
Paging and Competitive Analysis Results Roadmap

Layer Partitioning Selection Process Implementation

References

[1] Gerth Stølting Brodal, Gabriel Moruz, and Andrei Negoescu. OnlineMin: 
A Fast Strongly Competitive Randomized Paging Algorithm. Theory of 
Computing Systems, 2012.

MADALGO – Center for Massive Data Algorithmics, a Center of the Danish National Research Foundation

Paging
 Setup: a cache of size k and a memory of infinite size
 Process pages sequentially online (no information about future)
 Current page:
 Cache hit – page is in cache: move to next page
 Cache miss – page is not in cache: bring it in cache
 Cache is full: evict some page to make room

 Objective: minimize #misses

Competitive analysis
 Compare online algorithm against optimal cost OPT
 An algorithm A has competitive ratio c if

cost(A) ≤ c × cost(OPT)

Layers
 Intuition: keep track of OPT’s cache
 Split all pages in k+1 layers L0, …, Lk

 At most i pages in first i layers in OPT’s cache

Layer update upon request to page p:
 P in L0:
 L0 = L0 - {p}, Lk-1 = Lk-1 + Lk , Lk = {p}

 P in Li (i > 0):
 Li-1 = Li-1 + Li – {p}, Lj = Lj+1 (for j ≥ i), Lk = {p}

Example (k = 3)

Previous work

OnlineMIN
Hk-competitive, O(k) space, O(log k) time per page

Selection process
 Assume pages have random priorities
 Build sets C0, …, Ck as follows
 C0 = {}
 Ci has the i pages in Ci-1 + Li having largest priorities

 The cache of the algorithm is always Ck

Example (k = 5)

C1 = {8}, C2 = {4,8}, C3 = {8,9,10}, C4= {7,8,9,10}, C5= {2,7,8,9,10}

Same distribution as Equitable2, and thus Hk-competitive!

OnlineMIN
 Upon processing page p:
 Update cache if cache miss:
 If p in L0, evict page in cache having smallest priority
 If p in Li (i > 0)
 Find smallest j > i s.t. first j layers have j pages in cache
 Evict the page in the first j layers having smallest priority

 Update layers as previously described

Analysis
O(k) space per Equitable2, O(log k) time per smart data structures

OnlineMIN: A Fast Strongly Competitive Paging Algorithm

Gabriel Moruz
University of Frankfurt

Algorithm Comp. ratio Space Time per page

LRU, FIFO k O(k) O(1)

Mark 2Hk O(k) O(1)

Partition Hk O(n) O(n)

Equitable Hk O(k2log k) O(k2)

Equitable2 Hk O(k) O(k2)

Layer Partitioning

Cache EquitableCache OnlineMIN

Same probability 
distribution O(k2) timeO(log k) time

Random selection Random selection

1 2 3 10 2 3 32

1 2 4 53 6 6

0 1

1 3 62 4 5 5

0

1 3 2 4 6 5 1

2 3 12 3 32

3 2

0

5 5
0

2 4
1

5 6 1 3 4 5
1

6 1 2
0

1 23 4 6

7 8
0 1 2 53 4

5 21 4 9 10 7


