OnlineMIN: A Fast Strongly Competitive Paging Algorithm

Paging and Competitive Analysis

Paging
- Setup: a cache of size k and a memory of infinite size
- Process pages sequentially online (no information about future)
- Current page:
 - Cache hit – page is in cache: move to next page
 - Cache miss – page is not in cache: bring it in cache
 - Cache is full: evict some page to make room
- Objective: minimize #misses

Competitive analysis
- Compare online algorithm against optimal cost OPT
- An algorithm A has competitive ratio c if
 \[
 \text{cost}(A) \leq c \times \text{cost}(OPT)
 \]

Previous work

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Comp. ratio</th>
<th>Space</th>
<th>Time per page</th>
</tr>
</thead>
<tbody>
<tr>
<td>LRU, FIFO</td>
<td>k</td>
<td>$O(k)$</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>Mark</td>
<td>$2H_k$</td>
<td>$O(k)$</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>Partition</td>
<td>H_k</td>
<td>$O(n)$</td>
<td>$O(n)$</td>
</tr>
<tr>
<td>Equitable</td>
<td>H_k</td>
<td>$O(k^2 \log k)$</td>
<td>$O(k^2)$</td>
</tr>
<tr>
<td>Equitable2</td>
<td>H_k</td>
<td>$O(k)$</td>
<td>$O(k^2)$</td>
</tr>
</tbody>
</table>

OnlineMIN
- H_k-competitive, $O(k)$ space, $O(\log k)$ time per page

Selection Process

Selection process
- Assume pages have random priorities
- Build sets C_0, \ldots, C_k as follows
 - $C_0 = \emptyset$
 - C_i has the i pages in $C_{i-1} + L_i$ having largest priorities
 - The cache of the algorithm is always C_k

Example ($k = 5$)
- $C_1 = \{8\}$, $C_2 = \{4,8\}$, $C_3 = \{8,9,10\}$, $C_4 = \{7,8,9,10\}$, $C_5 = \{2,7,8,9,10\}$

- Same distribution as Equitable2, and thus H_k-competitive!

Roadmap

- Layer Partitioning
 - Random selection
 - Layer Partitioning
 - Random selection
 - Cache OnlineMIN
 - Cache Equitable
- $O(\log k)$ time
- Same probability distribution
- $O(k^2)$ time

Implementation

- OnlineMIN
 - Upon processing page p:
 - Update cache if cache miss:
 - If p in L_0, evict page in cache having smallest priority
 - If p in L_i ($i > 0$):
 - Find smallest $j > i$ s.t. first j layers have j pages in cache
 - Evict the page in the first j layers having smallest priority
 - Update layers as previously described
- Analysis
 - $O(k)$ space per Equitable2, $O(\log k)$ time per smart data structures

References