implementation for general graphs has an I/O-
complexity of Ω(N/√B) I/Os. For graphs with small diameter exists an
implementation with an I/O-complexity of O(dscan(N)+sort(M)) I/Os.

Social networks usually have a small diameter in O(log(N))

For our work we use the idea of a distance oracle published by Ajwani et
al. in [1]. For the construction of their oracle the authors compute the BFS-
tree of a small subset of the vertices and determine the distance of any
pair of vertices u and v by dist(u)+dist(v)-2dist(LCA) where LCA is the last
common ancestor of u and v.

We compute a set of BFS-trees with high degree vertices as root vertex. In
real world data such vertices are often a centre vertex – an important part
of the graph structure [1].

The Distance Oracle Preliminary Results and Future Work
Our distance oracle shall answer a single query using O(1) I/Os and O(n)
batched queries in a row using O(1/B) I/Os. To achieve approximated
distances close to the exact distance we determine for u and v their LCA in
each tree. This is done by combining their inorder numbers in the BFS tree
with the XOR operation [1]. For the construction of the inorder numbers
we use a Huffman encoding for binary trees. Therefore some LCA vertices
will be “dummy vertices” that have to be memorized due to the
transformation into a binary tree.

d(x,r) + d(y,r) – 2d(lca(x,y),r)

The result of the distance oracle is stored in two data structures: _IN and
_DIST. In _IN for each vertex its distance to the root and its inorder
number is stored for each tree. And in _DIST for each we store the inorder
numbering and distance for all vertices including the dummy vertices. We
use _DIST as a lookup table to determine the distance of the LCA.

To achieve O(1/B) I/Os we scan _IN and _DIST (now as a vector in sorted
order) in parallel for each tree separately and determine distance of u, v,
the LCA and its distance with a few scanning and sorting steps. The best
distance over all rounds is kept as the approximated distance.

Preprocessing & Dynamic Aspects
 For our distance oracle we have to compute a set of BFS trees once

 To gain a faster preprocessing we can build a hierarchy instead

− Compute a single large BFS tree and compute log(n) multi-BFS[2]
tree sets with decreasing size of the trees

 We restrict ourselves on graphs with small diameter. Therefore we can
use MR-BFS instead of the more expensive MM-BFS.

 Social network graphs are frequently updated. Therefore we investigate
how to deal with that aspect.

− One possibility is to update each BFS tree independently and do
not wait until all trees of the set are updated.

− For our hierarchical preprocessing dynamic updates can be easily
done for the smaller sub trees using a constant fraction of I/Os.
Only the few larger trees might take longer.

References
[1] Deepak Ajwani, W. Sean Kennedy, Alessandra Sala, Iraj Saniee.

A Distance Approximation Oracle for Large Real-World Graphs Based
on Graph Hyperbolicity. Unpublished manuscript.

[2] Deepak Ajwani, Ulrich Meyer, David Veith. I/O-efficient Hierarchical
Diameter Approximation. ESA 2012.

I/O-efficient Approximate Distance Oracle for Real-world Graphs

MADALGO – Center for Massive Data Algorithmics, a Center of the Danish National Research Foundation

David Veith
Goethe University

For our experiments we focused on SSDs. As in [1] we use 20 full BFS
trees to build our oracle. The results on this poster are based on
experiments with a web graph called sk-2005 with 50 million vertices and
1.8 billion edges (law.di.unimi.it/webdata/sk-2005/). The preprocessing
result for 20 BFS trees has a size of 35 GB for sk-2005.

We tested on a machine with a 4.1GHz AMD quad core, 6 SSDs and 32
GB main memory (but we restricted ourselves to small main memory usage
on this machine).

For a single query we were able to achieve a answer time of 6ms in
average by using a small block size of a 4 KB. About 400 mostly random
I/Os were obtained for 20 BFS trees per query.

For the batched queries we can accelerate the average time per query to
16µs for up to 42|V| queries.

Ulrich Meyer
Goethe University

Deepak Ajwani
Bell Labs, Ireland

Future work

This work is still in progress. We want to investigate the accuracy of our
distance oracle for different data sets and plan to reduce the average time
per query by some new tricks.

15

16

17

18

19

20

21

22

0 5 10 15 20 25 30 35 40 45

avg per query (µs) for different cn

x y

r

