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Problem TheoremProblem
Preprocessing an input array such that the given query asking for the position of the

Theorem
Preprocessing an input array such that the given query asking for the position of the 
minimum element in a rectangular range within the array is solved efficiently Any RMQ algorithm using nminimum element in a rectangular range within the array is  solved efficiently. y g g
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Databases, geographic information systems, graphics, computing lowest common 
i hi d i l i i
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Fi h dancestors in trees, pattern matching, document retrieval queries, maximum segment Fix the data structure.

queries and more. Every query is a decision 

One Dimensional Data Structure Indexing 2D Data SOne Dimensional Data Structure Indexing 2D Data S
A Cartesian Tree encodes the input 1D array of size n elements in 4n+o(n) bits s t Partition the input into bloA Cartesian Tree encodes the input 1D array of size n elements in 4n+o(n) bits s.t. 
the query can be solved without accessing the input in O(1) time (Sadakane’07)

Partition the input into blo
Construct a binary tree onthe query can be solved without accessing the input in O(1) time (Sadakane 07). Construct a binary tree on
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Th b t i d i d di d t t t h i 2 ( ) bit t hiThe best indexing and encoding data structures have size 2n+o(n) bits matching 
th l b d f 2 Ɵ(l ) bit (Fi h d H ’03 Fi h ’07)the lower bound of 2n-Ɵ(log n) bits (Fischer and Heun’03, Fischer’07).
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ResultsResults

Query time Space (bits) Preprocessing timeQuery time Space (bits) Preprocessing time
( ) Ω( ) O( / ) | |(1) Ω(c) O(N/c)+|A| -
(2) O(1) O(N)+|A| O(N)( ) ( ) ( ) | | ( )
(3) O(clog2c) O(N/c)+|A| O(N)(3) O(clog c) O(N/c)+|A| O(N)
(4) Ω(N l )(4) - Ω(N log m) -
(5) O(1) O(N log n) O(N)
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Indexing Lower Bound (1D and 2D) (1)Indexing Lower Bound (1D and 2D) (1)

The path (1 0 1 1) ending at the leaf jThe path (1,0,1,...,1) ending at the leaf j 
shows that the answer of the query over i1shows that the answer of the query over
the input matching with the probes of/  bits additional space,n c
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Combine queries to a decision tree.
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Structure: Linear Space (2) Indexing 2D Data Structure: Time space Trade off (3)Structure: Linear Space (2) Indexing 2D Data Structure: Time-space Trade-off (3)

cks recursively Partition the input into blocks of size 2i x c/2i in log c stepscks recursively.
n top of the blocks at each level

Partition the input into blocks of size 2i x c/2i in log c steps.
In each step construct an indexing data structure of size O(N/c) bits forn top of the blocks at each level.

ng over the blocks
In each step, construct an indexing data structure of size O(N/c) bits for 
the compressed matrixng over the blocks. the compressed matrix.
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Encoding 2D Lower Bound (4)Encoding 2D Lower Bound (4)

D fi t f diff t t i(m !)
n−m

Define a set of                     different matrices.(m
2 !) 2 4

n m

Bits required is at least: 2
−

4

3
1

l (m !)
n m

Θ(N l ) q5log(m
2 !) 2 − 4 = Θ(N log m)

m
2

n
2
− m

42 2 4

6

2

6

m
2

2

4

π1 a permutation of {2, 4, 6, . . . , m}
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