
Paging and Competitive Analysis Results Roadmap

Layer Partitioning Selection Process Implementation

References

[1] Gerth Stølting Brodal, Gabriel Moruz, and Andrei Negoescu. OnlineMin: 
A Fast Strongly Competitive Randomized Paging Algorithm. Theory of 
Computing Systems, 2012.

MADALGO – Center for Massive Data Algorithmics, a Center of the Danish National Research Foundation

Paging
 Setup: a cache of size k and a memory of infinite size
 Process pages sequentially online (no information about future)
 Current page:
 Cache hit – page is in cache: move to next page
 Cache miss – page is not in cache: bring it in cache
 Cache is full: evict some page to make room

 Objective: minimize #misses

Competitive analysis
 Compare online algorithm against optimal cost OPT
 An algorithm A has competitive ratio c if

cost(A) ≤ c × cost(OPT)

Layers
 Intuition: keep track of OPT’s cache
 Split all pages in k+1 layers L0, …, Lk

 At most i pages in first i layers in OPT’s cache

Layer update upon request to page p:
 P in L0:
 L0 = L0 - {p}, Lk-1 = Lk-1 + Lk , Lk = {p}

 P in Li (i > 0):
 Li-1 = Li-1 + Li – {p}, Lj = Lj+1 (for j ≥ i), Lk = {p}

Example (k = 3)

Previous work

OnlineMIN
Hk-competitive, O(k) space, O(log k) time per page

Selection process
 Assume pages have random priorities
 Build sets C0, …, Ck as follows
 C0 = {}
 Ci has the i pages in Ci-1 + Li having largest priorities

 The cache of the algorithm is always Ck

Example (k = 5)

C1 = {8}, C2 = {4,8}, C3 = {8,9,10}, C4= {7,8,9,10}, C5= {2,7,8,9,10}

Same distribution as Equitable2, and thus Hk-competitive!

OnlineMIN
 Upon processing page p:
 Update cache if cache miss:
 If p in L0, evict page in cache having smallest priority
 If p in Li (i > 0)
 Find smallest j > i s.t. first j layers have j pages in cache
 Evict the page in the first j layers having smallest priority

 Update layers as previously described

Analysis
O(k) space per Equitable2, O(log k) time per smart data structures

OnlineMIN: A Fast Strongly Competitive Paging Algorithm

Gabriel Moruz
University of Frankfurt

Algorithm Comp. ratio Space Time per page

LRU, FIFO k O(k) O(1)

Mark 2Hk O(k) O(1)

Partition Hk O(n) O(n)

Equitable Hk O(k2log k) O(k2)

Equitable2 Hk O(k) O(k2)

Layer Partitioning

Cache EquitableCache OnlineMIN

Same probability 
distribution O(k2) timeO(log k) time

Random selection Random selection

1 2 3 10 2 3 32

1 2 4 53 6 6

0 1

1 3 62 4 5 5

0

1 3 2 4 6 5 1

2 3 12 3 32

3 2

0

5 5
0

2 4
1

5 6 1 3 4 5
1

6 1 2
0

1 23 4 6

7 8
0 1 2 53 4

5 21 4 9 10 7


