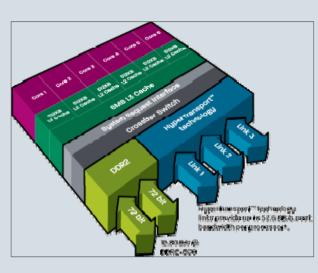
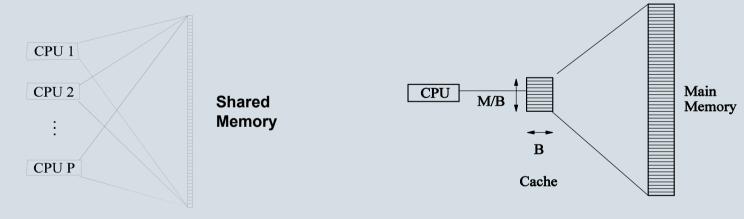

madalgo ----**CENTER FOR MASSIVE DATA ALGORITHMICS**


Parallel External Memory Model for Private-cache Chip Multiprocessors

Motivation

Parallel processors are becoming common place. Each core of a multi-core processor consists of a CPU and a private cache. Inter-processor communication is performed by writing and reading to/from shared memory (higher level cache or the main memory).

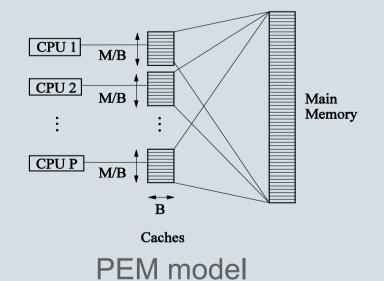
Intel Quad-core processor



AMD 6-core processor

We need new models of computation which model parallelism while taking into account the latencies of memory hierarchies.

PEM Model


The existing *parallel random access (PRAM*) model does not have a notion of caches and, therefore, does not account for spatial locality. On the other hand, the existing external memory (EM) model, while explicitly modeling cache access, is not a parallel model.

PRAM model

EM model

We combine the two models to obtain the *parallel external memory (PEM)* model – a parallel model that explicitly counts cache accesses.

There are three complexity metrics in the PEM model:

- Space amount of memory used
- Parallel time max. time spent by a CPU for computing
- Parallel I/O max. number of transfers between the main memory and the cache of a CPU

Prefix su $b_i = a_1 + ...$

A: {2, 4

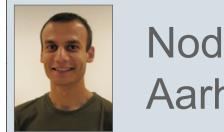
Prefix sur parallel m complexit

Sorting is block for

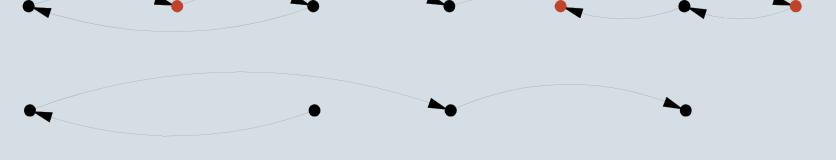
{3, 5, 1

We devel the PEM

List rank rank, the

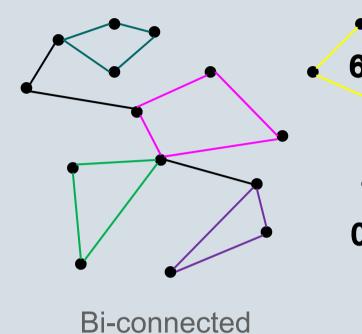

0

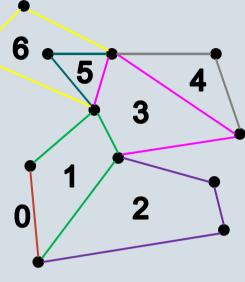
List ranki


Solution independ recursive complete

complexi

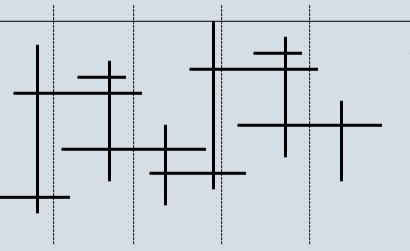
MADALGO – Center for Massive Data Algorithmics, a Center of the Danish National Research Foundation

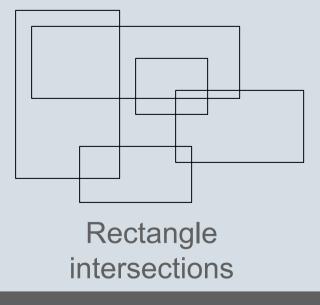

Fundamental Problems	
ums: Given a sequence A = {a ₁ ,,a _n } compute B = {b ₁ ,,b _n }, s.t. +a _i .	Using list ranking and efficiently:
I, 1, 9, 3, 2, 7, 1, 1, 8} 🗭 B: {2, 6, 7, 16, 19, 21, 28, 29, 30, 38}	
ms is a basic building block for solutions to many problems in nodels. Our PEM prefix sums solution is optimal in all three ty metrics.	
is a fundamental problems in computer science and a building solutions to many problems.	
, 7, 2, 8, 4, 6, 9, 10} 🔶 {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}	Minimum spanning tree
lop an optimal sorting algorithm in all three complexity metrics in model.	Spanning tree
Problems on Trees	Ortho
king : Given a linked list of <i>N</i> elements assign each element its distance from the head of the list to the element.	We parallelize the <i>dist</i>
	_
2 3 1 4 7 6 5	
ing is a linchpin to solving problems on trees:	Using distribution swe geometric problems:
The solve the list ranking problem by identifying a maximal dent set via <i>deterministic coin tossing</i> , bridging the set out and all solving the problem on the remaining list. All steps are and in parallel and I/O efficiently, resulting in optimal sorting ity in all three complexity metrics in the PEM model.	Line segment intersections
	 [1] L. Arge. M. T. Goo algorithms for priva [2] L. Arge, M.T. Good

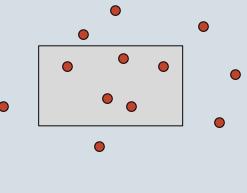


Problems on Graphs

solutions on trees, we can solve problems on graphs


components


Ear decomposition


ogonal Geometric Problems

stribution sweeping technique.

eeping, we obtain efficient solutions to orthogonal

Range query

References

odrich, M. Nelson, N. Sitchinava, Fundamental vate-cache chip multiprocessors, SPAA, 2008. odrich, N. Sitchinava, Parallel external memory graph algorithms, IPDPS, 2010.

[3] D. Ajwani, N. Sitchinava, N. Zeh, Geometric algorithms for privatecache chip multiprocessors. ESA, 2010.