_
) O

anmarks

maDaLG 0 L - ; Pooya Davoodi

Sy p ‘ " .
CENTER FOR MASSIVE DATA ALGORITHMICS Aarhus University

il
Nl
|

anich Nationai
e’ LAl 11711 I YNLALIVL 1Al

Research Foundation

P
AN

[—

Space Efficient Range Minimum Queries

Introduction

Indexing Lower Bound (1D and 2D) ()

Problem

Preprocessing an input array such that the given query asking for the position of the
minimum element in a rectangular range within the array is solved efficiently.

In 2D version,

Succinct Models 10 4 13 9 12 the input array
= Indexing: Probes into the input. 65 14 6 11 30 L N
= Encoding: No access to the input. 17 1212 199 126 gg elements (m=n)

> Minimum

Applications

Databases, geographic information systems, graphics, computing lowest common

ancestors in trees, pattern matching, document retrieval queries, maximum segment
queries and more.

One Dimensional Data Structure

Theorem

Any RMQ algorithm using n / ¢ bits additional space,
requires Q(c) probes into the input.

Proof

= Consider n/c queries for ¢ different {0,1} inputs with exactly
one zero in each block.

1 2 n/c
11101111111 (11111111011 Ol1111111111
L A J L J
S RS Y

d1 q2 dn/c

= ¢nlc /2M¢ inputs share some data structure.
= Fix the data structure.

= Every query is a decision tree of height < d.

The path (1,0,1,...,1) ending at the leaf j
shows that the answer of the query over
the input matching with the probes of
the path is .

= Combine queries to a decision tree.

* Prune non-reachable branches for the
iInputs sharing the data structure.

= # zeroes on any path < n/c.

nlc

d-n/
. — <#inputs =#leaves < e :
2™¢ nl/c

= Query time d = Q(c).

= A Cartesian Tree encodes the input 1D array of size n elements in 4n+o(n) bits s.t.
the query can be solved without accessing the input in O(1) time (Sadakane’07).

1 2 4 5 6 7 8
A:l 7 120! 2 |10 5116 6 >
qg=1[4---7]

* The best indexing and encoding data structures have size 2n+o(n) bits matching
the lower bound of 2n-©(log n) bits (Fischer and Heun’03, Fischer’'07).

Query time Space (bits) Preprocessing time
(1) Q(c) O(N/c)+|A| -
(2) O(1) O(N)+|A] O(N)
(3) O(clog?c) O(N/c)+|A| O(N)
(4) - Q(N log m) -
(5) O(1) O(N log n) O(N)

[1] Brodal, Davoodi, Rao. On Space Efficient Two Dimensional Range Minimum
Data Structures. ESA 2010 / Invited to special issue of Algorithmica.

Indexing 2D Data Structure: Linear Space (2}

= Partition the input into blocks recursively.
= Construct a binary tree on top of the blocks at each level.
= Solve the queries spanning over the blocks.

20

LCA

= Use table lookup in the last level where the block size is O(log N).

==

= Partition the input into blocks of size 2/ x ¢/2'in log ¢ steps.

* |n each step, construct an indexing data structure of size O(N/c) bits for
the compressed matrix.

C

Remaining part of size
O(clog c) is scanned.

Compress | W

 ——

@

]

Encoding 2D Lower Bound)

» Define asetof (Z!)2~ 1 different matrices.

i
4

= Bits required is at least: 2t

log(Z)z2~1 = O(N logm) g/ 5 !

NS
(3

1013

|3
ye

7T1 a permutation of {2,4,6,...,m}

MADALGO - Center for Massive Data Algorithmics, a Center of the Danish National Research Foundation

