
Space Efficient RangSpace Efficient Rang
IntroductionIntroduction

Problem TheoremProblem
Preprocessing an input array such that the given query asking for the position of the

Theorem
Preprocessing an input array such that the given query asking for the position of the
minimum element in a rectangular range within the array is solved efficiently Any RMQ algorithm using nminimum element in a rectangular range within the array is solved efficiently. y g g

requiresΩ() probes into thcrequires Ω() probes into thc
I 2D i

Succinct Models Proof
In 2D version,
th i t10 4 13 9 12Succinct Models

I d i P b i t th i t
Proof

C id / i f
the input array

h N
10 4 13 9 12
65 14 6 11 30Indexing: Probes into the input.

E di N t th i t
Consider n/c queries for c

i h bl k
has N=m×n

l t ()

65 14 6 11 30
7 28 9 16 52Encoding: No access to the input. one zero in each block.elements (m≤n)7 28 9 16 52
17 48 19 2 23 1 2

11101111111 1111111101

1 2

Minimum 11101111111 1111111101

A li ti q1 q2Applications
D t b hi i f ti t hi ti l t / / 2 / i t h

q1 q2

Databases, geographic information systems, graphics, computing lowest common
i hi d i l i i

cn/c / 2n/c inputs share som
Fi h dancestors in trees, pattern matching, document retrieval queries, maximum segment Fix the data structure.

queries and more. Every query is a decision

One Dimensional Data Structure Indexing 2D Data SOne Dimensional Data Structure Indexing 2D Data S
A Cartesian Tree encodes the input 1D array of size n elements in 4n+o(n) bits s t Partition the input into bloA Cartesian Tree encodes the input 1D array of size n elements in 4n+o(n) bits s.t.
the query can be solved without accessing the input in O(1) time (Sadakane’07)

Partition the input into blo
Construct a binary tree onthe query can be solved without accessing the input in O(1) time (Sadakane 07). Construct a binary tree on
Solve the queries spanninSolve the queries spannin

D:
3 3 LCA

RMQ(A [4 7]) 6
1 2 3 4 5 6 7 8

3
RMQ(A, [4 · · · 7]) = 6A: 7 20 102 8 5 616 1 6

2 5 8
q = [4 · · · 7]

2 5 8
q []

74

Th b t i d i d di d t t t h i 2 () bit t hiThe best indexing and encoding data structures have size 2n+o(n) bits matching
th l b d f 2 Ɵ(l) bit (Fi h d H ’03 Fi h ’07)the lower bound of 2n-Ɵ(log n) bits (Fischer and Heun’03, Fischer’07).

U bl l k i h lUse table lookup in the las

ResultsResults

Query time Space (bits) Preprocessing timeQuery time Space (bits) Preprocessing time
() Ω() O(/) | |(1) Ω(c) O(N/c)+|A| -
(2) O(1) O(N)+|A| O(N)() () () | | ()
(3) O(clog2c) O(N/c)+|A| O(N)(3) O(clog c) O(N/c)+|A| O(N)
(4) Ω(N l)(4) - Ω(N log m) -
(5) O(1) O(N log n) O(N)

[1] Brodal, Davoodi, Rao. On Space Efficient Two Dimensional Range Minimum
Data Structures. ESA 2010 / Invited to special issue of Algorithmica.p g

MADALGO – Center for Massive Data Algorithmics aMADALGO – Center for Massive Data Algorithmics, a

Pooya DavoodiPooya Davoodi
Aarhus UniversityAarhus University

ge Minimum Queriesge Minimum Queries
Indexing Lower Bound (1D and 2D) (1)Indexing Lower Bound (1D and 2D) (1)

The path (1 0 1 1) ending at the leaf jThe path (1,0,1,...,1) ending at the leaf j
shows that the answer of the query over i1shows that the answer of the query over
the input matching with the probes of/ bits additional space,n c

1

0 1the input matching with the probes of
the path is j

p
he input i2the path is j.he input. i2

110 0

Combine queries to a decision tree
11 0

n/c diff t {0 1} i t ith tl
Combine queries to a decision tree.
P h bl b h f th

i3
0 1cn/c different {0,1} inputs with exactly Prune non-reachable branches for the

i t h i th d t t t
0 1

inputs sharing the data structure.
th ≤ /n/c # zeroes on any path ≤ n/c.

1 01111111111

n/c

1 01111111111
ip

qn/c

d t t t Q ti d Ω()

qn/c
jme data structure. Query time d = Ω(c). j

ftree of height ≤ d.

Structure: Linear Space (2) Indexing 2D Data Structure: Time space Trade off (3)Structure: Linear Space (2) Indexing 2D Data Structure: Time-space Trade-off (3)

cks recursively Partition the input into blocks of size 2i x c/2i in log c stepscks recursively.
n top of the blocks at each level

Partition the input into blocks of size 2i x c/2i in log c steps.
In each step construct an indexing data structure of size O(N/c) bits forn top of the blocks at each level.

ng over the blocks
In each step, construct an indexing data structure of size O(N/c) bits for
the compressed matrixng over the blocks. the compressed matrix.

c
1

Remaining part of sizeLCA Remaining part of size
O(clog c) is scanned

LCA

CompressO(clog c) is scanned. Compress

c
c

l l h h bl k i i O(l Nst level where the block size is O(log N).

Encoding 2D Lower Bound (4)Encoding 2D Lower Bound (4)

D fi t f diff t t i(m !)
n−m

Define a set of different matrices.(m
2 !) 2 4

n m

Bits required is at least: 2
−

4

3
1

l (m !)
n m

Θ(N l) q5log(m
2 !) 2 − 4 = Θ(N log m)

m
2

n
2
− m

42 2 4

6

2

6

m
2

2

4

π1 a permutation of {2, 4, 6, . . . , m}

a Center of the Danish National Research Foundationa Center of the Danish National Research Foundation

